1518c410bc
The new bin utils will have extension esp32s2ulp-elf, and they have to be placed to the bin directory.
1259 lines
44 KiB
C
1259 lines
44 KiB
C
// Copyright 2016-2018 Espressif Systems (Shanghai) PTE LTD
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#pragma once
|
||
#include <stdint.h>
|
||
#include <stddef.h>
|
||
#include <stdlib.h>
|
||
#include "sdkconfig.h"
|
||
#include "esp_err.h"
|
||
#include "soc/soc.h"
|
||
#include "ulp_common.h"
|
||
|
||
#ifdef __cplusplus
|
||
extern "C" {
|
||
#endif
|
||
|
||
#define ULP_FSM_PREPARE_SLEEP_CYCLES 2 /*!< Cycles spent by FSM preparing ULP for sleep */
|
||
#define ULP_FSM_WAKEUP_SLEEP_CYCLES 2 /*!< Cycles spent by FSM waking up ULP from sleep */
|
||
|
||
/**
|
||
* @defgroup ulp_registers ULP coprocessor registers
|
||
* @{
|
||
*/
|
||
|
||
|
||
#define R0 0 /*!< general purpose register 0 */
|
||
#define R1 1 /*!< general purpose register 1 */
|
||
#define R2 2 /*!< general purpose register 2 */
|
||
#define R3 3 /*!< general purpose register 3 */
|
||
/**@}*/
|
||
|
||
/** @defgroup ulp_opcodes ULP coprocessor opcodes, sub opcodes, and various modifiers/flags
|
||
*
|
||
* These definitions are not intended to be used directly.
|
||
* They are used in definitions of instructions later on.
|
||
*
|
||
* @{
|
||
*/
|
||
|
||
#define OPCODE_WR_REG 1 /*!< Instruction: write peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
|
||
|
||
#define OPCODE_RD_REG 2 /*!< Instruction: read peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
|
||
|
||
#define RD_REG_PERIPH_RTC_CNTL 0 /*!< Identifier of RTC_CNTL peripheral for RD_REG and WR_REG instructions */
|
||
#define RD_REG_PERIPH_RTC_IO 1 /*!< Identifier of RTC_IO peripheral for RD_REG and WR_REG instructions */
|
||
#define RD_REG_PERIPH_SENS 2 /*!< Identifier of SARADC peripheral for RD_REG and WR_REG instructions */
|
||
#define RD_REG_PERIPH_RTC_I2C 3 /*!< Identifier of RTC_I2C peripheral for RD_REG and WR_REG instructions */
|
||
|
||
#define OPCODE_I2C 3 /*!< Instruction: read/write I2C (not implemented yet) */
|
||
|
||
#define OPCODE_DELAY 4 /*!< Instruction: delay (nop) for a given number of cycles */
|
||
|
||
#define OPCODE_ADC 5 /*!< Instruction: SAR ADC measurement (not implemented yet) */
|
||
|
||
#define OPCODE_ST 6 /*!< Instruction: store indirect to RTC memory */
|
||
#define SUB_OPCODE_ST 4 /*!< Store 32 bits, 16 MSBs contain PC, 16 LSBs contain value from source register */
|
||
|
||
#define OPCODE_ALU 7 /*!< Arithmetic instructions */
|
||
#define SUB_OPCODE_ALU_REG 0 /*!< Arithmetic instruction, both source values are in register */
|
||
#define SUB_OPCODE_ALU_IMM 1 /*!< Arithmetic instruction, one source value is an immediate */
|
||
#define SUB_OPCODE_ALU_CNT 2 /*!< Arithmetic instruction between counter register and an immediate (not implemented yet)*/
|
||
#define ALU_SEL_ADD 0 /*!< Addition */
|
||
#define ALU_SEL_SUB 1 /*!< Subtraction */
|
||
#define ALU_SEL_AND 2 /*!< Logical AND */
|
||
#define ALU_SEL_OR 3 /*!< Logical OR */
|
||
#define ALU_SEL_MOV 4 /*!< Copy value (immediate to destination register or source register to destination register */
|
||
#define ALU_SEL_LSH 5 /*!< Shift left by given number of bits */
|
||
#define ALU_SEL_RSH 6 /*!< Shift right by given number of bits */
|
||
#ifdef CONFIG_IDF_TARGET_ESP32S2BETA
|
||
#define ALU_SEL_INC 0 /*!< Stage_cnt = Stage_cnt + Imm */
|
||
#define ALU_SEL_DEC 1 /*!< Stage_cnt = Stage_cnt - Imm */
|
||
#define ALU_SEL_RST 2 /*!< Stage_cnt = 0 */
|
||
#endif
|
||
|
||
#define OPCODE_BRANCH 8 /*!< Branch instructions */
|
||
#define BX_JUMP_TYPE_DIRECT 0 /*!< Unconditional jump */
|
||
#define BX_JUMP_TYPE_ZERO 1 /*!< Branch if last ALU result is zero */
|
||
#define BX_JUMP_TYPE_OVF 2 /*!< Branch if last ALU operation caused and overflow */
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
#define B_CMP_L 0 /*!< Branch if R0 is less than an immediate */
|
||
#define B_CMP_GE 1 /*!< Branch if R0 is greater than or equal to an immediate */
|
||
#define SUB_OPCODE_BX 0 /*!< Branch to absolute PC (immediate or in register) */
|
||
#define SUB_OPCODE_B 1 /*!< Branch to a relative offset */
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
#define B_CMP_L 1 /*!< Branch if R0 is less than an immediate */
|
||
#define B_CMP_GE 2 /*!< Branch if R0 is greater than an immediate */
|
||
#define B_CMP_EQ 4 /*!< Branch if R0 is equal to an immediate */
|
||
#define SUB_OPCODE_BX 1 /*!< Branch to absolute PC (immediate or in register) */
|
||
#define SUB_OPCODE_B 0 /*!< Branch to a relative offset base on R0 */
|
||
#define SUB_OPCODE_B_STAGE 2 /*!< Branch to a relative offset base on stage reg */
|
||
#endif
|
||
|
||
#define OPCODE_END 9 /*!< Stop executing the program */
|
||
#define SUB_OPCODE_END 0 /*!< Stop executing the program and optionally wake up the chip */
|
||
#define SUB_OPCODE_SLEEP 1 /*!< Stop executing the program and run it again after selected interval */
|
||
|
||
#define OPCODE_TSENS 10 /*!< Instruction: temperature sensor measurement (not implemented yet) */
|
||
|
||
#define OPCODE_HALT 11 /*!< Halt the coprocessor */
|
||
|
||
#define OPCODE_LD 13 /*!< Indirect load lower 16 bits from RTC memory */
|
||
|
||
#define OPCODE_MACRO 15 /*!< Not a real opcode. Used to identify labels and branches in the program */
|
||
#define SUB_OPCODE_MACRO_LABEL 0 /*!< Label macro */
|
||
#define SUB_OPCODE_MACRO_BRANCH 1 /*!< Branch macro */
|
||
|
||
#ifdef CONFIG_IDF_TARGET_ESP32S2BETA
|
||
#define OPCODE_SLEEP_WAIT 4
|
||
#endif
|
||
/**@}*/
|
||
|
||
/**
|
||
* @brief Instruction format structure
|
||
*
|
||
* All ULP instructions are 32 bit long.
