OVMS3-idf/components/driver/spi_common.c

438 lines
17 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "driver/spi_master.h"
#include "soc/gpio_sig_map.h"
#include "soc/spi_reg.h"
#include "soc/dport_reg.h"
#include "soc/spi_struct.h"
#include "rom/ets_sys.h"
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_intr.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_err.h"
#include "soc/soc.h"
#include "soc/dport_reg.h"
#include "rom/lldesc.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#include "esp_heap_caps.h"
#include "driver/spi_common.h"
static const char *SPI_TAG = "spi";
#define SPI_CHECK(a, str, ret_val) \
if (!(a)) { \
ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
}
typedef struct spi_device_t spi_device_t;
/*
Stores a bunch of per-spi-peripheral data.
*/
typedef struct {
const uint8_t spiclk_out; //GPIO mux output signals
const uint8_t spiclk_in;
const uint8_t spid_out;
const uint8_t spiq_out;
const uint8_t spiwp_out;
const uint8_t spihd_out;
const uint8_t spid_in; //GPIO mux input signals
const uint8_t spiq_in;
const uint8_t spiwp_in;
const uint8_t spihd_in;
const uint8_t spics_out[3]; // /CS GPIO output mux signals
const uint8_t spics_in;
const uint8_t spiclk_native; //IO pins of IO_MUX muxed signals
const uint8_t spid_native;
const uint8_t spiq_native;
const uint8_t spiwp_native;
const uint8_t spihd_native;
const uint8_t spics0_native;
const uint8_t irq; //irq source for interrupt mux
const uint8_t irq_dma; //dma irq source for interrupt mux
const periph_module_t module; //peripheral module, for enabling clock etc
spi_dev_t *hw; //Pointer to the hardware registers
} spi_signal_conn_t;
/*
Bunch of constants for every SPI peripheral: GPIO signals, irqs, hw addr of registers etc
*/
static const spi_signal_conn_t io_signal[3] = {
{
.spiclk_out = SPICLK_OUT_IDX,
.spiclk_in = SPICLK_IN_IDX,
.spid_out = SPID_OUT_IDX,
.spiq_out = SPIQ_OUT_IDX,
.spiwp_out = SPIWP_OUT_IDX,
.spihd_out = SPIHD_OUT_IDX,
.spid_in = SPID_IN_IDX,
.spiq_in = SPIQ_IN_IDX,
.spiwp_in = SPIWP_IN_IDX,
.spihd_in = SPIHD_IN_IDX,
.spics_out = {SPICS0_OUT_IDX, SPICS1_OUT_IDX, SPICS2_OUT_IDX},
.spics_in = SPICS0_IN_IDX,
.spiclk_native = 6,
.spid_native = 8,
.spiq_native = 7,
.spiwp_native = 10,
.spihd_native = 9,
.spics0_native = 11,
.irq = ETS_SPI1_INTR_SOURCE,
.irq_dma = ETS_SPI1_DMA_INTR_SOURCE,
.module = PERIPH_SPI_MODULE,
.hw = &SPI1
}, {
.spiclk_out = HSPICLK_OUT_IDX,
.spiclk_in = HSPICLK_IN_IDX,
.spid_out = HSPID_OUT_IDX,
.spiq_out = HSPIQ_OUT_IDX,
.spiwp_out = HSPIWP_OUT_IDX,
.spihd_out = HSPIHD_OUT_IDX,
.spid_in = HSPID_IN_IDX,
.spiq_in = HSPIQ_IN_IDX,
.spiwp_in = HSPIWP_IN_IDX,
.spihd_in = HSPIHD_IN_IDX,
.spics_out = {HSPICS0_OUT_IDX, HSPICS1_OUT_IDX, HSPICS2_OUT_IDX},
.spics_in = HSPICS0_IN_IDX,
.spiclk_native = 14,
.spid_native = 13,
.spiq_native = 12,
.spiwp_native = 2,
.spihd_native = 4,
