1260 lines
43 KiB
C
1260 lines
43 KiB
C
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
|
|
/*
|
|
Architecture:
|
|
|
|
The whole SDIO slave peripheral consists of three parts: the registers (including the control registers of
|
|
interrupts and shared registers), the sending FIFO and the receving FIFO. A document ``esp_slave_protocol.rst``
|
|
describes the functionality of the peripheral detailedly.
|
|
The host can access only one of those parts at once, and the hardware functions of these parts are totally
|
|
independent. Hence this driver is designed into these three independent parts. The shared registers are quite
|
|
simple. As well as the interrupts: when a slave interrupt is written by the host, the slave gets an interrupt;
|
|
when one of the host interrupt bits is active, slave hardware output interrupt signals on the DAT1 line.
|
|
|
|
For the FIFOs, the peripheral provides counters as registers so that the host can always know whether the slave
|
|
is ready to send/receive data. The driver resets the counters during initialization, and the host should somehow
|
|
inform the slave to reset the counters again if it should reboot (or lose the counter value for some reasons).
|
|
Then the host can read/write the FIFOs by CMD53 commands according to the counters.
|
|
|
|
Since we don't want to copy all the data from the buffer each time we use sending/receving buffer,
|
|
the buffers are directly loaded onto the sending/receiving linked-list and taken off only after use.
|
|
Hence the driver takes ownership of the buffer when the buffer is fed to the driver.
|
|
|
|
The driver returns the ownership of buffers when a "finish" function is called. When the hardware finishes
|
|
the sending/receiving of a buffer, the ISR is invoked and it goes through the linked-list to see how many buffers
|
|
are freed after last interrupt, and send corresponding signals to the app.
|
|
|
|
The driver of FIFOs works as below:
|
|
|
|
1. The receive driver requires application to "register" a buffer before it's used. The driver
|
|
dynamically allocate a linked-list descriptor for the buffer, and return the descriptor as a handle
|
|
to the app.
|
|
|
|
Each time the app asks to receive by a buffer, the descriptor of the buffer is loaded onto the linked-list,
|
|
and the counter of receiving buffers is inreased so that the host will know this by the receiving interrupt.
|
|
The hardware will automatically go through the linked list and write data into the buffers loaded on the
|
|
list.
|
|
|
|
The receiving driver sends a counting semaphore to the app for each buffer finished receiving. A task can only
|
|
check the linked list and fetch one finished buffer for a received semaphore.
|
|
|
|
2. The sending driver is slightly different due to different hardware working styles.
|
|
(TODO: re-write this part if the stitch mode is released)
|
|
The hardware has a cache, so that once a descriptor is loaded onto the linked-list, it cannot be modified
|
|
until returned (used) by the hardware. This forbids us from loading descriptors onto the linked list during
|
|
the transfer (or the time waiting for host to start a transfer). However, we use a "ringbuffer" (different from
|
|
the one in ``freertos/`` folder) holding descriptors to solve this:
|
|
|
|
1. The driver allocates continuous memory for several buffer descriptors (the maximum buffer number) during
|
|
initialization. Then the driver points the STAILQ_NEXT pointer of all the descriptors except the last one
|
|
to the next descriptor of each of them. Then the pointer of the last descriptor points back to the first one:
|
|
now the descriptor is in a ring.
|
|
|
|
2. The "ringbuffer" has a write pointer points to where app can write new descriptor. The app writes the new descriptor
|
|
indicated by the write pointer without touching the STAILQ_NEXT pointer so that the descriptors are always in a
|
|
ring-like linked-list. The app never touches the part of linked-list being used by the hardware.
|
|
|
|
3. When the hardware needs some data to send, it automatically pick a part of connected descriptors. According to the mode:
|
|
- Buffer mode: only pick the next one of the last sent one;
|
|
- Stream mode: pick the one above to the latest one.
|
|
|
|
The driver removes the STAILQ_NEXT pointer of the last descriptor and put the head of the part to the DMA controller so
|
|
that it looks like just a linear linked-list rather than a ring to the hardware.
|
|
|
|
4. The counter of sending FIFO can increase when app load new buffers (in STREAM_MODE) or when new transfer should
|
|
start (in PACKET_MODE).
|
|
|
|
5. When the sending transfer is finished, the driver goes through the descriptors just send in the ISR and push all
|
|
the ``arg`` member of descriptors to the queue back to the app, so that the app can handle finished buffers. The
|
|
driver also fix the STAILQ_NEXT pointer of the last descriptor so that the descriptors are now in a ring again.