|
||
* This union contains field layouts used by all of the supported instructions.
|
||
* This union also includes a special "macro" instruction layout.
|
||
* This is not a real instruction which can be executed by the CPU. It acts
|
||
* as a token which is removed from the program by the
|
||
* ulp_process_macros_and_load function.
|
||
*
|
||
* These structures are not intended to be used directly.
|
||
* Preprocessor definitions provided below fill the fields of these structure with
|
||
* the right arguments.
|
||
*/
|
||
union ulp_insn {
|
||
|
||
struct {
|
||
uint32_t cycles : 16; /*!< Number of cycles to sleep */
|
||
uint32_t unused : 12; /*!< Unused */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_DELAY) */
|
||
} delay; /*!< Format of DELAY instruction */
|
||
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Register which contains data to store */
|
||
uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
|
||
uint32_t unused1 : 6; /*!< Unused */
|
||
uint32_t offset : 11; /*!< Offset to add to sreg */
|
||
uint32_t unused2 : 4; /*!< Unused */
|
||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ST) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_ST) */
|
||
} st; /*!< Format of ST instruction */
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Data address register number */
|
||
uint32_t sreg : 2; /*!< Base address register number */
|
||
uint32_t data_label : 2; /*!< Data label */
|
||
uint32_t upper : 1; /*!< High and low half-word Select 1: Write high half-word; 0 : write low half-word; */
|
||
uint32_t write_way : 2; /*!< Write number Mode 0 : full word write; 1: with data_label; 3: without label; */
|
||
uint32_t unused1 : 1; /*!< Unused */
|
||
uint32_t offset : 11; /*!< When you select automatic storage, you need to configure the base address offset*/
|
||
uint32_t unused2 : 4; /*!< Unused */
|
||
uint32_t wr_auto : 1; /*!< Automatic storage selection enabled (burst mode)*/
|
||
uint32_t offset_set : 1; /*!< Configure OFFSET enable */
|
||
uint32_t manul_en : 1; /*!< Manual storage selection enabled */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_ST) */
|
||
} st; /*!< Format of ST instruction */
|
||
#endif
|
||
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Register where the data should be loaded to */
|
||
uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
|
||
uint32_t unused1 : 6; /*!< Unused */
|
||
uint32_t offset : 11; /*!< Offset to add to sreg */
|
||
uint32_t unused2 : 7; /*!< Unused */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_LD) */
|
||
} ld; /*!< Format of LD instruction */
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Register where the data should be loaded to */
|
||
uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
|
||
uint32_t unused1 : 6; /*!< Unused */
|
||
uint32_t offset : 11; /*!< Offset to add to sreg */
|
||
uint32_t unused2 : 6; /*!< Unused */
|
||
uint32_t rd_upper: 1;
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_LD) */
|
||
} ld; /*!< Format of LD instruction */
|
||
#endif
|
||
|
||
struct {
|
||
uint32_t unused : 28; /*!< Unused */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_HALT) */
|
||
} halt; /*!< Format of HALT instruction */
|
||
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Register which contains target PC, expressed in words (used if .reg == 1) */
|
||
uint32_t addr : 11; /*!< Target PC, expressed in words (used if .reg == 0) */
|
||
uint32_t unused : 8; /*!< Unused */
|
||
uint32_t reg : 1; /*!< Target PC in register (1) or immediate (0) */
|
||
uint32_t type : 3; /*!< Jump condition (BX_JUMP_TYPE_xxx) */
|
||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_BX) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
|
||
} bx; /*!< Format of BRANCH instruction (absolute address) */
|
||
|
||
struct {
|
||
uint32_t imm : 16; /*!< Immediate value to compare against */
|
||
uint32_t cmp : 1; /*!< Comparison to perform: B_CMP_L or B_CMP_GE */
|
||
uint32_t offset : 7; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
|
||
uint32_t sign : 1; /*!< Sign of target PC offset: 0: positive, 1: negative */
|
||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_B) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
|
||
} b; /*!< Format of BRANCH instruction (relative address) */
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Register which contains target PC, expressed in words (used if .reg == 1) */
|
||
uint32_t addr : 11; /*!< Target PC, expressed in words (used if .reg == 0) */
|
||
uint32_t unused : 8; /*!< Unused */
|
||
uint32_t reg : 1; /*!< Target PC in register (1) or immediate (0) */
|
||
uint32_t type : 3; /*!< Jump condition (BX_JUMP_TYPE_xxx) */
|
||
uint32_t unused1 : 1; /*!< Unused */
|
||
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_BX) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
|
||
} bx; /*!< Format of BRANCH instruction (absolute address) */
|
||
|
||
struct {
|
||
uint32_t imm : 15; /*!< Immediate value to compare against */
|
||
uint32_t cmp : 3; /*!< Comparison to perform: B_CMP_L or B_CMP_GE */
|
||
uint32_t offset : 7; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
|
||
uint32_t sign : 1; /*!< Sign of target PC offset: 0: positive, 1: negative */
|
||
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_B) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
|
||
} b;
|
||
#endif
|
||
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Destination register */
|
||
uint32_t sreg : 2; /*!< Register with operand A */
|
||
uint32_t treg : 2; /*!< Register with operand B */
|
||
uint32_t unused : 15; /*!< Unused */
|
||
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
|
||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_REG) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
|
||
} alu_reg; /*!< Format of ALU instruction (both sources are registers) */
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Destination register */
|
||
uint32_t sreg : 2; /*!< Register with operand A */
|
||
uint32_t treg : 2; /*!< Register with operand B */
|
||
