c6829fa5b8
- In SPI mode, the card will respond to the initial SDIO reset (done using CMD52) with “invalid command” error. Handle this correctly. - sdmmc_card_init had a hack where GO_IDLE_STATE (CMD0) command was sent twice. Add explanation why this is done, and don’t expect correct response from the card on first CMD0. - improve logs printed at debug level by adding CMD index
1312 lines
46 KiB
C
1312 lines
46 KiB
C
/*
|
|
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
|
|
* Adaptations to ESP-IDF Copyright (c) 2016 Espressif Systems (Shanghai) PTE LTD
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include "esp_log.h"
|
|
#include "esp_heap_caps.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "driver/sdmmc_defs.h"
|
|
#include "driver/sdmmc_types.h"
|
|
#include "sdmmc_cmd.h"
|
|
#include "sys/param.h"
|
|
#include "soc/soc_memory_layout.h"
|
|
|
|
#define SDMMC_GO_IDLE_DELAY_MS 20
|
|
#define SDMMC_IO_SEND_OP_COND_DELAY_MS 10
|
|
|
|
/* These delay values are mostly useful for cases when CD pin is not used, and
|
|
* the card is removed. In this case, SDMMC peripheral may not always return
|
|
* CMD_DONE / DATA_DONE interrupts after signaling the error. These timeouts work
|
|
* as a safety net in such cases.
|
|
*/
|
|
#define SDMMC_DEFAULT_CMD_TIMEOUT_MS 1000 // Max timeout of ordinary commands
|
|
#define SDMMC_WRITE_CMD_TIMEOUT_MS 5000 // Max timeout of write commands
|
|
|
|
/* Maximum retry/error count for SEND_OP_COND (CMD1).
|
|
* These are somewhat arbitrary, values originate from OpenBSD driver.
|
|
*/
|
|
#define SDMMC_SEND_OP_COND_MAX_RETRIES 100
|
|
#define SDMMC_SEND_OP_COND_MAX_ERRORS 3
|
|
|
|
static const char* TAG = "sdmmc_cmd";
|
|
|
|
static esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd);
|
|
static esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd);
|
|
static esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card);
|
|
static esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr);
|
|
static esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp);
|
|
static esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp);
|
|
static esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid);
|
|
static esp_err_t sdmmc_decode_cid(sdmmc_response_t resp, sdmmc_cid_t* out_cid);
|
|
static esp_err_t sddmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_cid_t* out_cid);
|
|
static esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca);
|
|
static esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd);
|
|
static esp_err_t sdmmc_send_cmd_switch_func(sdmmc_card_t* card,
|
|
uint32_t mode, uint32_t group, uint32_t function,
|
|
sdmmc_switch_func_rsp_t* resp);
|
|
static esp_err_t sdmmc_enable_hs_mode(sdmmc_card_t* card);
|
|
static esp_err_t sdmmc_enable_hs_mode_and_check(sdmmc_card_t* card);
|
|
static esp_err_t sdmmc_io_enable_hs_mode(sdmmc_card_t* card);
|
|
static esp_err_t sdmmc_decode_csd(sdmmc_response_t response, sdmmc_csd_t* out_csd);
|
|
static esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd);
|
|
static esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card, uint32_t rca);
|
|
static esp_err_t sdmmc_decode_scr(uint32_t *raw_scr, sdmmc_scr_t* out_scr);
|
|
static esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr);
|
|
static esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width);
|
|
static esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status);
|
|
static esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable);
|
|
static uint32_t get_host_ocr(float voltage);
|
|
static void flip_byte_order(uint32_t* response, size_t size);
|
|
static esp_err_t sdmmc_write_sectors_dma(sdmmc_card_t* card, const void* src,
|
|
size_t start_block, size_t block_count);
|
|
static esp_err_t sdmmc_read_sectors_dma(sdmmc_card_t* card, void* dst,
|
|
size_t start_block, size_t block_count);
|
|
static esp_err_t sdmmc_io_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp);
|
|
static esp_err_t sdmmc_io_rw_direct(sdmmc_card_t* card, int function,
|
|
uint32_t reg, uint32_t arg, uint8_t *byte);
|
|
static esp_err_t sdmmc_io_rw_extended(sdmmc_card_t* card, int function,
|
|
uint32_t reg, int arg, void *data, size_t size);
|
|
static void sdmmc_fix_host_flags(sdmmc_card_t* card);
|
|
|
|
static bool host_is_spi(const sdmmc_card_t* card)
|
|
{
|
|
return (card->host.flags & SDMMC_HOST_FLAG_SPI) != 0;
|
|
}
|
|
|
|
esp_err_t sdmmc_card_init(const sdmmc_host_t* config, sdmmc_card_t* card)
|
|
{
|
|
esp_err_t err;
|
|
memset(card, 0, sizeof(*card));
|
|
memcpy(&card->host, config, sizeof(*config));
|
|
const bool is_spi = host_is_spi(card);
|
|
|
|
if (!is_spi) {
|
|
// Check if host flags are compatible with slot configuration.
|
|
sdmmc_fix_host_flags(card);
|
|
}
|
|
|
|
/* ----------- standard initialization process starts here ---------- */
|
|
|
|
/* Reset SDIO (CMD52, RES) before re-initializing IO (CMD5).
|
|
* Non-IO cards are allowed to time out (in SD mode) or
|
|
* return "invalid command" error (in SPI mode).
|
|
*/
|
|
uint8_t sdio_reset = CCCR_CTL_RES;
|
|
err = sdmmc_io_rw_direct(card, 0, SD_IO_CCCR_CTL, SD_ARG_CMD52_WRITE, &sdio_reset);
|
|
if (err != ESP_OK && err != ESP_ERR_TIMEOUT
|
|
&& !(is_spi && err == ESP_ERR_NOT_SUPPORTED)) {
|
|
ESP_LOGE(TAG, "%s: sdio_reset: unexpected return: 0x%x", __func__, err );
|
|
return err;
|
|
}
|
|
|
|
/* GO_IDLE_STATE (CMD0) command resets the card */
|
|
err = sdmmc_send_cmd_go_idle_state(card);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: go_idle_state (1) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
|
|
|
|
/* SEND_IF_COND (CMD8) command is used to identify SDHC/SDXC cards.
|
|
* SD v1 and non-SD cards will not respond to this command.