|
|
*/
|
|
|
|
|
|
|
|
#include <string.h>
|
|
#include "driver/sdio_slave.h"
|
|
#include "soc/sdio_slave_periph.h"
|
|
#include "rom/lldesc.h"
|
|
#include "esp_log.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "soc/dport_access.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "soc/io_mux_reg.h"
|
|
#include "freertos/semphr.h"
|
|
#include "xtensa/core-macros.h"
|
|
#include "driver/periph_ctrl.h"
|
|
|
|
|
|
#define SDIO_SLAVE_CHECK(res, str, ret_val) do { if(!(res)){\
|
|
SDIO_SLAVE_LOGE("%s", str);\
|
|
return ret_val;\
|
|
} }while (0)
|
|
|
|
#define SDIO_SLAVE_LOGE(s, ...) ESP_LOGE(TAG, "%s:%d (%s):"s, __FILE__,__LINE__,__FUNCTION__,##__VA_ARGS__)
|
|
#define SDIO_SLAVE_LOGW(s, ...) ESP_LOGW(TAG, "%s: "s, __FUNCTION__,##__VA_ARGS__)
|
|
|
|
|
|
static const char TAG[] = "sdio_slave";
|
|
|
|
typedef enum {
|
|
STATE_IDLE = 1,
|
|
STATE_WAIT_FOR_START = 2,
|
|
STATE_SENDING = 3,
|
|
} send_state_t;
|
|
|
|
// first 3 WORDs of this struct is defined by and compatible to the DMA link list format.
|
|
// sdio_slave_buf_handle_t is of type buf_desc_t*;
|
|
typedef struct buf_desc_s{
|
|
volatile uint32_t size :12,
|
|
length:12,
|
|
offset: 5, /* h/w reserved 5bit, s/w use it as offset in buffer */
|
|
sosf : 1, /* start of sub-frame */
|
|
eof : 1, /* end of frame */
|
|
owner : 1; /* hw or sw */
|
|
uint8_t* buf;
|
|
union{
|
|
TAILQ_ENTRY(buf_desc_s) te; // tailq used by receving
|
|
struct {
|
|
STAILQ_ENTRY(buf_desc_s) qe; // stailq used by sending and receiving
|
|
union {
|
|
uint32_t pkt_len;
|
|
// shared with the tqe_prev in tailq, happen to be non-zero in the stailq. only
|
|
// write to 0 when removed from tailq, set to other will bring invalid pointer.
|
|
uint32_t not_receiving;
|
|
};
|
|
};
|
|
};
|
|
void* arg; /* to hold some parameters */
|
|
} buf_desc_t;
|
|
|
|
typedef STAILQ_HEAD(bufdesc_stailq_head_s, buf_desc_s) buf_stailq_t;
|
|
typedef TAILQ_HEAD(bufdesc_tailq_head_s, buf_desc_s) buf_tailq_t;
|
|
|
|
typedef struct {
|
|
uint8_t* data;
|
|
uint8_t* write_ptr;
|
|
uint8_t* read_ptr;
|
|
uint8_t* free_ptr;
|
|
size_t item_size;
|
|
size_t size;
|
|
portMUX_TYPE write_spinlock;
|
|
SemaphoreHandle_t remain_cnt;
|
|
} sdio_ringbuf_t;
|
|
|
|
#define offset_of(type, field) ((unsigned int)&(((type *)(0))->field))
|
|
typedef enum {
|
|
ringbuf_write_ptr = offset_of(sdio_ringbuf_t, write_ptr),
|
|
ringbuf_read_ptr = offset_of(sdio_ringbuf_t, read_ptr),
|
|
ringbuf_free_ptr = offset_of(sdio_ringbuf_t, free_ptr),
|
|
} sdio_ringbuf_pointer_t;
|
|
|
|
#define SDIO_RINGBUF_INITIALIZER() (sdio_ringbuf_t){.write_spinlock = portMUX_INITIALIZER_UNLOCKED,}
|
|
|
|
typedef struct {
|
|
sdio_slave_config_t config;
|
|
intr_handle_t intr_handle; //allocated interrupt handle
|
|
/*------- events ---------------*/
|
|
union {
|
|
SemaphoreHandle_t events[9]; // 0-7 for gp intr
|
|
struct {
|
|
SemaphoreHandle_t _events[8];
|
|
SemaphoreHandle_t recv_event; // 8 for recv
|
|
};
|
|
};
|
|
portMUX_TYPE reg_spinlock;
|
|
/*------- sending ---------------*/
|
|
//desc in the send_link_list are temporary, taken information and space from the ringbuf, return to ringbuf after use.