uint32_t unused : 15; /*!< Unused */
|
||
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
|
||
uint32_t unused1 : 1; /*!< Unused */
|
||
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_ALU_REG) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
|
||
} alu_reg; /*!< Format of ALU instruction (both sources are registers) */
|
||
#endif
|
||
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Destination register */
|
||
uint32_t sreg : 2; /*!< Register with operand A */
|
||
uint32_t imm : 16; /*!< Immediate value of operand B */
|
||
uint32_t unused : 1; /*!< Unused */
|
||
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
|
||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
|
||
} alu_imm; /*!< Format of ALU instruction (one source is an immediate) */
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Destination register */
|
||
uint32_t sreg : 2; /*!< Register with operand A */
|
||
uint32_t imm : 16; /*!< Immediate value of operand B */
|
||
uint32_t unused : 1; /*!< Unused */
|
||
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
|
||
uint32_t unused1 : 1; /*!< Unused */
|
||
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
|
||
} alu_imm; /*!< Format of ALU instruction (one source is an immediate) */
|
||
struct {
|
||
uint32_t unused : 4; /*!< Unused */
|
||
uint32_t imm : 16; /*!< Immediate value of operand B */
|
||
uint32_t unused1 : 1; /*!< Unused */
|
||
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
|
||
uint32_t unused2 : 1; /*!< Unused */
|
||
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
|
||
} alu_cnt; /*!< Format of ALU instruction (one source is an immediate) */
|
||
#endif
|
||
|
||
struct {
|
||
uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
|
||
uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
|
||
uint32_t data : 8; /*!< 8 bits of data to write */
|
||
uint32_t low : 5; /*!< Low bit */
|
||
uint32_t high : 5; /*!< High bit */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */
|
||
} wr_reg; /*!< Format of WR_REG instruction */
|
||
|
||
struct {
|
||
uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
|
||
uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
|
||
uint32_t unused : 8; /*!< Unused */
|
||
uint32_t low : 5; /*!< Low bit */
|
||
uint32_t high : 5; /*!< High bit */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */
|
||
} rd_reg; /*!< Format of RD_REG instruction */
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Register where to store ADC result */
|
||
uint32_t mux : 4; /*!< Select SARADC pad (mux + 1) */
|
||
uint32_t sar_sel : 1; /*!< Select SARADC0 (0) or SARADC1 (1) */
|
||
uint32_t unused1 : 1; /*!< Unused */
|
||
uint32_t cycles : 16; /*!< TBD, cycles used for measurement */
|
||
uint32_t unused2 : 4; /*!< Unused */
|
||
uint32_t opcode: 4; /*!< Opcode (OPCODE_ADC) */
|
||
} adc; /*!< Format of ADC instruction */
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Register where to store ADC result */
|
||
uint32_t mux : 4; /*!< Select SARADC pad (mux + 1) */
|
||
uint32_t sar_sel : 1; /*!< Select SARADC0 (0) or SARADC1 (1) */
|
||
uint32_t hall_phase : 1; /*!< Unused */
|
||
uint32_t xpd_hall : 1; /*!< Unused */
|
||
uint32_t unused1 : 19; /*!< Unused */
|
||
uint32_t opcode: 4; /*!< Opcode (OPCODE_ADC) */
|
||
} adc;
|
||
#endif
|
||
struct {
|
||
uint32_t dreg : 2; /*!< Register where to store temperature measurement result */
|
||
uint32_t wait_delay: 14; /*!< Cycles to wait after measurement is done */
|
||
uint32_t reserved: 12; /*!< Reserved, set to 0 */
|
||
uint32_t opcode: 4; /*!< Opcode (OPCODE_TSENS) */
|
||
} tsens; /*!< Format of TSENS instruction */
|
||
|
||
struct {
|
||
uint32_t i2c_addr : 8; /*!< I2C slave address */
|
||
uint32_t data : 8; /*!< Data to read or write */
|
||
uint32_t low_bits : 3; /*!< TBD */
|
||
uint32_t high_bits : 3; /*!< TBD */
|
||
uint32_t i2c_sel : 4; /*!< TBD, select reg_i2c_slave_address[7:0] */
|
||
uint32_t unused : 1; /*!< Unused */
|
||
uint32_t rw : 1; /*!< Write (1) or read (0) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_I2C) */
|
||
} i2c; /*!< Format of I2C instruction */
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
struct {
|
||
uint32_t wakeup : 1; /*!< Set to 1 to wake up chip */
|
||
uint32_t unused : 24; /*!< Unused */
|
||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_WAKEUP) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
|
||
} end; /*!< Format of END instruction with wakeup */
|
||
|
||
struct {
|
||
uint32_t cycle_sel : 4; /*!< Select which one of SARADC_ULP_CP_SLEEP_CYCx_REG to get the sleep duration from */
|
||
uint32_t unused : 21; /*!< Unused */
|
||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_SLEEP) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
|
||
} sleep; /*!< Format of END instruction with sleep */
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
struct {
|
||
uint32_t wakeup : 1; /*!< Set to 1 to wake up chip */
|
||
uint32_t unused : 25; /*!< Unused */
|
||
uint32_t sub_opcode : 2; /*!< Sub opcode (SUB_OPCODE_WAKEUP) */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
|
||
} end;
|
||
|
||
struct {
|
||
uint32_t cycle_sel : 16; /*!< Select which one of SARADC_ULP_CP_SLEEP_CYCx_REG to get the sleep duration from */
|
||
uint32_t unused : 12; /*!< Unused */
|
||
uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
|
||
} sleep;
|
||
#endif
|
||
struct {
|
||
uint32_t label : 16; /*!< Label number */
|
||
uint32_t unused : 8; /*!< Unused */
|
||
uint32_t sub_opcode : 4; /*!< SUB_OPCODE_MACRO_LABEL or SUB_OPCODE_MACRO_BRANCH */
|
||
uint32_t opcode: 4; /*!< Opcode (OPCODE_MACRO) */
|
||
} macro; /*!< Format of tokens used by LABEL and BRANCH macros */
|
||
|
||
};
|
||
|
||
typedef union ulp_insn ulp_insn_t;
|
||
|
||
_Static_assert(sizeof(ulp_insn_t) == 4, "ULP coprocessor instruction size should be 4 bytes");
|
||
|
||
/**
|
||
* Delay (nop) for a given number of cycles
|
||
*/
|
||
#define I_DELAY(cycles_) { .delay = {\
|
||
.cycles = cycles_, \
|
||
.unused = 0, \
|
||
.opcode = OPCODE_DELAY } }
|
||
|
||
/**
|
||
* Halt the coprocessor.