|
|
*/
|
|
uint32_t host_ocr = get_host_ocr(config->io_voltage);
|
|
err = sdmmc_send_cmd_send_if_cond(card, host_ocr);
|
|
if (err == ESP_OK) {
|
|
ESP_LOGD(TAG, "SDHC/SDXC card");
|
|
host_ocr |= SD_OCR_SDHC_CAP;
|
|
} else if (err == ESP_ERR_TIMEOUT) {
|
|
ESP_LOGD(TAG, "CMD8 timeout; not an SD v2.00 card");
|
|
} else if (is_spi && err == ESP_ERR_NOT_SUPPORTED) {
|
|
ESP_LOGD(TAG, "CMD8 rejected; not an SD v2.00 card");
|
|
} else {
|
|
ESP_LOGE(TAG, "%s: send_if_cond (1) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
|
|
/* IO_SEND_OP_COND(CMD5), Determine if the card is an IO card.
|
|
* Non-IO cards will not respond to this command.
|
|
*/
|
|
err = sdmmc_io_send_op_cond(card, 0, &card->ocr);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGD(TAG, "%s: io_send_op_cond (1) returned 0x%x; not IO card", __func__, err);
|
|
card->is_sdio = 0;
|
|
card->is_mem = 1;
|
|
} else {
|
|
card->is_sdio = 1;
|
|
|
|
if (card->ocr & SD_IO_OCR_MEM_PRESENT) {
|
|
ESP_LOGD(TAG, "%s: IO-only card", __func__);
|
|
card->is_mem = 0;
|
|
}
|
|
card->num_io_functions = SD_IO_OCR_NUM_FUNCTIONS(card->ocr);
|
|
ESP_LOGD(TAG, "%s: number of IO functions: %d", __func__, card->num_io_functions);
|
|
if (card->num_io_functions == 0) {
|
|
card->is_sdio = 0;
|
|
}
|
|
host_ocr &= card->ocr;
|
|
err = sdmmc_io_send_op_cond(card, host_ocr, &card->ocr);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_io_send_op_cond (1) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
sdmmc_io_enable_int(card);
|
|
}
|
|
|
|
if (card->is_mem) {
|
|
/* In SPI mode, READ_OCR (CMD58) command is used to figure out which voltage
|
|
* ranges the card can support. This step is skipped since 1.8V isn't
|
|
* supported on the ESP32.
|
|
*/
|
|
|
|
/* In SD mode, CRC checks of data transfers are mandatory and performed
|
|
* by the hardware. In SPI mode, CRC16 of data transfers is optional and
|
|
* needs to be enabled.
|
|
*/
|
|
if (is_spi) {
|
|
err = sdmmc_send_cmd_crc_on_off(card, true);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_crc_on_off returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
/* Send SEND_OP_COND (ACMD41) command to the card until it becomes ready. */
|
|
err = sdmmc_send_cmd_send_op_cond(card, host_ocr, &card->ocr);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: send_op_cond (1) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
if (is_spi) {
|
|
err = sdmmc_send_cmd_read_ocr(card, &card->ocr);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: read_ocr returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
}
|
|
ESP_LOGD(TAG, "host_ocr=0x%x card_ocr=0x%x", host_ocr, card->ocr);
|
|
|
|
/* Clear all voltage bits in host's OCR which the card doesn't support.
|
|
* Don't touch CCS bit because in SPI mode cards don't report CCS in ACMD41
|
|
* response.
|
|
*/
|
|
host_ocr &= (card->ocr | (~SD_OCR_VOL_MASK));
|
|
ESP_LOGD(TAG, "sdmmc_card_init: host_ocr=%08x, card_ocr=%08x", host_ocr, card->ocr);
|
|
}
|
|
|
|
/* Read and decode the contents of CID register */
|
|
if (!is_spi) {
|
|
if (card->is_mem) {
|
|
err = sddmc_send_cmd_all_send_cid(card, &card->cid);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: all_send_cid returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
}
|
|
err = sdmmc_send_cmd_set_relative_addr(card, &card->rca);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: set_relative_addr returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
} else {
|
|
err = sdmmc_send_cmd_send_cid(card, &card->cid);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: send_cid returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
}
|
|
if (card->is_mem) {
|
|
/* Get and decode the contents of CSD register. Determine card capacity. */
|
|
err = sdmmc_send_cmd_send_csd(card, &card->csd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: send_csd (1) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
const size_t max_sdsc_capacity = UINT32_MAX / card->csd.sector_size + 1;
|
|
if (!(card->ocr & SD_OCR_SDHC_CAP) &&
|
|
card->csd.capacity > max_sdsc_capacity) {
|
|
ESP_LOGW(TAG, "%s: SDSC card reports capacity=%u. Limiting to %u.",
|
|
__func__, card->csd.capacity, max_sdsc_capacity);
|
|
card->csd.capacity = max_sdsc_capacity;
|
|
}
|
|
}
|
|
/* ----------- standard initialization process ends here ----------- */
|
|
|
|
/* Switch the card from stand-by mode to data transfer mode (not needed if
|
|
* SPI interface is used). This is needed to issue SET_BLOCKLEN and
|
|
* SEND_SCR commands.
|
|
*/
|
|
if (!is_spi) {
|
|
err = sdmmc_send_cmd_select_card(card, card->rca);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: select_card returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (card->is_mem) {
|
|
/* SDSC cards support configurable data block lengths.
|
|
* We don't use this feature and set the block length to 512 bytes,
|
|
* same as the block length for SDHC cards.
|
|
*/
|
|
if ((card->ocr & SD_OCR_SDHC_CAP) == 0) {
|
|
err = sdmmc_send_cmd_set_blocklen(card, &card->csd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: set_blocklen returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
}
|
|
/* Get the contents of SCR register: bus width and the version of SD spec
|
|
* supported by the card.
|
|
* In SD mode, this is the first command which uses D0 line. Errors at
|
|
* this step usually indicate connection issue or lack of pull-up resistor.
|
|
*/
|
|
err = sdmmc_send_cmd_send_scr(card, &card->scr);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: send_scr (1) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (card->is_mem) {
|
|
/* If the host has been initialized with 4-bit bus support, and the card
|
|
* supports 4-bit bus, switch to 4-bit bus now.