|
|
send_state_t send_state;
|
|
sdio_ringbuf_t sendbuf;
|
|
QueueHandle_t ret_queue;
|
|
buf_desc_t* in_flight;
|
|
buf_desc_t* in_flight_end;
|
|
buf_desc_t* in_flight_next;
|
|
/*------- receiving ---------------*/
|
|
buf_stailq_t recv_link_list; // now ready to/already hold data
|
|
buf_tailq_t recv_reg_list; // removed from the link list, registered but not used now
|
|
volatile buf_desc_t* recv_cur_ret; // next desc to return, NULL if all loaded descriptors are returned
|
|
portMUX_TYPE recv_spinlock;
|
|
} sdio_context_t;
|
|
|
|
static sdio_context_t context = {
|
|
.intr_handle = NULL,
|
|
/*------- events ---------------*/
|
|
.events = {},
|
|
.reg_spinlock = portMUX_INITIALIZER_UNLOCKED,
|
|
/*------- sending ---------------*/
|
|
.send_state = STATE_IDLE,
|
|
.sendbuf = SDIO_RINGBUF_INITIALIZER(),
|
|
.ret_queue = NULL,
|
|
.in_flight = NULL,
|
|
.in_flight_end = NULL,
|
|
.in_flight_next = NULL,
|
|
/*------- receiving ---------------*/
|
|
.recv_link_list = STAILQ_HEAD_INITIALIZER(context.recv_link_list),
|
|
.recv_reg_list = TAILQ_HEAD_INITIALIZER(context.recv_reg_list),
|
|
.recv_cur_ret = NULL,
|
|
.recv_spinlock = portMUX_INITIALIZER_UNLOCKED,
|
|
};
|
|
|
|
static void sdio_intr(void*);
|
|
static void sdio_intr_host(void*);
|
|
static void sdio_intr_send(void*);
|
|
static void sdio_intr_recv(void*);
|
|
|
|
static esp_err_t send_flush_data();
|
|
static esp_err_t send_reset_counter();
|
|
static void recv_flush_data();
|
|
static void recv_reset_counter();
|
|
|
|
static esp_err_t send_start();
|
|
static void send_stop();
|
|
static esp_err_t recv_start();
|
|
static void recv_stop();
|
|
|
|
static void deinit_context();
|
|
|
|
|
|
/**************** Ring buffer for SDIO use *****************/
|
|
typedef enum {
|
|
RINGBUF_GET_ONE = 0,
|
|
RINGBUF_GET_ALL = 1,
|
|
} ringbuf_get_all_t;
|
|
|
|
static void sdio_ringbuf_deinit(sdio_ringbuf_t* buf)
|
|
{
|
|
if (buf->remain_cnt != NULL) vSemaphoreDelete(buf->remain_cnt);
|
|
if (buf->data != NULL) free(buf->data);
|
|
*buf = SDIO_RINGBUF_INITIALIZER();
|
|
}
|
|
|
|
static esp_err_t sdio_ringbuf_init(sdio_ringbuf_t* buf, int item_size, int item_cnt)
|
|
{
|
|
if (buf->data != NULL) {
|
|
SDIO_SLAVE_LOGE("sdio_ringbuf_init: already initialized");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
buf->item_size = item_size;
|
|
//one item is not used.