|
||
*
|
||
* This instruction halts the coprocessor, but keeps ULP timer active.
|
||
* As such, ULP program will be restarted again by timer.
|
||
* To stop the program and prevent the timer from restarting the program,
|
||
* use I_END(0) instruction.
|
||
*/
|
||
#define I_HALT() { .halt = {\
|
||
.unused = 0, \
|
||
.opcode = OPCODE_HALT } }
|
||
|
||
/**
|
||
* Map SoC peripheral register to periph_sel field of RD_REG and WR_REG
|
||
* instructions.
|
||
*
|
||
* @param reg peripheral register in RTC_CNTL_, RTC_IO_, SENS_, RTC_I2C peripherals.
|
||
* @return periph_sel value for the peripheral to which this register belongs.
|
||
*/
|
||
static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL(uint32_t reg) {
|
||
uint32_t ret = 3;
|
||
if (reg < DR_REG_RTCCNTL_BASE) {
|
||
assert(0 && "invalid register base");
|
||
} else if (reg < DR_REG_RTCIO_BASE) {
|
||
ret = RD_REG_PERIPH_RTC_CNTL;
|
||
} else if (reg < DR_REG_SENS_BASE) {
|
||
ret = RD_REG_PERIPH_RTC_IO;
|
||
} else if (reg < DR_REG_RTC_I2C_BASE){
|
||
ret = RD_REG_PERIPH_SENS;
|
||
} else if (reg < DR_REG_IO_MUX_BASE){
|
||
ret = RD_REG_PERIPH_RTC_I2C;
|
||
} else {
|
||
assert(0 && "invalid register base");
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* Write literal value to a peripheral register
|
||
*
|
||
* reg[high_bit : low_bit] = val
|
||
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
|
||
*/
|
||
#define I_WR_REG(reg, low_bit, high_bit, val) {.wr_reg = {\
|
||
.addr = (reg & 0xff) / sizeof(uint32_t), \
|
||
.periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
|
||
.data = val, \
|
||
.low = low_bit, \
|
||
.high = high_bit, \
|
||
.opcode = OPCODE_WR_REG } }
|
||
|
||
/**
|
||
* Read from peripheral register into R0
|
||
*
|
||
* R0 = reg[high_bit : low_bit]
|
||
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
|
||
*/
|
||
#define I_RD_REG(reg, low_bit, high_bit) {.rd_reg = {\
|
||
.addr = (reg & 0xff) / sizeof(uint32_t), \
|
||
.periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
|
||
.unused = 0, \
|
||
.low = low_bit, \
|
||
.high = high_bit, \
|
||
.opcode = OPCODE_RD_REG } }
|
||
|
||
/**
|
||
* Set or clear a bit in the peripheral register.
|
||
*
|
||
* Sets bit (1 << shift) of register reg to value val.
|
||
* This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
|
||
*/
|
||
#define I_WR_REG_BIT(reg, shift, val) I_WR_REG(reg, shift, shift, val)
|
||
|
||
/**
|
||
* Wake the SoC from deep sleep.
|
||
*
|
||
* This instruction initiates wake up from deep sleep.
|
||
* Use esp_deep_sleep_enable_ulp_wakeup to enable deep sleep wakeup
|
||
* triggered by the ULP before going into deep sleep.
|
||
* Note that ULP program will still keep running until the I_HALT
|
||
* instruction, and it will still be restarted by timer at regular
|
||
* intervals, even when the SoC is woken up.
|
||
*
|
||
* To stop the ULP program, use I_HALT instruction.
|
||
*
|
||
* To disable the timer which start ULP program, use I_END()
|
||
* instruction. I_END instruction clears the
|
||
* RTC_CNTL_ULP_CP_SLP_TIMER_EN_S bit of RTC_CNTL_STATE0_REG
|
||
* register, which controls the ULP timer.
|
||
*/
|
||
#define I_WAKE() { .end = { \
|
||
.wakeup = 1, \
|
||
.unused = 0, \
|
||
.sub_opcode = SUB_OPCODE_END, \
|
||
.opcode = OPCODE_END } }
|
||
|
||
/**
|
||
* Stop ULP program timer.
|
||
*
|
||
* This is a convenience macro which disables the ULP program timer.
|
||
* Once this instruction is used, ULP program will not be restarted
|
||
* anymore until ulp_run function is called.
|
||
*
|
||
* ULP program will continue running after this instruction. To stop
|
||
* the currently running program, use I_HALT().
|
||
*/
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
#define I_END() \
|
||
I_WR_REG_BIT(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN_S, 0)
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
#define I_END() \
|
||
I_WR_REG_BIT(RTC_CNTL_ULP_CP_TIMER_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN_S, 0)
|
||
#endif
|
||
/**
|
||
* Select the time interval used to run ULP program.