|
|
*/
|
|
if ((card->host.flags & SDMMC_HOST_FLAG_4BIT) &&
|
|
(card->scr.bus_width & SCR_SD_BUS_WIDTHS_4BIT)) {
|
|
ESP_LOGD(TAG, "switching to 4-bit bus mode");
|
|
err = sdmmc_send_cmd_set_bus_width(card, 4);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "set_bus_width failed");
|
|
return err;
|
|
}
|
|
err = (*config->set_bus_width)(config->slot, 4);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "slot->set_bus_width failed");
|
|
return err;
|
|
}
|
|
}
|
|
|
|
/* Wait for the card to be ready for data transfers */
|
|
uint32_t status = 0;
|
|
while (!is_spi && !(status & MMC_R1_READY_FOR_DATA)) {
|
|
// TODO: add some timeout here
|
|
uint32_t count = 0;
|
|
err = sdmmc_send_cmd_send_status(card, &status);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
if (++count % 16 == 0) {
|
|
ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
|
|
}
|
|
}
|
|
} else {
|
|
/* IO card */
|
|
if (config->flags & SDMMC_HOST_FLAG_4BIT) {
|
|
uint8_t card_cap;
|
|
err = sdmmc_io_rw_direct(card, 0, SD_IO_CCCR_CARD_CAP,
|
|
SD_ARG_CMD52_READ, &card_cap);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_io_rw_direct (read SD_IO_CCCR_CARD_CAP) returned 0x%0x", __func__, err);
|
|
return err;
|
|
}
|
|
ESP_LOGD(TAG, "IO card capabilities byte: %02x", card_cap);
|
|
if (!(card_cap & CCCR_CARD_CAP_LSC) ||
|
|
(card_cap & CCCR_CARD_CAP_4BLS)) {
|
|
// This card supports 4-bit bus mode
|
|
uint8_t bus_width = CCCR_BUS_WIDTH_4;
|
|
err = sdmmc_io_rw_direct(card, 0, SD_IO_CCCR_BUS_WIDTH,
|
|
SD_ARG_CMD52_WRITE, &bus_width);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_io_rw_direct (write SD_IO_CCCR_BUS_WIDTH) returned 0x%0x", __func__, err);
|
|
return err;
|
|
}
|
|
err = (*config->set_bus_width)(config->slot, 4);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "slot->set_bus_width failed");
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* So far initialization has been done using 400kHz clock. Determine the
|
|
* clock rate which both host and the card support, and switch to it.
|
|
*/
|
|
bool freq_switched = false;
|
|
if (config->max_freq_khz >= SDMMC_FREQ_HIGHSPEED &&
|
|
!is_spi /* SPI doesn't support >26MHz in some cases */) {
|
|
if (card->is_mem) {
|
|
err = sdmmc_enable_hs_mode_and_check(card);
|
|
} else {
|
|
err = sdmmc_io_enable_hs_mode(card);
|
|
}
|
|
|
|
if (err == ESP_ERR_NOT_SUPPORTED) {
|
|
ESP_LOGD(TAG, "%s: host supports HS mode, but card doesn't", __func__);
|
|
} else if (err != ESP_OK) {
|
|
return err;
|
|
} else {
|
|
ESP_LOGD(TAG, "%s: switching host to HS mode", __func__);
|
|
/* ESP_OK, HS mode has been enabled on the card side.
|
|
* Switch the host to HS mode.
|
|
*/
|
|
err = (*config->set_card_clk)(config->slot, SDMMC_FREQ_HIGHSPEED);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "failed to switch peripheral to HS bus mode");
|
|
return err;
|
|
}
|
|
freq_switched = true;
|
|
}
|
|
}
|
|
/* All SD cards must support default speed mode (25MHz).
|
|
* config->max_freq_khz may be used to limit the clock frequency.
|
|
*/
|
|
if (!freq_switched &&
|
|
config->max_freq_khz >= SDMMC_FREQ_DEFAULT) {
|
|
ESP_LOGD(TAG, "switching to DS bus mode");
|
|
err = (*config->set_card_clk)(config->slot, SDMMC_FREQ_DEFAULT);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "failed to switch peripheral to HS bus mode");
|
|
return err;
|
|
}
|
|
freq_switched = true;
|
|
}
|
|
/* If frequency switch has been performed, read SCR register one more time
|
|
* and compare the result with the previous one. Use this simple check as
|
|
* an indicator of potential signal integrity issues.
|
|
*/
|
|
if (freq_switched) {
|
|
if (card->is_mem) {
|
|
sdmmc_scr_t scr_tmp;
|
|
err = sdmmc_send_cmd_send_scr(card, &scr_tmp);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: send_scr (2) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
if (memcmp(&card->scr, &scr_tmp, sizeof(scr_tmp)) != 0) {
|
|
ESP_LOGE(TAG, "got corrupted data after increasing clock frequency");
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
} else {
|
|
/* TODO: For IO cards, read some data to see if frequency switch
|
|
* was successful.