|
|
buf->size = item_size * (item_cnt+1);
|
|
//apply for resources
|
|
buf->data = (uint8_t*)malloc(buf->size);
|
|
if (buf->data == NULL) goto no_mem;
|
|
buf->remain_cnt = xSemaphoreCreateCounting(item_cnt, item_cnt);
|
|
if (buf->remain_cnt == NULL) goto no_mem;
|
|
//initialize pointers
|
|
buf->write_ptr = buf->data;
|
|
buf->read_ptr = buf->data;
|
|
buf->free_ptr = buf->data;
|
|
return ESP_OK;
|
|
no_mem:
|
|
sdio_ringbuf_deinit(buf);
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
//calculate a pointer with offset to a original pointer of the specific ringbuffer
|
|
static inline uint8_t* sdio_ringbuf_offset_ptr(sdio_ringbuf_t *buf, sdio_ringbuf_pointer_t ptr, uint32_t offset)
|
|
{
|
|
uint8_t *buf_ptr = (uint8_t*)*(uint32_t*)(((uint8_t*)buf)+ptr); //get the specific pointer of the buffer
|
|
uint8_t *offset_ptr=buf_ptr+offset;
|
|
if (offset_ptr >= buf->data + buf->size) offset_ptr -= buf->size;
|
|
return offset_ptr;
|
|
}
|
|
|
|
static esp_err_t sdio_ringbuf_send(sdio_ringbuf_t* buf, esp_err_t (*copy_callback)(uint8_t*, void*), void* arg, TickType_t wait)
|
|
{
|
|
portBASE_TYPE ret = xSemaphoreTake(buf->remain_cnt, wait);
|
|
if (ret != pdTRUE) return NULL;
|
|
|
|
portENTER_CRITICAL(&buf->write_spinlock);
|
|
uint8_t* get_ptr = sdio_ringbuf_offset_ptr(buf, ringbuf_write_ptr, buf->item_size);
|
|
esp_err_t err = ESP_OK;
|
|
if (copy_callback) (*copy_callback)(get_ptr, arg);
|
|
if (err != ESP_OK) {
|
|
portEXIT_CRITICAL(&buf->write_spinlock);
|
|
return err;
|
|
}
|
|
buf->write_ptr = get_ptr;
|
|
portEXIT_CRITICAL(&buf->write_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
// this ringbuf is a return-before-recv-again strategy
|
|
// since this is designed to be called in the ISR, no parallel logic
|
|
static inline esp_err_t sdio_ringbuf_recv(sdio_ringbuf_t* buf, uint8_t **start, uint8_t **end, ringbuf_get_all_t get_all, TickType_t wait)
|
|
{
|
|
assert(buf->free_ptr == buf->read_ptr); //must return before recv again
|
|
assert(wait == 0); //only implement wait = 0 case now
|
|
if (start == NULL && end == NULL) return ESP_ERR_INVALID_ARG; // must have a output
|
|
if (buf->read_ptr == buf->write_ptr) return ESP_ERR_NOT_FOUND; // no data
|
|
|
|
uint8_t *get_start = sdio_ringbuf_offset_ptr(buf, ringbuf_read_ptr, buf->item_size);
|
|
|
|
if (get_all != RINGBUF_GET_ONE) {
|
|
buf->read_ptr = buf->write_ptr;
|
|
} else {
|
|
buf->read_ptr = get_start;
|
|
}
|
|
|
|
if (start != NULL) *start = get_start;
|
|
if (end != NULL) *end = buf->read_ptr;
|
|
return ESP_OK;
|
|
}
|
|
|
|
static inline void sdio_ringbuf_return_from_isr(sdio_ringbuf_t* buf, uint8_t *ptr, portBASE_TYPE *yield)
|
|
{
|
|
assert(sdio_ringbuf_offset_ptr(buf, ringbuf_free_ptr, buf->item_size) == ptr);
|
|
int size = (buf->read_ptr + buf->size - buf->free_ptr)%buf->size;
|
|
int count = size/buf->item_size;
|
|
assert(count*buf->item_size==size);
|
|
buf->free_ptr = buf->read_ptr;
|
|
for(int i = 0; i < count; i++) {
|
|
portBASE_TYPE ret = xSemaphoreGiveFromISR(buf->remain_cnt, yield);
|
|
assert(ret == pdTRUE);
|
|
}
|
|
}
|
|
|
|
static inline void sdio_ringbuf_return(sdio_ringbuf_t* buf, uint8_t *ptr)
|
|
{
|
|
assert(sdio_ringbuf_offset_ptr(buf, ringbuf_free_ptr, buf->item_size) == ptr);
|
|
int size = (buf->read_ptr + buf->size - buf->free_ptr)%buf->size;
|
|
int count = size/buf->item_size;
|
|
assert(count*buf->item_size==size);
|
|
buf->free_ptr = buf->read_ptr;
|
|
for(int i = 0; i < count; i++) {
|
|
portBASE_TYPE ret = xSemaphoreGive(buf->remain_cnt);
|
|
assert(ret == pdTRUE);
|
|
}
|
|
}
|
|
|
|
static inline uint8_t* sdio_ringbuf_peek_front(sdio_ringbuf_t* buf)
|
|
{
|
|
if (buf->read_ptr != buf->write_ptr) {
|
|