|
||
*
|
||
* This instructions selects which of the SENS_SLEEP_CYCLES_Sx
|
||
* registers' value is used by the ULP program timer.
|
||
* When the ULP program stops at I_HALT instruction, ULP program
|
||
* timer start counting. When the counter reaches the value of
|
||
* the selected SENS_SLEEP_CYCLES_Sx register, ULP program
|
||
* start running again from the start address (passed to the ulp_run
|
||
* function).
|
||
* There are 5 SENS_SLEEP_CYCLES_Sx registers, so 0 <= timer_idx < 5.
|
||
*
|
||
* By default, SENS_SLEEP_CYCLES_S0 register is used by the ULP
|
||
* program timer.
|
||
*/
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
#define I_SLEEP_CYCLE_SEL(timer_idx) { .sleep = { \
|
||
.cycle_sel = timer_idx, \
|
||
.unused = 0, \
|
||
.sub_opcode = SUB_OPCODE_SLEEP, \
|
||
.opcode = OPCODE_END } }
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
#define I_SLEEP_CYCLE_SEL(timer_idx) { .sleep = { \
|
||
.cycle_sel = timer_idx, \
|
||
.unused = 0, \
|
||
.opcode = OPCODE_SLEEP_WAIT } }
|
||
#endif
|
||
/**
|
||
* Perform temperature sensor measurement and store it into reg_dest.
|
||
*
|
||
* Delay can be set between 1 and ((1 << 14) - 1). Higher values give
|
||
* higher measurement resolution.
|
||
*/
|
||
#define I_TSENS(reg_dest, delay) { .tsens = { \
|
||
.dreg = reg_dest, \
|
||
.wait_delay = delay, \
|
||
.reserved = 0, \
|
||
.opcode = OPCODE_TSENS } }
|
||
|
||
/**
|
||
* Perform ADC measurement and store result in reg_dest.
|
||
*
|
||
* adc_idx selects ADC (0 or 1).
|
||
* pad_idx selects ADC pad (0 - 7).
|
||
*/
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
#define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\
|
||
.dreg = reg_dest, \
|
||
.mux = pad_idx + 1, \
|
||
.sar_sel = adc_idx, \
|
||
.unused1 = 0, \
|
||
.cycles = 0, \
|
||
.unused2 = 0, \
|
||
.opcode = OPCODE_ADC } }
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
#define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\
|
||
.dreg = reg_dest, \
|
||
.mux = pad_idx + 1, \
|
||
.sar_sel = adc_idx, \
|
||
.hall_phase = 0, \
|
||
.xpd_hall = 0, \
|
||
.unused1 = 0, \
|
||
.opcode = OPCODE_ADC } }
|
||
#endif
|
||
|
||
/**
|
||
* Store value from register reg_val into RTC memory.
|
||
*
|
||
* The value is written to an offset calculated by adding value of
|
||
* reg_addr register and offset_ field (this offset is expressed in 32-bit words).
|
||
* 32 bits written to RTC memory are built as follows:
|
||
* - bits [31:21] hold the PC of current instruction, expressed in 32-bit words
|
||
* - bits [20:16] = 5'b1
|
||
* - bits [15:0] are assigned the contents of reg_val
|
||
*
|
||
* RTC_SLOW_MEM[addr + offset_] = { 5'b0, insn_PC[10:0], val[15:0] }
|
||
*/
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
#define I_ST(reg_val, reg_addr, offset_) { .st = { \
|
||
.dreg = reg_val, \
|
||
.sreg = reg_addr, \
|
||
.unused1 = 0, \
|
||
.offset = offset_, \
|
||
.unused2 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ST, \
|
||
.opcode = OPCODE_ST } }
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
/**
|
||
* burst Mode: write to consecutive address spaces.
|
||
* STW, STC instructions for the Class burst storage instructions for continuous address space write operation;
|
||
* Need to be used with the SET_OFFSET instruction, you first need to set the start address offset by SET_OFFSET, SREG is the base address,
|
||
* Where STW instruction WORD instruction, each execution time, address offset+1;STC for the half-word operation
|
||
* (First write high 16bit current address, the Second Write low 16bit current address), each performed twice, the address offset+1.
|
||
* Note: when using STC, you must write a word, that is, a burst operation instruction must be an even number.
|
||
*/
|
||
#define I_STO(offset_) { .st = { \
|
||
.dreg = 0, \
|
||
.sreg = 0, \
|
||
.data_label = 0, \
|
||
.upper = 0, \
|
||
.write_way = 0, \
|
||
.unused1 = 0, \
|
||
.offset = offset_, \
|
||
.unused2 = 0, \
|
||
.wr_auto = 0, \
|
||
.offset_set = 0, \
|
||
.manul_en = 1, \
|
||
.opcode = OPCODE_ST } }
|
||
|
||
#define I_STW(reg_val, reg_addr) { .st = { \
|
||
.dreg = reg_val, \
|
||
.sreg = reg_addr, \
|
||
.data_label = 0, \
|
||
.upper = 0, \
|
||
.write_way = 0, \
|
||
.unused1 = 0, \
|
||
.offset = 0, \
|
||
.unused2 = 0, \
|
||
.wr_auto = 1, \
|
||
.offset_set = 0, \
|
||
.manul_en = 0, \
|
||
.opcode = OPCODE_ST } }
|
||
|
||
#define I_STC(reg_val, reg_addr) { .st = { \
|
||
.dreg = reg_val, \
|
||
.sreg = reg_addr, \
|
||
.data_label = 0, \
|
||
.upper = 0, \
|
||
.write_way = 3, \
|
||
.unused1 = 0, \
|
||
.offset = 0, \
|
||
.unused2 = 0, \
|
||
.wr_auto = 1, \
|
||
.offset_set = 0, \
|
||
.manul_en = 0, \
|
||
.opcode = OPCODE_ST } }
|
||
/**
|
||
* Single mode of operation: write to a single address space.
|
||
*
|
||
* Loads 16 LSBs from RTC memory word given by the sum of value in reg_addr and
|
||
* value of offset_.