.spics0_native = 15,
.irq = ETS_SPI2_INTR_SOURCE,
.irq_dma = ETS_SPI2_DMA_INTR_SOURCE,
.module = PERIPH_HSPI_MODULE,
.hw = &SPI2
}, {
.spiclk_out = VSPICLK_OUT_IDX,
.spiclk_in = VSPICLK_IN_IDX,
.spid_out = VSPID_OUT_IDX,
.spiq_out = VSPIQ_OUT_IDX,
.spiwp_out = VSPIWP_OUT_IDX,
.spihd_out = VSPIHD_OUT_IDX,
.spid_in = VSPID_IN_IDX,
.spiq_in = VSPIQ_IN_IDX,
.spiwp_in = VSPIWP_IN_IDX,
.spihd_in = VSPIHD_IN_IDX,
.spics_out = {VSPICS0_OUT_IDX, VSPICS1_OUT_IDX, VSPICS2_OUT_IDX},
.spics_in = VSPICS0_IN_IDX,
.spiclk_native = 18,
.spid_native = 23,
.spiq_native = 19,
.spiwp_native = 22,
.spihd_native = 21,
.spics0_native = 5,
.irq = ETS_SPI3_INTR_SOURCE,
.irq_dma = ETS_SPI3_DMA_INTR_SOURCE,
.module = PERIPH_VSPI_MODULE,
.hw = &SPI3
}
};
#define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1))
//Periph 1 is 'claimed' by SPI flash code.
static bool spi_periph_claimed[3] = {true, false, false};
static uint8_t spi_dma_chan_enabled = 0;
static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
//Returns true if this peripheral is successfully claimed, false if otherwise.
bool spicommon_periph_claim(spi_host_device_t host)
{
bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], false, true);
if (ret) periph_module_enable(io_signal[host].module);
return ret;
}
//Returns true if this peripheral is successfully freed, false if otherwise.
bool spicommon_periph_free(spi_host_device_t host)
{
bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], true, false);
if (ret) periph_module_disable(io_signal[host].module);
return ret;
}
int spicommon_irqsource_for_host(spi_host_device_t host)
{
return io_signal[host].irq;
}
spi_dev_t *spicommon_hw_for_host(spi_host_device_t host)
{
return io_signal[host].hw;
}
bool spicommon_dma_chan_claim (int dma_chan)
{
bool ret = false;
assert( dma_chan == 1 || dma_chan == 2 );
portENTER_CRITICAL(&spi_dma_spinlock);
if ( !(spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan)) ) {
// get the channel only when it's not claimed yet.
spi_dma_chan_enabled |= DMA_CHANNEL_ENABLED(dma_chan);
ret = true;
}
periph_module_enable( PERIPH_SPI_DMA_MODULE );
portEXIT_CRITICAL(&spi_dma_spinlock);
return ret;
}
bool spicommon_dma_chan_free(int dma_chan)
{
assert( dma_chan == 1 || dma_chan == 2 );
assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) );
portENTER_CRITICAL(&spi_dma_spinlock);
spi_dma_chan_enabled &= ~DMA_CHANNEL_ENABLED(dma_chan);
if ( spi_dma_chan_enabled == 0 ) {
//disable the DMA only when all the channels are freed.
periph_module_disable( PERIPH_SPI_DMA_MODULE );
}
portEXIT_CRITICAL(&spi_dma_spinlock);
return true;
}
/*
Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a
bus config struct and it'll set up the GPIO matrix and enable the device. It will set is_native to 1 if the bus
config can be done using the IOMUX instead of using the GPIO matrix.