|
|
*/
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
void sdmmc_card_print_info(FILE* stream, const sdmmc_card_t* card)
|
|
{
|
|
fprintf(stream, "Name: %s\n", card->cid.name);
|
|
fprintf(stream, "Type: %s\n", (card->ocr & SD_OCR_SDHC_CAP)?"SDHC/SDXC":"SDSC");
|
|
fprintf(stream, "Speed: %s\n", (card->csd.tr_speed > 25000000)?"high speed":"default speed");
|
|
fprintf(stream, "Size: %lluMB\n", ((uint64_t) card->csd.capacity) * card->csd.sector_size / (1024 * 1024));
|
|
fprintf(stream, "CSD: ver=%d, sector_size=%d, capacity=%d read_bl_len=%d\n",
|
|
card->csd.csd_ver,
|
|
card->csd.sector_size, card->csd.capacity, card->csd.read_block_len);
|
|
fprintf(stream, "SCR: sd_spec=%d, bus_width=%d\n", card->scr.sd_spec, card->scr.bus_width);
|
|
}
|
|
|
|
static void sdmmc_fix_host_flags(sdmmc_card_t* card)
|
|
{
|
|
const uint32_t width_1bit = SDMMC_HOST_FLAG_1BIT;
|
|
const uint32_t width_4bit = SDMMC_HOST_FLAG_4BIT;
|
|
const uint32_t width_8bit = SDMMC_HOST_FLAG_8BIT;
|
|
const uint32_t width_mask = width_1bit | width_4bit | width_8bit;
|
|
|
|
int slot_bit_width = card->host.get_bus_width(card->host.slot);
|
|
if (slot_bit_width == 1 &&
|
|
(card->host.flags & (width_4bit | width_8bit))) {
|
|
ESP_LOGW(TAG, "host slot is configured in 1-bit mode");
|
|
card->host.flags &= ~width_mask;
|
|
card->host.flags |= ~(width_1bit);
|
|
} else if (slot_bit_width == 4 && (card->host.flags & width_8bit)){
|
|
ESP_LOGW(TAG, "host slot is configured in 4-bit mode");
|
|
card->host.flags &= ~width_mask;
|
|
card->host.flags |= width_4bit;
|
|
}
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
|
|
{
|
|
if (card->host.command_timeout_ms != 0) {
|
|
cmd->timeout_ms = card->host.command_timeout_ms;
|
|
} else if (cmd->timeout_ms == 0) {
|
|
cmd->timeout_ms = SDMMC_DEFAULT_CMD_TIMEOUT_MS;
|
|
}
|
|
|
|
int slot = card->host.slot;
|
|
ESP_LOGV(TAG, "sending cmd slot=%d op=%d arg=%x flags=%x data=%p blklen=%d datalen=%d timeout=%d",
|
|
slot, cmd->opcode, cmd->arg, cmd->flags, cmd->data, cmd->blklen, cmd->datalen, cmd->timeout_ms);
|
|
esp_err_t err = (*card->host.do_transaction)(slot, cmd);
|
|
if (err != 0) {
|
|
ESP_LOGD(TAG, "cmd=%d, sdmmc_req_run returned 0x%x", cmd->opcode, err);
|
|
return err;
|
|
}
|
|
int state = MMC_R1_CURRENT_STATE(cmd->response);
|
|
ESP_LOGV(TAG, "cmd response %08x %08x %08x %08x err=0x%x state=%d",
|
|
cmd->response[0],
|
|
cmd->response[1],
|
|
cmd->response[2],
|
|
cmd->response[3],
|
|
cmd->error,
|
|
state);
|
|
return cmd->error;
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
|
|
{
|
|
sdmmc_command_t app_cmd = {
|
|
.opcode = MMC_APP_CMD,
|
|
.flags = SCF_CMD_AC | SCF_RSP_R1,
|
|
.arg = MMC_ARG_RCA(card->rca),
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &app_cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
// Check APP_CMD status bit (only in SD mode)
|
|
if (!host_is_spi(card) && !(MMC_R1(app_cmd.response) & MMC_R1_APP_CMD)) {
|
|
ESP_LOGW(TAG, "card doesn't support APP_CMD");
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
return sdmmc_send_cmd(card, cmd);
|
|
}
|
|
|
|
|
|
static esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card)
|
|
{
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_GO_IDLE_STATE,
|
|
.flags = SCF_CMD_BC | SCF_RSP_R0,
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (host_is_spi(card)) {
|
|
/* To enter SPI mode, CMD0 needs to be sent twice (see figure 4-1 in
|
|
* SD Simplified spec v4.10). Some cards enter SD mode on first CMD0,
|
|
* so don't expect the above command to succeed.
|
|
* SCF_RSP_R1 flag below tells the lower layer to expect correct R1
|
|
* response (in SPI mode).
|
|
*/
|
|
(void) err;
|
|
vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
|
|
|
|
cmd.flags |= SCF_RSP_R1;
|
|
err = sdmmc_send_cmd(card, &cmd);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
|
|
static esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr)
|
|
{
|
|
const uint8_t pattern = 0xaa; /* any pattern will do here */
|
|
sdmmc_command_t cmd = {
|
|
.opcode = SD_SEND_IF_COND,
|
|
.arg = (((ocr & SD_OCR_VOL_MASK) != 0) << 8) | pattern,
|
|
.flags = SCF_CMD_BCR | SCF_RSP_R7,
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
uint8_t response = cmd.response[0] & 0xff;
|
|
if (response != pattern) {
|
|
ESP_LOGD(TAG, "%s: received=0x%x expected=0x%x", __func__, response, pattern);
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
|
|
{
|
|
sdmmc_command_t cmd = {
|
|
.arg = ocr,
|
|
.flags = SCF_CMD_BCR | SCF_RSP_R3,
|
|
.opcode = SD_APP_OP_COND
|
|
};
|
|
int nretries = SDMMC_SEND_OP_COND_MAX_RETRIES;
|
|
int err_cnt = SDMMC_SEND_OP_COND_MAX_ERRORS;
|
|
for (; nretries != 0; --nretries) {
|
|
esp_err_t err = sdmmc_send_app_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
if (--err_cnt == 0) {
|
|
ESP_LOGD(TAG, "%s: sdmmc_send_app_cmd err=0x%x", __func__, err);
|
|
return err;
|
|
} else {
|
|
ESP_LOGV(TAG, "%s: ignoring err=0x%x", __func__, err);
|
|
continue;
|
|
}
|
|
}
|
|
// In SD protocol, card sets MEM_READY bit in OCR when it is ready.
|
|
// In SPI protocol, card clears IDLE_STATE bit in R1 response.