|
||
*/
|
||
/* Mem [ Rsrc1 + offset ]{31:0} = {PC[10:0], 5<>d0,Rdst[15:0]} */
|
||
#define I_ST(reg_val, reg_addr, offset_) { .st = { \
|
||
.dreg = reg_val, \
|
||
.sreg = reg_addr, \
|
||
.data_label = 0, \
|
||
.upper = 0, \
|
||
.write_way = 0, \
|
||
.unused1 = 0, \
|
||
.offset = offset_, \
|
||
.unused2 = 0, \
|
||
.wr_auto = 0, \
|
||
.offset_set = 0, \
|
||
.manul_en = 1, \
|
||
.opcode = OPCODE_ST } }
|
||
|
||
/* Mem [ Rsrc1 + offset ]{31:16} = {Rdst[15:0]} */
|
||
#define I_STM32U(reg_val, reg_addr, offset_) { .st = { \
|
||
.dreg = reg_val, \
|
||
.sreg = reg_addr, \
|
||
.data_label = 0, \
|
||
.upper = 1, \
|
||
.write_way = 3, \
|
||
.unused1 = 0, \
|
||
.offset = offset_, \
|
||
.unused1 = 0, \
|
||
.wr_auto = 0, \
|
||
.offset_set = 0, \
|
||
.manul_en = 1, \
|
||
.opcode = OPCODE_ST } }
|
||
|
||
/* Mem [ Rsrc1 + offset ]{15:0} = {Rdst[15:0]} */
|
||
#define I_STM32L(reg_val, reg_addr, offset_) { .st = { \
|
||
.dreg = reg_val, \
|
||
.sreg = reg_addr, \
|
||
.data_label = 0, \
|
||
.upper = 0, \
|
||
.write_way = 3, \
|
||
.unused1 = 0, \
|
||
.offset = offset_, \
|
||
.unused2 = 0, \
|
||
.wr_auto = 0, \
|
||
.offset_set = 0, \
|
||
.manul_en = 1, \
|
||
.opcode = OPCODE_ST } }
|
||
|
||
/* Mem [ Rsrc1 + offset ]{31:0} = {data_label[1:0],Rdst[13:0]} */
|
||
#define I_STMLBU(reg_val, reg_addr, label, offset_) { .st = { \
|
||
.dreg = reg_val, \
|
||
.sreg = reg_addr, \
|
||
.data_label = label, \
|
||
.upper = 1, \
|
||
.write_way = 1, \
|
||
.unused1 = 0, \
|
||
.offset = offset_, \
|
||
.unused1 = 0, \
|
||
.wr_auto = 0, \
|
||
.offset_set = 0, \
|
||
.manul_en = 1, \
|
||
.opcode = OPCODE_ST } }
|
||
|
||
/* Mem [ Rsrc1 + offset ]{15:0} = {data_label[1:0],Rdst[13:0]} */
|
||
#define I_STMLBL(reg_val, reg_addr, label, offset_) { .st = { \
|
||
.dreg = reg_val, \
|
||
.sreg = reg_addr, \
|
||
.data_label = label, \
|
||
.upper = 0, \
|
||
.write_way = 1, \
|
||
.unused1 = 0, \
|
||
.offset = offset_, \
|
||
.unused2 = 0, \
|
||
.wr_auto = 0, \
|
||
.offset_set = 0, \
|
||
.manul_en = 1, \
|
||
.opcode = OPCODE_ST } }
|
||
|
||
#endif
|
||
|
||
/**
|
||
* Load value from RTC memory into reg_dest register.
|
||
*
|
||
* Loads 16 LSBs from RTC memory word given by the sum of value in reg_addr and
|
||
* value of offset_.
|
||
*/
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
#define I_LD(reg_dest, reg_addr, offset_) { .ld = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_addr, \
|
||
.unused1 = 0, \
|
||
.offset = offset_, \
|
||
.unused2 = 0, \
|
||
.opcode = OPCODE_LD } }
|
||
#elif defined CONFIG_IDF_TARGET_ESP32S2BETA
|
||
#define I_LD(reg_dest, reg_addr, offset_) { .ld = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_addr, \
|
||
.unused1 = 0, \
|
||
.offset = offset_, \
|
||
.unused2 = 0, \
|
||
.rd_upper = 0, \
|
||
.opcode = OPCODE_LD } }
|
||
#endif
|
||
|
||
/**
|
||
* Branch relative if R0 less than immediate value.
|
||
*
|
||
* pc_offset is expressed in words, and can be from -127 to 127
|
||
* imm_value is a 16-bit value to compare R0 against
|
||
*/
|
||
#define I_BL(pc_offset, imm_value) { .b = { \
|
||
.imm = imm_value, \
|
||
.cmp = B_CMP_L, \
|
||
.offset = abs(pc_offset), \
|
||
.sign = (pc_offset >= 0) ? 0 : 1, \
|
||
.sub_opcode = SUB_OPCODE_B, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||
/**
|
||
* Branch relative if R0 greater or equal than immediate value.
|
||
*
|
||
* pc_offset is expressed in words, and can be from -127 to 127
|
||
* imm_value is a 16-bit value to compare R0 against
|
||
*/
|
||
#define I_BGE(pc_offset, imm_value) { .b = { \
|
||
.imm = imm_value, \
|
||
.cmp = B_CMP_GE, \
|
||
.offset = abs(pc_offset), \
|
||
.sign = (pc_offset >= 0) ? 0 : 1, \
|
||
.sub_opcode = SUB_OPCODE_B, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
#endif
|
||
|
||
#ifdef CONFIG_IDF_TARGET_ESP32S2BETA
|
||
|
||
/**
|
||
* Branch relative if R0 greater than immediate value.
|
||
*
|
||
* pc_offset is expressed in words, and can be from -127 to 127
|
||
* imm_value is a 16-bit value to compare R0 against
|
||
*/
|
||
#define I_BG(pc_offset, imm_value) { .b = { \
|
||
.imm = imm_value, \
|
||
.cmp = B_CMP_GE, \
|
||
.offset = abs(pc_offset), \
|
||
.sign = (pc_offset >= 0) ? 0 : 1, \
|
||
.sub_opcode = SUB_OPCODE_B, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
/**
|
||
* Branch relative if R0 equal to immediate value.
