OVMS3-idf/components/esp32s2beta/pm_esp32s2beta.c
Angus Gratton 8d949c3c9d esp32s2beta: Apply new Kconfig names to esp32s2beta
Still using ESP32_xxx prefix on all chips: CORE_DUMP, APP_TRACE

Still using the same config prefix and duplicate names in esp32 & esp32s2beta: SPIRAM, PM
2019-06-11 13:07:37 +08:00

591 lines
20 KiB
C

// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_pm.h"
#include "esp_log.h"
#include "esp32s2beta/clk.h"
#include "esp_private/crosscore_int.h"
#include "soc/rtc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/xtensa_timer.h"
#include "xtensa/core-macros.h"
#include "esp_private/pm_impl.h"
#include "esp_private/pm_trace.h"
#include "esp_private/esp_timer_impl.h"
#include "esp32s2beta/pm.h"
/* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
* for the purpose of detecting a deadlock.
*/
#define CCOMPARE_UPDATE_TIMEOUT 1000000
/* When changing CCOMPARE, don't allow changes if the difference is less
* than this. This is to prevent setting CCOMPARE below CCOUNT.
*/
#define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
/* When light sleep is used, wake this number of microseconds earlier than
* the next tick.
*/
#define LIGHT_SLEEP_EARLY_WAKEUP_US 100
#ifdef CONFIG_PM_PROFILING
#define WITH_PROFILING
#endif
static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
/* The following state variables are protected using s_switch_lock: */
/* Current sleep mode; When switching, contains old mode until switch is complete */
static pm_mode_t s_mode = PM_MODE_CPU_MAX;
/* True when switch is in progress */
static volatile bool s_is_switching;
/* When switch is in progress, this is the mode we are switching into */
static pm_mode_t s_new_mode = PM_MODE_CPU_MAX;
/* Number of times each mode was locked */
static size_t s_mode_lock_counts[PM_MODE_COUNT];
/* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
static uint32_t s_mode_mask;
/* Divider and multiplier used to adjust (ccompare - ccount) duration.
* Only set to non-zero values when switch is in progress.
*/
static uint32_t s_ccount_div;
static uint32_t s_ccount_mul;
/* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
* Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
*/
static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
/* When no RTOS tasks are active, these locks are released to allow going into
* a lower power mode. Used by ISR hook and idle hook.
*/
static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
/* A flag indicating that Idle hook has run on a given CPU;
* Next interrupt on the same CPU will take s_rtos_lock_handle.
*/
static bool s_core_idle[portNUM_PROCESSORS];
/* g_ticks_us defined in ROM for PRO CPU */
extern uint32_t g_ticks_per_us_pro;
/* Lookup table of CPU frequencies to be used in each mode.
* Initialized by esp_pm_impl_init and modified by esp_pm_configure.
*/
rtc_cpu_freq_t s_cpu_freq_by_mode[PM_MODE_COUNT];
/* Lookup table of CPU ticks per microsecond for each RTC_CPU_FREQ_ value.
* Essentially the same as returned by rtc_clk_cpu_freq_value(), but without
* the function call. Not const because XTAL frequency is only known at run time.
*/
static uint32_t s_cpu_freq_to_ticks[] = {
[RTC_CPU_FREQ_XTAL] = 0, /* This is set by esp_pm_impl_init */
[RTC_CPU_FREQ_80M] = 80,
[RTC_CPU_FREQ_160M] = 160,
[RTC_CPU_FREQ_240M] = 240,
[RTC_CPU_FREQ_2M] = 2
};
/* Lookup table of names for each RTC_CPU_FREQ_ value. Used for logging only. */
static const char* s_freq_names[] __attribute__((unused)) = {
[RTC_CPU_FREQ_XTAL] = "XTAL",
[RTC_CPU_FREQ_80M] = "80",
[RTC_CPU_FREQ_160M] = "160",
[RTC_CPU_FREQ_240M] = "240",
[RTC_CPU_FREQ_2M] = "2"
};
/* Whether automatic light sleep is enabled */
static bool s_light_sleep_en = false;
/* When configuration is changed, current frequency may not match the
* newly configured frequency for the current mode. This is an indicator
* to the mode switch code to get the actual current frequency instead of
* relying on the current mode.