|
|
if (!host_is_spi(card)) {
|
|
if ((MMC_R3(cmd.response) & MMC_OCR_MEM_READY) ||
|
|
ocr == 0) {
|
|
break;
|
|
}
|
|
} else {
|
|
if ((SD_SPI_R1(cmd.response) & SD_SPI_R1_IDLE_STATE) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
vTaskDelay(10 / portTICK_PERIOD_MS);
|
|
}
|
|
if (nretries == 0) {
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
if (ocrp) {
|
|
*ocrp = MMC_R3(cmd.response);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp)
|
|
{
|
|
assert(ocrp);
|
|
sdmmc_command_t cmd = {
|
|
.opcode = SD_READ_OCR,
|
|
.flags = SCF_CMD_BCR | SCF_RSP_R2
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
*ocrp = SD_SPI_R3(cmd.response);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_decode_cid(sdmmc_response_t resp, sdmmc_cid_t* out_cid)
|
|
{
|
|
out_cid->mfg_id = SD_CID_MID(resp);
|
|
out_cid->oem_id = SD_CID_OID(resp);
|
|
SD_CID_PNM_CPY(resp, out_cid->name);
|
|
out_cid->revision = SD_CID_REV(resp);
|
|
out_cid->serial = SD_CID_PSN(resp);
|
|
out_cid->date = SD_CID_MDT(resp);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t sddmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_cid_t* out_cid)
|
|
{
|
|
assert(out_cid);
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_ALL_SEND_CID,
|
|
.flags = SCF_CMD_BCR | SCF_RSP_R2
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
return sdmmc_decode_cid(cmd.response, out_cid);
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid)
|
|
{
|
|
assert(out_cid);
|
|
assert(host_is_spi(card) && "SEND_CID should only be used in SPI mode");
|
|
sdmmc_response_t buf;
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SEND_CID,
|
|
.flags = SCF_CMD_READ | SCF_CMD_ADTC,
|
|
.arg = 0,
|
|
.data = &buf[0],
|
|
.datalen = sizeof(buf)
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
flip_byte_order(buf, sizeof(buf));
|
|
return sdmmc_decode_cid(buf, out_cid);
|
|
}
|
|
|
|
|
|
static esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca)
|
|
{
|
|
assert(out_rca);
|
|
sdmmc_command_t cmd = {
|
|
.opcode = SD_SEND_RELATIVE_ADDR,
|
|
.flags = SCF_CMD_BCR | SCF_RSP_R6
|
|
};
|
|
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
*out_rca = SD_R6_RCA(cmd.response);
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
static esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd)
|
|
{
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SET_BLOCKLEN,
|
|
.arg = csd->sector_size,
|
|
.flags = SCF_CMD_AC | SCF_RSP_R1
|
|
};
|
|
return sdmmc_send_cmd(card, &cmd);
|
|
}
|
|
|
|
static esp_err_t sdmmc_decode_csd(sdmmc_response_t response, sdmmc_csd_t* out_csd)
|
|
{
|
|
out_csd->csd_ver = SD_CSD_CSDVER(response);
|
|
switch (out_csd->csd_ver) {
|
|
case SD_CSD_CSDVER_2_0:
|
|
out_csd->capacity = SD_CSD_V2_CAPACITY(response);
|
|
out_csd->read_block_len = SD_CSD_V2_BL_LEN;
|
|
break;
|
|
case SD_CSD_CSDVER_1_0:
|
|
out_csd->capacity = SD_CSD_CAPACITY(response);
|
|
out_csd->read_block_len = SD_CSD_READ_BL_LEN(response);
|
|
break;
|
|
default:
|
|
ESP_LOGE(TAG, "unknown SD CSD structure version 0x%x", out_csd->csd_ver);
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
out_csd->card_command_class = SD_CSD_CCC(response);
|
|
int read_bl_size = 1 << out_csd->read_block_len;
|
|
out_csd->sector_size = MIN(read_bl_size, 512);
|
|
if (out_csd->sector_size < read_bl_size) {
|
|
out_csd->capacity *= read_bl_size / out_csd->sector_size;
|
|
}
|
|
int speed = SD_CSD_SPEED(response);
|
|
if (speed == SD_CSD_SPEED_50_MHZ) {
|
|
out_csd->tr_speed = 50000000;
|
|
} else {
|
|
out_csd->tr_speed = 25000000;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd)
|
|
{
|
|
/* The trick with SEND_CSD is that in SPI mode, it acts as a data read
|
|
* command, while in SD mode it is an AC command with R2 response.
|
|
*/
|
|
sdmmc_response_t spi_buf;
|
|
const bool is_spi = host_is_spi(card);
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SEND_CSD,
|
|
.arg = is_spi ? 0 : MMC_ARG_RCA(card->rca),
|
|
.flags = is_spi ? (SCF_CMD_READ | SCF_CMD_ADTC | SCF_RSP_R1) :
|
|
(SCF_CMD_AC | SCF_RSP_R2),
|
|
.data = is_spi ? &spi_buf[0] : 0,
|
|
.datalen = is_spi ? sizeof(spi_buf) : 0,
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
uint32_t* ptr = cmd.response;
|
|
if (is_spi) {
|
|
flip_byte_order(spi_buf, sizeof(spi_buf));
|
|
ptr = spi_buf;
|
|
}
|
|
return sdmmc_decode_csd(ptr, out_csd);
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card, uint32_t rca)
|
|
{
|
|
/* Don't expect to see a response when de-selecting a card */
|
|
uint32_t response = (rca == 0) ? 0 : SCF_RSP_R1;
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SELECT_CARD,
|
|
.arg = MMC_ARG_RCA(rca),
|
|
.flags = SCF_CMD_AC | response
|
|
};
|
|
return sdmmc_send_cmd(card, &cmd);
|
|
}
|
|
|
|
static esp_err_t sdmmc_decode_scr(uint32_t *raw_scr, sdmmc_scr_t* out_scr)
|
|
{
|
|
sdmmc_response_t resp = {0xabababab, 0xabababab, 0x12345678, 0x09abcdef};
|
|
resp[1] = __builtin_bswap32(raw_scr[0]);
|
|
resp[0] = __builtin_bswap32(raw_scr[1]);
|
|
int ver = SCR_STRUCTURE(resp);
|
|
if (ver != 0) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
out_scr->sd_spec = SCR_SD_SPEC(resp);
|
|
out_scr->bus_width = SCR_SD_BUS_WIDTHS(resp);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr)
|
|
{
|
|
size_t datalen = 8;
|
|
uint32_t* buf = (uint32_t*) heap_caps_malloc(datalen, MALLOC_CAP_DMA);
|
|
if (buf == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