*/
esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, int flags, bool *is_native)
{
bool native = true;
bool use_quad = (flags & SPICOMMON_BUSFLAG_QUAD) != 0;
SPI_CHECK(bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num), "spid pin invalid", ESP_ERR_INVALID_ARG);
SPI_CHECK(bus_config->sclk_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->sclk_io_num), "spiclk pin invalid", ESP_ERR_INVALID_ARG);
SPI_CHECK(bus_config->miso_io_num < 0 || GPIO_IS_VALID_GPIO(bus_config->miso_io_num), "spiq pin invalid", ESP_ERR_INVALID_ARG);
if (use_quad) {
SPI_CHECK(bus_config->quadwp_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadwp_io_num), "spiwp pin invalid", ESP_ERR_INVALID_ARG);
SPI_CHECK(bus_config->quadhd_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadhd_io_num), "spihd pin invalid", ESP_ERR_INVALID_ARG);
}
//Check if the selected pins correspond to the native pins of the peripheral
if (bus_config->mosi_io_num >= 0 && bus_config->mosi_io_num != io_signal[host].spid_native) native = false;
if (bus_config->miso_io_num >= 0 && bus_config->miso_io_num != io_signal[host].spiq_native) native = false;
if (bus_config->sclk_io_num >= 0 && bus_config->sclk_io_num != io_signal[host].spiclk_native) native = false;
if (use_quad) {
if (bus_config->quadwp_io_num >= 0 && bus_config->quadwp_io_num != io_signal[host].spiwp_native) native = false;
if (bus_config->quadhd_io_num >= 0 && bus_config->quadhd_io_num != io_signal[host].spihd_native) native = false;
}
*is_native = native;
if ( native ) {
ESP_LOGD(SPI_TAG, "SPI%d use native pins.", host );
} else {
ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host );
}
if (native) {
//All SPI native pin selections resolve to 1, so we put that here instead of trying to figure
//out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
if (bus_config->mosi_io_num >= 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], 1);
if (bus_config->miso_io_num >= 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], 1);
if (use_quad && bus_config->quadwp_io_num >= 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], 1);
if (use_quad && bus_config->quadhd_io_num >= 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], 1);
if (bus_config->sclk_io_num >= 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], 1);
} else {
//Use GPIO
if (bus_config->mosi_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT);
gpio_matrix_out(bus_config->mosi_io_num, io_signal[host].spid_out, false, false);
gpio_matrix_in(bus_config->mosi_io_num, io_signal[host].spid_in, false);
}
if (bus_config->miso_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT);
gpio_matrix_out(bus_config->miso_io_num, io_signal[host].spiq_out, false, false);
gpio_matrix_in(bus_config->miso_io_num, io_signal[host].spiq_in, false);
}
if (use_quad && bus_config->quadwp_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT);
gpio_matrix_out(bus_config->quadwp_io_num, io_signal[host].spiwp_out, false, false);
gpio_matrix_in(bus_config->quadwp_io_num, io_signal[host].spiwp_in, false);
}
if (use_quad && bus_config->quadhd_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT);
gpio_matrix_out(bus_config->quadhd_io_num, io_signal[host].spihd_out, false, false);
gpio_matrix_in(bus_config->quadhd_io_num, io_signal[host].spihd_in, false);
}
if (bus_config->sclk_io_num >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT);
gpio_matrix_out(bus_config->sclk_io_num, io_signal[host].spiclk_out, false, false);
gpio_matrix_in(bus_config->sclk_io_num, io_signal[host].spiclk_in, false);
}
}
//Select DMA channel.
DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
return ESP_OK;
}
//Find any pin with output muxed to ``func`` and reset it to GPIO
static void reset_func_to_gpio(int func)
{
for (int x = 0; x < GPIO_PIN_COUNT; x++) {
if (GPIO_IS_VALID_GPIO(x) && (READ_PERI_REG(GPIO_FUNC0_OUT_SEL_CFG_REG + (x * 4))&GPIO_FUNC0_OUT_SEL_M) == func) {
gpio_matrix_out(x, SIG_GPIO_OUT_IDX, false, false);
}
}
}
esp_err_t spicommon_bus_free_io(spi_host_device_t host)
{
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spid_native], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spid_native], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spiq_native], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spiq_native], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spiclk_native], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spiclk_native], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spiwp_native], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spiwp_native], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spihd_native], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spihd_native], PIN_FUNC_GPIO);
reset_func_to_gpio(io_signal[host].spid_out);
reset_func_to_gpio(io_signal[host].spiq_out);
reset_func_to_gpio(io_signal[host].spiclk_out);
reset_func_to_gpio(io_signal[host].spiwp_out);
reset_func_to_gpio(io_signal[host].spihd_out);
return ESP_OK;
}
void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix)
{
if (!force_gpio_matrix && cs_io_num == io_signal[host].spics0_native && cs_num == 0) {
//The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], 1);
} else {
//Use GPIO matrix
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], PIN_FUNC_GPIO);
gpio_matrix_out(cs_io_num, io_signal[host].spics_out[cs_num], false, false);
if (cs_num == 0) gpio_matrix_in(cs_io_num, io_signal[host].spics_in, false);
}
}
void spicommon_cs_free(spi_host_device_t host, int cs_io_num)
{
if (cs_io_num == 0 && REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spics0_native], MCU_SEL) == 1) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spics0_native], PIN_FUNC_GPIO);
}
reset_func_to_gpio(io_signal[host].spics_out[cs_io_num]);
}
//Set up a list of dma descriptors. dmadesc is an array of descriptors. Data is the buffer to point to.
void spicommon_setup_dma_desc_links(lldesc_t *dmadesc, int len, const uint8_t *data, bool isrx)
{
int n = 0;
while (len) {
int dmachunklen = len;
if (dmachunklen > SPI_MAX_DMA_LEN) dmachunklen = SPI_MAX_DMA_LEN;
if (isrx) {
//Receive needs DMA length rounded to next 32-bit boundary
dmadesc[n].size = (dmachunklen + 3) & (~3);
dmadesc[n].length = (dmachunklen + 3) & (~3);
} else {
dmadesc[n].size = dmachunklen;
dmadesc[n].length = dmachunklen;
}
dmadesc[n].buf = (uint8_t *)data;
dmadesc[n].eof = 0;
dmadesc[n].sosf = 0;
dmadesc[n].owner = 1;
dmadesc[n].qe.stqe_next = &dmadesc[n + 1];
len -= dmachunklen;
data += dmachunklen;
n++;
}
dmadesc[n - 1].eof = 1; //Mark last DMA desc as end of stream.
dmadesc[n - 1].qe.stqe_next = NULL;
}
/*
Code for workaround for DMA issue in ESP32 v0/v1 silicon
*/
static volatile int dmaworkaround_channels_busy[2] = {0, 0};
static dmaworkaround_cb_t dmaworkaround_cb;
static void *dmaworkaround_cb_arg;
static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED;
static int dmaworkaround_waiting_for_chan = 0;
bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
{
int otherchan = (dmachan == 1) ? 2 : 1;
bool ret;
portENTER_CRITICAL(&dmaworkaround_mux);
if (dmaworkaround_channels_busy[otherchan-1]) {
//Other channel is busy. Call back when it's done.
dmaworkaround_cb = cb;
dmaworkaround_cb_arg = arg;
dmaworkaround_waiting_for_chan = otherchan;
ret = false;
} else {
//Reset DMA
periph_module_reset( PERIPH_SPI_DMA_MODULE );
ret = true;
}
portEXIT_CRITICAL(&dmaworkaround_mux);
return ret;
}
bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress()
{
return (dmaworkaround_waiting_for_chan != 0);
}
void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan)
{
portENTER_CRITICAL(&dmaworkaround_mux);
dmaworkaround_channels_busy[dmachan-1] = 0;
if (dmaworkaround_waiting_for_chan == dmachan) {
//Reset DMA
periph_module_reset( PERIPH_SPI_DMA_MODULE );
dmaworkaround_waiting_for_chan = 0;
//Call callback
dmaworkaround_cb(dmaworkaround_cb_arg);
}
portEXIT_CRITICAL(&dmaworkaround_mux);
}
void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan)
{
portENTER_CRITICAL(&dmaworkaround_mux);
dmaworkaround_channels_busy[dmachan-1] = 1;
portEXIT_CRITICAL(&dmaworkaround_mux);
}