*/
static bool s_config_changed = false;
#ifdef WITH_PROFILING
/* Time, in microseconds, spent so far in each mode */
static pm_time_t s_time_in_mode[PM_MODE_COUNT];
/* Timestamp, in microseconds, when the mode switch last happened */
static pm_time_t s_last_mode_change_time;
/* User-readable mode names, used by esp_pm_impl_dump_stats */
static const char* s_mode_names[] = {
"SLEEP",
"APB_MIN",
"APB_MAX",
"CPU_MAX"
};
#endif // WITH_PROFILING
static const char* TAG = "pm_esp32";
static void update_ccompare();
static void do_switch(pm_mode_t new_mode);
static void leave_idle();
static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
{
(void) arg;
if (type == ESP_PM_CPU_FREQ_MAX) {
return PM_MODE_CPU_MAX;
} else if (type == ESP_PM_APB_FREQ_MAX) {
return PM_MODE_APB_MAX;
} else if (type == ESP_PM_NO_LIGHT_SLEEP) {
return PM_MODE_APB_MIN;
} else {
// unsupported mode
abort();
}
}
/* rtc_cpu_freq_t enum is not ordered by frequency, so convert to MHz,
* figure out the maximum value, then convert back to rtc_cpu_freq_t.
*/
static rtc_cpu_freq_t max_freq_of(rtc_cpu_freq_t f1, rtc_cpu_freq_t f2)
{
int f1_hz = rtc_clk_cpu_freq_value(f1);
int f2_hz = rtc_clk_cpu_freq_value(f2);
int f_max_hz = MAX(f1_hz, f2_hz);
rtc_cpu_freq_t result = RTC_CPU_FREQ_XTAL;
if (!rtc_clk_cpu_freq_from_mhz(f_max_hz/1000000, &result)) {
assert(false && "unsupported frequency");
}
return result;
}
esp_err_t esp_pm_configure(const void* vconfig)
{
#ifndef CONFIG_PM_ENABLE
return ESP_ERR_NOT_SUPPORTED;
#endif
const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
#ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
if (config->light_sleep_enable) {
return ESP_ERR_NOT_SUPPORTED;
}
#endif
if (config->min_cpu_freq == RTC_CPU_FREQ_2M) {
/* Minimal APB frequency to achieve 1MHz REF_TICK frequency is 5 MHz */
return ESP_ERR_NOT_SUPPORTED;
}
rtc_cpu_freq_t min_freq = config->min_cpu_freq;
rtc_cpu_freq_t max_freq = config->max_cpu_freq;
int min_freq_mhz = rtc_clk_cpu_freq_value(min_freq);
int max_freq_mhz = rtc_clk_cpu_freq_value(max_freq);
if (min_freq_mhz > max_freq_mhz) {
return ESP_ERR_INVALID_ARG;
}
rtc_cpu_freq_t apb_max_freq = max_freq; /* CPU frequency in APB_MAX mode */
if (max_freq == RTC_CPU_FREQ_240M) {
/* We can't switch between 240 and 80/160 without disabling PLL,
* so use 240MHz CPU frequency when 80MHz APB frequency is requested.
*/
apb_max_freq = RTC_CPU_FREQ_240M;
} else if (max_freq == RTC_CPU_FREQ_160M || max_freq == RTC_CPU_FREQ_80M) {
/* Otherwise, can use 80MHz
* CPU frequency when 80MHz APB frequency is requested.
*/
apb_max_freq = RTC_CPU_FREQ_80M;
}
apb_max_freq = max_freq_of(apb_max_freq, min_freq);
ESP_LOGI(TAG, "Frequency switching config: "
"CPU_MAX: %s, APB_MAX: %s, APB_MIN: %s, Light sleep: %s",
s_freq_names[max_freq],
s_freq_names[apb_max_freq],
s_freq_names[min_freq],
config->light_sleep_enable ? "ENABLED" : "DISABLED");
portENTER_CRITICAL(&s_switch_lock);
s_cpu_freq_by_mode[PM_MODE_CPU_MAX] = max_freq;
s_cpu_freq_by_mode[PM_MODE_APB_MAX] = apb_max_freq;
s_cpu_freq_by_mode[PM_MODE_APB_MIN] = min_freq;
s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = min_freq;
s_light_sleep_en = config->light_sleep_enable;
s_config_changed = true;
portEXIT_CRITICAL(&s_switch_lock);
return ESP_OK;
}
static pm_mode_t IRAM_ATTR get_lowest_allowed_mode()
{
/* TODO: optimize using ffs/clz */
if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
return PM_MODE_CPU_MAX;
} else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
return PM_MODE_APB_MAX;
} else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
return PM_MODE_APB_MIN;
} else {
return PM_MODE_LIGHT_SLEEP;
}
}
void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
pm_mode_switch_t lock_or_unlock, pm_time_t now)
{
bool need_switch = false;
uint32_t mode_mask = BIT(mode);
portENTER_CRITICAL(&s_switch_lock);
uint32_t count;
if (lock_or_unlock == MODE_LOCK) {
count = ++s_mode_lock_counts[mode];
} else {
count = s_mode_lock_counts[mode]--;
}
if (count == 1) {
if (lock_or_unlock == MODE_LOCK) {
s_mode_mask |= mode_mask;
} else {
s_mode_mask &= ~mode_mask;
}
need_switch = true;
}
pm_mode_t new_mode = s_mode;
if (need_switch) {
new_mode = get_lowest_allowed_mode();
#ifdef WITH_PROFILING
if (s_last_mode_change_time != 0) {
pm_time_t diff = now - s_last_mode_change_time;
s_time_in_mode[s_mode] += diff;
}
s_last_mode_change_time = now;
#endif // WITH_PROFILING
}
portEXIT_CRITICAL(&s_switch_lock);
if (need_switch && new_mode != s_mode) {
do_switch(new_mode);
}
}
/**
* @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
* values on both CPUs.