sdmmc_command_t cmd = {
|
|
.data = buf,
|
|
.datalen = datalen,
|
|
.blklen = datalen,
|
|
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
|
|
.opcode = SD_APP_SEND_SCR
|
|
};
|
|
esp_err_t err = sdmmc_send_app_cmd(card, &cmd);
|
|
if (err == ESP_OK) {
|
|
err = sdmmc_decode_scr(buf, out_scr);
|
|
}
|
|
free(buf);
|
|
return err;
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width)
|
|
{
|
|
sdmmc_command_t cmd = {
|
|
.opcode = SD_APP_SET_BUS_WIDTH,
|
|
.flags = SCF_RSP_R1 | SCF_CMD_AC,
|
|
.arg = (width == 4) ? SD_ARG_BUS_WIDTH_4 : SD_ARG_BUS_WIDTH_1
|
|
};
|
|
|
|
return sdmmc_send_app_cmd(card, &cmd);
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable)
|
|
{
|
|
assert(host_is_spi(card) && "CRC_ON_OFF can only be used in SPI mode");
|
|
sdmmc_command_t cmd = {
|
|
.opcode = SD_CRC_ON_OFF,
|
|
.arg = crc_enable ? 1 : 0,
|
|
.flags = SCF_CMD_AC | SCF_RSP_R1
|
|
};
|
|
return sdmmc_send_cmd(card, &cmd);
|
|
}
|
|
|
|
static uint32_t get_host_ocr(float voltage)
|
|
{
|
|
// TODO: report exact voltage to the card
|
|
// For now tell that the host has 2.8-3.6V voltage range
|
|
(void) voltage;
|
|
return SD_OCR_VOL_MASK;
|
|
}
|
|
|
|
static void flip_byte_order(uint32_t* response, size_t size)
|
|
{
|
|
assert(size % (2 * sizeof(uint32_t)) == 0);
|
|
const size_t n_words = size / sizeof(uint32_t);
|
|
for (int i = 0; i < n_words / 2; ++i) {
|
|
uint32_t left = __builtin_bswap32(response[i]);
|
|
uint32_t right = __builtin_bswap32(response[n_words - i - 1]);
|
|
response[i] = right;
|
|
response[n_words - i - 1] = left;
|
|
}
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status)
|
|
{
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SEND_STATUS,
|
|
.arg = MMC_ARG_RCA(card->rca),
|
|
.flags = SCF_CMD_AC | SCF_RSP_R1
|
|
};
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
if (out_status) {
|
|
*out_status = MMC_R1(cmd.response);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_write_sectors(sdmmc_card_t* card, const void* src,
|
|
size_t start_block, size_t block_count)
|
|
{
|
|
esp_err_t err = ESP_OK;
|
|
size_t block_size = card->csd.sector_size;
|
|
if (esp_ptr_dma_capable(src) && (intptr_t)src % 4 == 0) {
|
|
err = sdmmc_write_sectors_dma(card, src, start_block, block_count);
|
|
} else {
|
|
// SDMMC peripheral needs DMA-capable buffers. Split the write into
|
|
// separate single block writes, if needed, and allocate a temporary
|
|
// DMA-capable buffer.
|
|
void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
|
|
if (tmp_buf == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
const uint8_t* cur_src = (const uint8_t*) src;
|
|
for (size_t i = 0; i < block_count; ++i) {
|
|
memcpy(tmp_buf, cur_src, block_size);
|
|
cur_src += block_size;
|
|
err = sdmmc_write_sectors_dma(card, tmp_buf, start_block + i, 1);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
|
|
__func__, err, start_block, i);
|
|
break;
|
|
}
|
|
}
|
|
free(tmp_buf);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static esp_err_t sdmmc_write_sectors_dma(sdmmc_card_t* card, const void* src,
|
|
size_t start_block, size_t block_count)
|
|
{
|
|
if (start_block + block_count > card->csd.capacity) {
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
size_t block_size = card->csd.sector_size;
|
|
sdmmc_command_t cmd = {
|
|
.flags = SCF_CMD_ADTC | SCF_RSP_R1,
|
|
.blklen = block_size,
|
|
.data = (void*) src,
|
|
.datalen = block_count * block_size,
|
|
.timeout_ms = SDMMC_WRITE_CMD_TIMEOUT_MS
|
|
};
|
|
if (block_count == 1) {
|
|
cmd.opcode = MMC_WRITE_BLOCK_SINGLE;
|
|
} else {
|
|
cmd.opcode = MMC_WRITE_BLOCK_MULTIPLE;
|
|
}
|
|
if (card->ocr & SD_OCR_SDHC_CAP) {
|
|
cmd.arg = start_block;
|
|
} else {
|
|
cmd.arg = start_block * block_size;
|
|
}
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
uint32_t status = 0;
|
|
size_t count = 0;
|
|
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
|
|
// TODO: add some timeout here
|
|
err = sdmmc_send_cmd_send_status(card, &status);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
if (++count % 10 == 0) {
|
|
ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_read_sectors(sdmmc_card_t* card, void* dst,
|
|
size_t start_block, size_t block_count)
|
|
{
|
|
esp_err_t err = ESP_OK;
|
|
size_t block_size = card->csd.sector_size;
|
|
if (esp_ptr_dma_capable(dst) && (intptr_t)dst % 4 == 0) {
|
|
err = sdmmc_read_sectors_dma(card, dst, start_block, block_count);
|
|
} else {
|
|
// SDMMC peripheral needs DMA-capable buffers. Split the read into
|
|
// separate single block reads, if needed, and allocate a temporary
|
|
// DMA-capable buffer.
|
|
void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
|
|
if (tmp_buf == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
uint8_t* cur_dst = (uint8_t*) dst;
|
|
for (size_t i = 0; i < block_count; ++i) {
|
|
err = sdmmc_read_sectors_dma(card, tmp_buf, start_block + i, 1);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
|
|
__func__, err, start_block, i);
|
|
break;
|
|
}
|
|
memcpy(cur_dst, tmp_buf, block_size);
|
|
cur_dst += block_size;
|
|
}
|
|
free(tmp_buf);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static esp_err_t sdmmc_read_sectors_dma(sdmmc_card_t* card, void* dst,
|
|
size_t start_block, size_t block_count)
|
|
{
|
|
if (start_block + block_count > card->csd.capacity) {
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