|
||
*
|
||
* pc_offset is expressed in words, and can be from -127 to 127
|
||
* imm_value is a 16-bit value to compare R0 against
|
||
*/
|
||
#define I_BE(pc_offset, imm_value) { .b = { \
|
||
.imm = imm_value, \
|
||
.cmp = B_CMP_EQ, \
|
||
.offset = abs(pc_offset), \
|
||
.sign = (pc_offset >= 0) ? 0 : 1, \
|
||
.sub_opcode = SUB_OPCODE_B, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
/*
|
||
* Branch to a relative offset base on stage reg
|
||
* If stage reg less imm_value, PC will jump pc_offset.
|
||
*/
|
||
#define I_BRLS(pc_offset, imm_value) { .b = { \
|
||
.imm = imm_value, \
|
||
.cmp = B_CMP_L, \
|
||
.offset = abs(pc_offset), \
|
||
.sign = (pc_offset >= 0) ? 0 : 1, \
|
||
.sub_opcode = SUB_OPCODE_B_STAGE, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
/*
|
||
* Branch to a relative offset base on stage reg
|
||
* If stage reg greater imm_value, PC will jump pc_offset.
|
||
*/
|
||
#define I_BRGS(pc_offset, imm_value) { .b = { \
|
||
.imm = imm_value, \
|
||
.cmp = B_CMP_GE, \
|
||
.offset = abs(pc_offset), \
|
||
.sign = (pc_offset >= 0) ? 0 : 1, \
|
||
.sub_opcode = SUB_OPCODE_B_STAGE, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
/*
|
||
* Branch to a relative offset base on stage reg
|
||
* If stage reg equal to imm_value, PC will jump pc_offset.
|
||
*/
|
||
#define I_BRES(pc_offset, imm_value) { .b = { \
|
||
.imm = imm_value, \
|
||
.cmp = B_CMP_EQ, \
|
||
.offset = abs(pc_offset), \
|
||
.sign = (pc_offset >= 0) ? 0 : 1, \
|
||
.sub_opcode = SUB_OPCODE_B_STAGE, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
#endif
|
||
/**
|
||
* Unconditional branch to absolute PC, address in register.
|
||
*
|
||
* reg_pc is the register which contains address to jump to.
|
||
* Address is expressed in 32-bit words.
|
||
*/
|
||
#define I_BXR(reg_pc) { .bx = { \
|
||
.dreg = reg_pc, \
|
||
.addr = 0, \
|
||
.unused = 0, \
|
||
.reg = 1, \
|
||
.type = BX_JUMP_TYPE_DIRECT, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_BX, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
/**
|
||
* Unconditional branch to absolute PC, immediate address.
|
||
*
|
||
* Address imm_pc is expressed in 32-bit words.
|
||
*/
|
||
#define I_BXI(imm_pc) { .bx = { \
|
||
.dreg = 0, \
|
||
.addr = imm_pc, \
|
||
.unused = 0, \
|
||
.reg = 0, \
|
||
.type = BX_JUMP_TYPE_DIRECT, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_BX, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
/**
|
||
* Branch to absolute PC if ALU result is zero, address in register.
|
||
*
|
||
* reg_pc is the register which contains address to jump to.
|
||
* Address is expressed in 32-bit words.
|
||
*/
|
||
#define I_BXZR(reg_pc) { .bx = { \
|
||
.dreg = reg_pc, \
|
||
.addr = 0, \
|
||
.unused = 0, \
|
||
.reg = 1, \
|
||
.type = BX_JUMP_TYPE_ZERO, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_BX, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
/**
|
||
* Branch to absolute PC if ALU result is zero, immediate address.
|
||
*
|
||
* Address imm_pc is expressed in 32-bit words.
|
||
*/
|
||
#define I_BXZI(imm_pc) { .bx = { \
|
||
.dreg = 0, \
|
||
.addr = imm_pc, \
|
||
.unused = 0, \
|
||
.reg = 0, \
|
||
.type = BX_JUMP_TYPE_ZERO, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_BX, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
/**
|
||
* Branch to absolute PC if ALU overflow, address in register
|
||
*
|
||
* reg_pc is the register which contains address to jump to.
|
||
* Address is expressed in 32-bit words.
|
||
*/
|
||
#define I_BXFR(reg_pc) { .bx = { \
|
||
.dreg = reg_pc, \
|
||
.addr = 0, \
|
||
.unused = 0, \
|
||
.reg = 1, \
|
||
.type = BX_JUMP_TYPE_OVF, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_BX, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
/**
|
||
* Branch to absolute PC if ALU overflow, immediate address
|
||
*
|
||
* Address imm_pc is expressed in 32-bit words.