* @param old_ticks_per_us old CPU frequency
* @param ticks_per_us new CPU frequency
*/
static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
{
uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
/* Update APB frequency value used by the timer */
if (old_apb_ticks_per_us != apb_ticks_per_us) {
esp_timer_impl_update_apb_freq(apb_ticks_per_us);
}
/* Calculate new tick divisor */
_xt_tick_divisor = ticks_per_us * 1000000 / XT_TICK_PER_SEC;
int core_id = xPortGetCoreID();
if (s_rtos_lock_handle[core_id] != NULL) {
ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
/* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
* to calculate new CCOMPARE value.
*/
s_ccount_div = old_ticks_per_us;
s_ccount_mul = ticks_per_us;
/* Update CCOMPARE value on this CPU */
update_ccompare();
#if portNUM_PROCESSORS == 2
/* Send interrupt to the other CPU to update CCOMPARE value */
int other_core_id = (core_id == 0) ? 1 : 0;
s_need_update_ccompare[other_core_id] = true;
esp_crosscore_int_send_freq_switch(other_core_id);
int timeout = 0;
while (s_need_update_ccompare[other_core_id]) {
if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
assert(false && "failed to update CCOMPARE, possible deadlock");
}
}
#endif // portNUM_PROCESSORS == 2
s_ccount_mul = 0;
s_ccount_div = 0;
ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
}
}
/**
* Perform the switch to new power mode.
* Currently only changes the CPU frequency and adjusts clock dividers.
* No light sleep yet.
* @param new_mode mode to switch to
*/
static void IRAM_ATTR do_switch(pm_mode_t new_mode)
{
const int core_id = xPortGetCoreID();
do {
portENTER_CRITICAL_ISR(&s_switch_lock);
if (!s_is_switching) {
break;
}
if (s_new_mode <= new_mode) {
portEXIT_CRITICAL_ISR(&s_switch_lock);
return;
}
if (s_need_update_ccompare[core_id]) {
s_need_update_ccompare[core_id] = false;
}
portEXIT_CRITICAL_ISR(&s_switch_lock);
} while (true);
s_new_mode = new_mode;
s_is_switching = true;
bool config_changed = s_config_changed;
s_config_changed = false;
portEXIT_CRITICAL_ISR(&s_switch_lock);
rtc_cpu_freq_t new_freq = s_cpu_freq_by_mode[new_mode];
rtc_cpu_freq_t old_freq;
if (!config_changed) {
old_freq = s_cpu_freq_by_mode[s_mode];
} else {
old_freq = rtc_clk_cpu_freq_get();
}
if (new_freq != old_freq) {
uint32_t old_ticks_per_us = g_ticks_per_us_pro;
uint32_t new_ticks_per_us = s_cpu_freq_to_ticks[new_freq];
bool switch_down = new_ticks_per_us < old_ticks_per_us;
ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
if (switch_down) {
on_freq_update(old_ticks_per_us, new_ticks_per_us);
}
rtc_clk_cpu_freq_set_fast(new_freq);
if (!switch_down) {
on_freq_update(old_ticks_per_us, new_ticks_per_us);
}
ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
}
portENTER_CRITICAL_ISR(&s_switch_lock);
s_mode = new_mode;
s_is_switching = false;
portEXIT_CRITICAL_ISR(&s_switch_lock);
}
/**
* @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
*
* Adjusts CCOMPARE value so that the interrupt happens at the same time as it
* would happen without the frequency change.
* Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
*/
static void IRAM_ATTR update_ccompare()
{
uint32_t ccount = XTHAL_GET_CCOUNT();
uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
uint32_t diff = ccompare - ccount;
uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
if (diff_scaled < _xt_tick_divisor) {
uint32_t new_ccompare = ccount + diff_scaled;
XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
}
}
}
static void IRAM_ATTR leave_idle()
{
int core_id = xPortGetCoreID();
if (s_core_idle[core_id]) {
// TODO: possible optimization: raise frequency here first
esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
s_core_idle[core_id] = false;
}
}
void esp_pm_impl_idle_hook()
{
int core_id = xPortGetCoreID();
uint32_t state = portENTER_CRITICAL_NESTED();
if (!s_core_idle[core_id]) {
esp_pm_lock_release(s_rtos_lock_handle[core_id]);
s_core_idle[core_id] = true;
}
portEXIT_CRITICAL_NESTED(state);
ESP_PM_TRACE_ENTER(IDLE, core_id);
}
void esp_pm_impl_waiti()
{
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
int core_id = xPortGetCoreID();
if (s_skipped_light_sleep[core_id]) {
asm("waiti 0");
/* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id]
* is now taken. However since we are back to idle task, we can release
* the lock so that vApplicationSleep can attempt to enter light sleep.
*/
esp_pm_impl_idle_hook();
s_skipped_light_sleep[core_id] = false;
}
#else
asm("waiti 0");
#endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
}
void IRAM_ATTR esp_pm_impl_isr_hook()
{
int core_id = xPortGetCoreID();
ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
#if portNUM_PROCESSORS == 2
if (s_need_update_ccompare[core_id]) {
update_ccompare();
s_need_update_ccompare[core_id] = false;
} else {
leave_idle();
}
#else
leave_idle();
#endif // portNUM_PROCESSORS == 2
ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
}
#if CONFIG_FREERTOS_USE_TICKLESS_IDLE
bool IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
{
bool result = false;
portENTER_CRITICAL(&s_switch_lock);
if (s_mode == PM_MODE_LIGHT_SLEEP && !s_is_switching) {
/* Calculate how much we can sleep */
int64_t next_esp_timer_alarm = esp_timer_get_next_alarm();
int64_t now = esp_timer_get_time();
int64_t time_until_next_alarm = next_esp_timer_alarm - now;
int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
#ifdef CONFIG_PM_TRACE
/* to force tracing GPIOs to keep state */
esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
#endif
/* Enter sleep */
int core_id = xPortGetCoreID();
ESP_PM_TRACE_ENTER(SLEEP, core_id);
int64_t sleep_start = esp_timer_get_time();
esp_light_sleep_start();
int64_t slept_us = esp_timer_get_time() - sleep_start;
ESP_PM_TRACE_EXIT(SLEEP, core_id);
uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
if (slept_ticks > 0) {
/* Adjust RTOS tick count based on the amount of time spent in sleep */
vTaskStepTick(slept_ticks);
/* Trigger tick interrupt, since sleep time was longer
* than portTICK_PERIOD_MS. Note that setting INTSET does not
* work for timer interrupt, and changing CCOMPARE would clear
* the interrupt flag.
*/
XTHAL_SET_CCOUNT(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
;
}
}
result = true;
}
}
portEXIT_CRITICAL(&s_switch_lock);
return result;
}
#endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
#ifdef WITH_PROFILING
void esp_pm_impl_dump_stats(FILE* out)
{
pm_time_t time_in_mode[PM_MODE_COUNT];
portENTER_CRITICAL_ISR(&s_switch_lock);
memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
pm_time_t last_mode_change_time = s_last_mode_change_time;
pm_mode_t cur_mode = s_mode;
pm_time_t now = pm_get_time();
portEXIT_CRITICAL_ISR(&s_switch_lock);
time_in_mode[cur_mode] += now - last_mode_change_time;
fprintf(out, "Mode stats:\n");
for (int i = 0; i < PM_MODE_COUNT; ++i) {
if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
/* don't display light sleep mode if it's not enabled */
continue;
}
fprintf(out, "%8s %6s %12lld %2d%%\n",
s_mode_names[i],
s_freq_names[s_cpu_freq_by_mode[i]],
time_in_mode[i],
(int) (time_in_mode[i] * 100 / now));
}
}
#endif // WITH_PROFILING
void esp_pm_impl_init()
{
s_cpu_freq_to_ticks[RTC_CPU_FREQ_XTAL] = rtc_clk_xtal_freq_get();
#ifdef CONFIG_PM_TRACE
esp_pm_trace_init();
#endif
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
&s_rtos_lock_handle[0]));
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
#if portNUM_PROCESSORS == 2
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
&s_rtos_lock_handle[1]));
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
#endif // portNUM_PROCESSORS == 2
/* Configure all modes to use the default CPU frequency.
* This will be modified later by a call to esp_pm_configure.
*/
rtc_cpu_freq_t default_freq;
if (!rtc_clk_cpu_freq_from_mhz(CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ, &default_freq)) {
assert(false && "unsupported frequency");
}
for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
s_cpu_freq_by_mode[i] = default_freq;
}
}