size_t block_size = card->csd.sector_size;
|
|
sdmmc_command_t cmd = {
|
|
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
|
|
.blklen = block_size,
|
|
.data = (void*) dst,
|
|
.datalen = block_count * block_size
|
|
};
|
|
if (block_count == 1) {
|
|
cmd.opcode = MMC_READ_BLOCK_SINGLE;
|
|
} else {
|
|
cmd.opcode = MMC_READ_BLOCK_MULTIPLE;
|
|
}
|
|
if (card->ocr & SD_OCR_SDHC_CAP) {
|
|
cmd.arg = start_block;
|
|
} else {
|
|
cmd.arg = start_block * block_size;
|
|
}
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
uint32_t status = 0;
|
|
size_t count = 0;
|
|
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
|
|
// TODO: add some timeout here
|
|
err = sdmmc_send_cmd_send_status(card, &status);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
if (++count % 10 == 0) {
|
|
ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t sdmmc_send_cmd_switch_func(sdmmc_card_t* card,
|
|
uint32_t mode, uint32_t group, uint32_t function,
|
|
sdmmc_switch_func_rsp_t* resp)
|
|
{
|
|
if (card->scr.sd_spec < SCR_SD_SPEC_VER_1_10 ||
|
|
((card->csd.card_command_class & SD_CSD_CCC_SWITCH) == 0)) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
if (group == 0 ||
|
|
group > SD_SFUNC_GROUP_MAX ||
|
|
function > SD_SFUNC_FUNC_MAX) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if (mode > 1) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
uint32_t group_shift = (group - 1) << 2;
|
|
/* all functions which should not be affected are set to 0xf (no change) */
|
|
uint32_t other_func_mask = (0x00ffffff & ~(0xf << group_shift));
|
|
uint32_t func_val = (function << group_shift) | other_func_mask;
|
|
|
|
sdmmc_command_t cmd = {
|
|
.opcode = MMC_SWITCH,
|
|
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
|
|
.blklen = sizeof(sdmmc_switch_func_rsp_t),
|
|
.data = resp->data,
|
|
.datalen = sizeof(sdmmc_switch_func_rsp_t),
|
|
.arg = (!!mode << 31) | func_val
|
|
};
|
|
|
|
esp_err_t err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
flip_byte_order(resp->data, sizeof(sdmmc_switch_func_rsp_t));
|
|
uint32_t resp_ver = SD_SFUNC_VER(resp->data);
|
|
if (resp_ver == 0) {
|
|
/* busy response is never sent */
|
|
} else if (resp_ver == 1) {
|
|
if (SD_SFUNC_BUSY(resp->data, group) & (1 << function)) {
|
|
ESP_LOGD(TAG, "%s: response indicates function %d:%d is busy",
|
|
__func__, group, function);
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
} else {
|
|
ESP_LOGD(TAG, "%s: got an invalid version of SWITCH_FUNC response: 0x%02x",
|
|
__func__, resp_ver);
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t sdmmc_enable_hs_mode(sdmmc_card_t* card)
|
|
{
|
|
/* This will determine if the card supports SWITCH_FUNC command,
|
|
* and high speed mode. If the cards supports both, this will enable
|
|
* high speed mode at the card side.
|
|
*/
|
|
if (card->scr.sd_spec < SCR_SD_SPEC_VER_1_10 ||
|
|
((card->csd.card_command_class & SD_CSD_CCC_SWITCH) == 0)) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
sdmmc_switch_func_rsp_t* response = (sdmmc_switch_func_rsp_t*)
|
|
heap_caps_malloc(sizeof(*response), MALLOC_CAP_DMA);
|
|
if (response == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
esp_err_t err = sdmmc_send_cmd_switch_func(card, 0, SD_ACCESS_MODE, 0, response);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGD(TAG, "%s: sdmmc_send_cmd_switch_func (1) returned 0x%x", __func__, err);
|
|
goto out;
|
|
}
|
|
uint32_t supported_mask = SD_SFUNC_SUPPORTED(response->data, 1);
|
|
if ((supported_mask & BIT(SD_ACCESS_MODE_SDR25)) == 0) {
|
|
err = ESP_ERR_NOT_SUPPORTED;
|
|
goto out;
|
|
}
|
|
err = sdmmc_send_cmd_switch_func(card, 1, SD_ACCESS_MODE, SD_ACCESS_MODE_SDR25, response);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGD(TAG, "%s: sdmmc_send_cmd_switch_func (2) returned 0x%x", __func__, err);
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
free(response);
|
|
return err;
|
|
}
|
|
|
|
static esp_err_t sdmmc_enable_hs_mode_and_check(sdmmc_card_t* card)
|
|
{
|
|
/* Try to enabled HS mode */
|
|
esp_err_t err = sdmmc_enable_hs_mode(card);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
/* HS mode has been enabled on the card.
|
|
* Read CSD again, it should now indicate that the card supports
|
|
* 50MHz clock.
|
|
* Since SEND_CSD is allowed only in standby mode, and the card is
|
|
* currently in data transfer more, deselect the card first, then
|
|
* get the CSD, then select the card again.
|
|
*/
|
|
err = sdmmc_send_cmd_select_card(card, 0);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: select_card (2) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
err = sdmmc_send_cmd_send_csd(card, &card->csd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: send_csd (2) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
err = sdmmc_send_cmd_select_card(card, card->rca);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: select_card (3) returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
|
|
if (card->csd.tr_speed != 50000000) {
|
|
ESP_LOGW(TAG, "unexpected: after enabling HS mode, tr_speed=%d", card->csd.tr_speed);
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t sdmmc_io_enable_hs_mode(sdmmc_card_t* card)
|
|
{
|
|
/* For IO cards, do write + read operation on "High Speed" register,
|
|
* setting EHS bit. If both EHS and SHS read back as set, then HS mode
|
|
* has been enabled.