|
||
*/
|
||
#define I_BXFI(imm_pc) { .bx = { \
|
||
.dreg = 0, \
|
||
.addr = imm_pc, \
|
||
.unused = 0, \
|
||
.reg = 0, \
|
||
.type = BX_JUMP_TYPE_OVF, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_BX, \
|
||
.opcode = OPCODE_BRANCH } }
|
||
|
||
|
||
/**
|
||
* Addition: dest = src1 + src2
|
||
*/
|
||
#define I_ADDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src1, \
|
||
.treg = reg_src2, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_ADD, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Subtraction: dest = src1 - src2
|
||
*/
|
||
#define I_SUBR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src1, \
|
||
.treg = reg_src2, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_SUB, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Logical AND: dest = src1 & src2
|
||
*/
|
||
#define I_ANDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src1, \
|
||
.treg = reg_src2, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_AND, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Logical OR: dest = src1 | src2
|
||
*/
|
||
#define I_ORR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src1, \
|
||
.treg = reg_src2, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_OR, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Copy: dest = src
|
||
*/
|
||
#define I_MOVR(reg_dest, reg_src) { .alu_reg = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src, \
|
||
.treg = 0, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_MOV, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Logical shift left: dest = src << shift
|
||
*/
|
||
#define I_LSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src, \
|
||
.treg = reg_shift, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_LSH, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
|
||
/**
|
||
* Logical shift right: dest = src >> shift
|
||
*/
|
||
#define I_RSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src, \
|
||
.treg = reg_shift, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_RSH, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Add register and an immediate value: dest = src1 + imm
|
||
*/
|
||
#define I_ADDI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src, \
|
||
.imm = imm_, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_ADD, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
|
||
/**
|
||
* Subtract register and an immediate value: dest = src - imm
|
||
*/
|
||
#define I_SUBI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src, \
|
||
.imm = imm_, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_SUB, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Logical AND register and an immediate value: dest = src & imm
|
||
*/
|
||
#define I_ANDI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src, \
|
||
.imm = imm_, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_AND, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Logical OR register and an immediate value: dest = src | imm
|
||
*/
|
||
#define I_ORI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src, \
|
||
.imm = imm_, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_OR, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Copy an immediate value into register: dest = imm
|
||
*/
|
||
#define I_MOVI(reg_dest, imm_) { .alu_imm = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = 0, \
|
||
.imm = imm_, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_MOV, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Logical shift left register value by an immediate: dest = src << imm
|
||
*/
|
||
#define I_LSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src, \
|
||
.imm = imm_, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_LSH, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
|
||
/**
|
||
* Logical shift right register value by an immediate: dest = val >> imm
|
||
*/
|
||
#define I_RSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||
.dreg = reg_dest, \
|
||
.sreg = reg_src, \
|
||
.imm = imm_, \
|
||
.unused = 0, \
|
||
.sel = ALU_SEL_RSH, \
|
||
.unused1 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
|
||
#ifdef CONFIG_IDF_TARGET_ESP32S2BETA
|
||
/**
|
||
* Increments the stage counter for the subscript of the cycle count, Stage_cnt = Stage_cnt + Imm
|
||
*/
|
||
#define I_SINC(imm_) { .alu_cnt = { \
|
||
.unused = 0, \
|
||
.imm = imm_, \
|
||
.unused1 = 0, \
|
||
.sel = ALU_SEL_INC, \
|
||
.unused2 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_CNT, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Decrements the stage counter for the subscript of the cycle count, Stage_cnt = Stage_cnt - Imm
|
||
*/
|
||
#define I_SDEC(imm_) { .alu_cnt = { \
|
||
.unused = 0, \
|
||
.imm = imm_, \
|
||
.unused1 = 0, \
|
||
.sel = ALU_SEL_DEC, \
|
||
.unused2 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_CNT, \
|
||
.opcode = OPCODE_ALU } }
|
||
|
||
/**
|
||
* Phase counter is reset for the cycle count subscript, Stage_cnt = 0
|
||
*/
|
||
#define I_SRST() { .alu_cnt = { \
|
||
.unused = 0, \
|
||
.imm = 0, \
|
||
.unused1 = 0, \
|
||
.sel = ALU_SEL_RST, \
|
||
.unused2 = 0, \
|
||
.sub_opcode = SUB_OPCODE_ALU_CNT, \
|
||
.opcode = OPCODE_ALU } }
|
||
#endif
|
||
|
||
/**
|
||
* Define a label with number label_num.
|
||
*
|
||
* This is a macro which doesn't generate a real instruction.
|
||
* The token generated by this macro is removed by ulp_process_macros_and_load
|
||
* function. Label defined using this macro can be used in branch macros defined
|
||
* below.
|
||
*/
|
||
#define M_LABEL(label_num) { .macro = { \
|
||
.label = label_num, \
|
||
.unused = 0, \
|
||
.sub_opcode = SUB_OPCODE_MACRO_LABEL, \
|
||
.opcode = OPCODE_MACRO } }
|
||
|
||
/**
|
||
* Token macro used by M_B and M_BX macros. Not to be used directly.
|
||
*/
|
||
#define M_BRANCH(label_num) { .macro = { \
|
||
.label = label_num, \
|
||
.unused = 0, \
|
||
.sub_opcode = SUB_OPCODE_MACRO_BRANCH, \
|
||
.opcode = OPCODE_MACRO } }
|
||
|
||
/**
|
||
* Macro: branch to label label_num if R0 is less than immediate value.
|
||
*
|
||
* This macro generates two ulp_insn_t values separated by a comma, and should
|
||
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
||
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
||
* function.
|
||
*/
|
||
#define M_BL(label_num, imm_value) \
|
||
M_BRANCH(label_num), \
|
||
I_BL(0, imm_value)
|
||
|
||
/**
|
||
* Macro: branch to label label_num if R0 is greater or equal than immediate value
|
||
*
|
||
* This macro generates two ulp_insn_t values separated by a comma, and should
|
||
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
||
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
||
* function.
|
||
*/
|
||
#define M_BGE(label_num, imm_value) \
|
||
M_BRANCH(label_num), \
|
||
I_BGE(0, imm_value)
|
||
|
||
/**
|
||
* Macro: unconditional branch to label
|
||
*
|
||
* This macro generates two ulp_insn_t values separated by a comma, and should
|
||
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
||
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
||
* function.
|
||
*/
|
||
#define M_BX(label_num) \
|
||
M_BRANCH(label_num), \
|
||
I_BXI(0)
|
||
|
||
/**
|
||
* Macro: branch to label if ALU result is zero
|
||
*
|
||
* This macro generates two ulp_insn_t values separated by a comma, and should
|
||
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
||
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
||
* function.
|
||
*/
|
||
#define M_BXZ(label_num) \
|
||
M_BRANCH(label_num), \
|
||
I_BXZI(0)
|
||
|
||
/**
|
||
* Macro: branch to label if ALU overflow
|
||
*
|
||
* This macro generates two ulp_insn_t values separated by a comma, and should
|
||
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
||
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
||
* function.
|
||
*/
|
||
#define M_BXF(label_num) \
|
||
M_BRANCH(label_num), \
|
||
I_BXFI(0)
|
||
|
||
|
||
|
||
#define RTC_SLOW_MEM ((uint32_t*) 0x50000000) /*!< RTC slow memory, 8k size */
|
||
|
||
#ifdef __cplusplus
|
||
}
|
||
#endif
|