|
|
*/
|
|
uint8_t val = CCCR_HIGHSPEED_ENABLE;
|
|
esp_err_t err = sdmmc_io_rw_direct(card, 0, SD_IO_CCCR_HIGHSPEED,
|
|
SD_ARG_CMD52_WRITE | SD_ARG_CMD52_EXCHANGE, &val);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGD(TAG, "%s: sdmmc_io_rw_direct returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
|
|
ESP_LOGD(TAG, "%s: CCCR_HIGHSPEED=0x%02x", __func__, val);
|
|
const uint8_t hs_mask = CCCR_HIGHSPEED_ENABLE | CCCR_HIGHSPEED_SUPPORT;
|
|
if ((val & hs_mask) != hs_mask) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
static esp_err_t sdmmc_io_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
|
|
{
|
|
esp_err_t err = ESP_OK;
|
|
sdmmc_command_t cmd = {
|
|
.flags = SCF_CMD_BCR | SCF_RSP_R4,
|
|
.arg = ocr,
|
|
.opcode = SD_IO_SEND_OP_COND
|
|
};
|
|
for (size_t i = 0; i < 100; i++) {
|
|
err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
break;
|
|
}
|
|
if ((MMC_R4(cmd.response) & SD_IO_OCR_MEM_READY) ||
|
|
ocr == 0) {
|
|
break;
|
|
}
|
|
err = ESP_ERR_TIMEOUT;
|
|
vTaskDelay(SDMMC_IO_SEND_OP_COND_DELAY_MS / portTICK_PERIOD_MS);
|
|
}
|
|
if (err == ESP_OK && ocrp != NULL)
|
|
*ocrp = MMC_R4(cmd.response);
|
|
|
|
return err;
|
|
}
|
|
|
|
static esp_err_t sdmmc_io_rw_direct(sdmmc_card_t* card, int func,
|
|
uint32_t reg, uint32_t arg, uint8_t *byte)
|
|
{
|
|
esp_err_t err;
|
|
sdmmc_command_t cmd = {
|
|
.flags = SCF_CMD_AC | SCF_RSP_R5,
|
|
.arg = 0,
|
|
.opcode = SD_IO_RW_DIRECT
|
|
};
|
|
|
|
arg |= (func & SD_ARG_CMD52_FUNC_MASK) << SD_ARG_CMD52_FUNC_SHIFT;
|
|
arg |= (reg & SD_ARG_CMD52_REG_MASK) << SD_ARG_CMD52_REG_SHIFT;
|
|
arg |= (*byte & SD_ARG_CMD52_DATA_MASK) << SD_ARG_CMD52_DATA_SHIFT;
|
|
cmd.arg = arg;
|
|
|
|
err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGV(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
|
|
*byte = SD_R5_DATA(cmd.response);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
esp_err_t sdmmc_io_read_byte(sdmmc_card_t* card, uint32_t function,
|
|
uint32_t addr, uint8_t *out_byte)
|
|
{
|
|
esp_err_t ret = sdmmc_io_rw_direct(card, function, addr, SD_ARG_CMD52_READ, out_byte);
|
|
if (ret != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_io_rw_direct (read 0x%x) returned 0x%x", __func__, addr, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t sdmmc_io_write_byte(sdmmc_card_t* card, uint32_t function,
|
|
uint32_t addr, uint8_t in_byte, uint8_t* out_byte)
|
|
{
|
|
uint8_t tmp_byte = in_byte;
|
|
esp_err_t ret = sdmmc_io_rw_direct(card, function, addr,
|
|
SD_ARG_CMD52_WRITE | SD_ARG_CMD52_EXCHANGE, &tmp_byte);
|
|
if (ret != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_io_rw_direct (write 0x%x) returned 0x%x", __func__, addr, ret);
|
|
return ret;
|
|
}
|
|
if (out_byte != NULL) {
|
|
*out_byte = tmp_byte;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t sdmmc_io_rw_extended(sdmmc_card_t* card, int func,
|
|
uint32_t reg, int arg, void *datap, size_t datalen)
|
|
{
|
|
esp_err_t err;
|
|
const size_t max_byte_transfer_size = 512;
|
|
sdmmc_command_t cmd = {
|
|
.flags = SCF_CMD_AC | SCF_RSP_R5,
|
|
.arg = 0,
|
|
.opcode = SD_IO_RW_EXTENDED,
|
|
.data = datap,
|
|
.datalen = datalen,
|
|
.blklen = max_byte_transfer_size /* TODO: read max block size from CIS */
|
|
};
|
|
|
|
uint32_t count; /* number of bytes or blocks, depending on transfer mode */
|
|
if (arg & SD_ARG_CMD53_BLOCK_MODE) {
|
|
if (cmd.datalen % cmd.blklen != 0) {
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
count = cmd.datalen / cmd.blklen;
|
|
} else {
|
|
if (datalen > max_byte_transfer_size) {
|
|
/* TODO: split into multiple operations? */
|
|
return ESP_ERR_INVALID_SIZE;
|
|
}
|
|
if (datalen == max_byte_transfer_size) {
|
|
count = 0; // See 5.3.1 SDIO simplifed spec
|
|
} else {
|
|
count = datalen;
|
|
}
|
|
cmd.blklen = datalen;
|
|
}
|
|
|
|
arg |= (func & SD_ARG_CMD53_FUNC_MASK) << SD_ARG_CMD53_FUNC_SHIFT;
|
|
arg |= (reg & SD_ARG_CMD53_REG_MASK) << SD_ARG_CMD53_REG_SHIFT;
|
|
arg |= (count & SD_ARG_CMD53_LENGTH_MASK) << SD_ARG_CMD53_LENGTH_SHIFT;
|
|
cmd.arg = arg;
|
|
|
|
if ((arg & SD_ARG_CMD53_WRITE) == 0) {
|
|
cmd.flags |= SCF_CMD_READ;
|
|
}
|
|
|
|
err = sdmmc_send_cmd(card, &cmd);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
|
|
return err;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdmmc_io_read_bytes(sdmmc_card_t* card, uint32_t function,
|
|
uint32_t addr, void* dst, size_t size)
|
|
{
|
|
return sdmmc_io_rw_extended(card, function, addr,
|
|
SD_ARG_CMD53_READ | SD_ARG_CMD53_INCREMENT,
|
|
dst, size);
|
|
}
|
|
|
|
esp_err_t sdmmc_io_write_bytes(sdmmc_card_t* card, uint32_t function,
|
|
uint32_t addr, const void* src, size_t size)
|
|
{
|
|
return sdmmc_io_rw_extended(card, function, addr,
|
|
SD_ARG_CMD53_WRITE | SD_ARG_CMD53_INCREMENT,
|
|
(void*) src, size);
|
|
}
|
|
|
|
esp_err_t sdmmc_io_read_blocks(sdmmc_card_t* card, uint32_t function,
|
|
uint32_t addr, void* dst, size_t size)
|
|
{
|
|
return sdmmc_io_rw_extended(card, function, addr,
|
|
SD_ARG_CMD53_READ | SD_ARG_CMD53_INCREMENT | SD_ARG_CMD53_BLOCK_MODE,
|
|
dst, size);
|
|
}
|
|
|
|
esp_err_t sdmmc_io_write_blocks(sdmmc_card_t* card, uint32_t function,
|
|
uint32_t addr, const void* src, size_t size)
|
|
{
|
|
return sdmmc_io_rw_extended(card, function, addr,
|
|
SD_ARG_CMD53_WRITE | SD_ARG_CMD53_INCREMENT | SD_ARG_CMD53_BLOCK_MODE,
|
|
(void*) src, size);
|
|
}
|
|
|
|
esp_err_t sdmmc_io_enable_int(sdmmc_card_t* card)
|
|
{
|
|
if (card->host.io_int_enable == NULL) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
return (*card->host.io_int_enable)(card->host.slot);
|
|
}
|
|
|
|
esp_err_t sdmmc_io_wait_int(sdmmc_card_t* card, TickType_t timeout_ticks)
|
|
{
|
|
if (card->host.io_int_wait == NULL) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
return (*card->host.io_int_wait)(card->host.slot, timeout_ticks);
|
|
}
|