return sdio_ringbuf_offset_ptr(buf, ringbuf_read_ptr, buf->item_size);
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static inline uint8_t* sdio_ringbuf_peek_rear(sdio_ringbuf_t *buf)
|
|
{
|
|
return buf->write_ptr;
|
|
}
|
|
|
|
static inline bool sdio_ringbuf_empty(sdio_ringbuf_t* buf)
|
|
{
|
|
return (buf->read_ptr == buf->write_ptr? true : false);
|
|
}
|
|
/**************** End of Ring buffer for SDIO *****************/
|
|
|
|
static inline void show_ll(buf_desc_t *item)
|
|
{
|
|
ESP_EARLY_LOGD(TAG, "=> %p: size: %d(%d), eof: %d, owner: %d", item, item->size, item->length, item->eof, item->owner);
|
|
ESP_EARLY_LOGD(TAG, " buf: %p, stqe_next: %p, tqe-prev: %p", item->buf, item->qe.stqe_next, item->te.tqe_prev);
|
|
}
|
|
|
|
static void __attribute((unused)) dump_ll(buf_stailq_t *queue)
|
|
{
|
|
buf_desc_t *item = NULL;
|
|
ESP_EARLY_LOGD(TAG, ">>>>> first: %p, last: %p <<<<<", queue->stqh_first, queue->stqh_last);
|
|
STAILQ_FOREACH(item, queue, qe) {
|
|
show_ll(item);
|
|
}
|
|
}
|
|
|
|
static inline void deinit_context()
|
|
{
|
|
context.config = (sdio_slave_config_t){};
|
|
for(int i = 0; i < 9; i++) {
|
|
if (context.events[i] != NULL) {
|
|
vSemaphoreDelete(context.events[i]);
|
|
context.events[i] = NULL;
|
|
}
|
|
}
|
|
if (context.ret_queue != NULL) {
|
|
vQueueDelete(context.ret_queue);
|
|
context.ret_queue = NULL;
|
|
}
|
|
sdio_ringbuf_deinit(&context.sendbuf);
|
|
}
|
|
|
|
esp_err_t link_desc_to_last(uint8_t* desc, void* arg)
|
|
{
|
|
STAILQ_NEXT((buf_desc_t*)arg, qe) = (buf_desc_t*)desc;
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t init_ringbuf()
|
|
{
|
|
esp_err_t ret = sdio_ringbuf_init(&context.sendbuf, sizeof(buf_desc_t), context.config.send_queue_size);
|
|
if (ret != ESP_OK) return ret;
|
|
|
|
esp_err_t rcv_res;
|
|
buf_desc_t *first=NULL, *last=NULL;
|
|
|
|
//no copy for the first descriptor
|
|
ret = sdio_ringbuf_send(&context.sendbuf, NULL, NULL, portMAX_DELAY);
|
|
if (ret != ESP_OK) return ret;
|
|
|
|
//loop in the ringbuf to link all the desc one after another as a ring
|
|
for (int i = 0; i < context.config.send_queue_size+1; i++) {
|
|
rcv_res = sdio_ringbuf_recv(&context.sendbuf, (uint8_t**)&last, NULL, RINGBUF_GET_ONE, 0);
|
|
assert (rcv_res == ESP_OK);
|
|
ret = sdio_ringbuf_send(&context.sendbuf, link_desc_to_last, last, portMAX_DELAY);
|
|
if (ret != ESP_OK) return ret;
|
|
sdio_ringbuf_return(&context.sendbuf, (uint8_t*)last);
|
|
}
|
|
first = NULL;
|
|
last = NULL;
|
|
//clear the queue
|
|
rcv_res = sdio_ringbuf_recv(&context.sendbuf, (uint8_t**)&first, (uint8_t**)&last, RINGBUF_GET_ALL, 0);
|
|
assert (rcv_res == ESP_OK);
|
|
assert(first == last); //there should be only one desc remain
|
|
sdio_ringbuf_return(&context.sendbuf, (uint8_t*)first);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t init_context(sdio_slave_config_t *config)
|
|
{
|
|
SDIO_SLAVE_CHECK(*(uint32_t*)&context.config == 0, "sdio slave already initialized", ESP_ERR_INVALID_STATE);
|
|
|
|
context.config = *config;
|
|
|
|
// in theory we can queue infinite buffers in the linked list, but for multi-core reason we have to use a queue to
|
|
// count the finished buffers.
|
|
context.recv_event = xSemaphoreCreateCounting(UINT32_MAX, 0);
|
|
for(int i = 0; i < 9; i++) {
|
|
if (i < 8) {
|
|
context.events[i] = xSemaphoreCreateBinary();
|
|
} //for 8, already created.
|
|
if (context.events[i] == NULL) {
|
|
SDIO_SLAVE_LOGE("event initialize failed");
|
|
goto no_mem;
|
|
}
|
|
}
|
|
|
|
esp_err_t ret = init_ringbuf();
|
|
if (ret != ESP_OK) goto no_mem;
|
|
|
|
context.ret_queue = xQueueCreate(config->send_queue_size, sizeof(void*));
|
|
if (context.ret_queue == NULL) goto no_mem;
|
|
|
|
context.recv_link_list = (buf_stailq_t)STAILQ_HEAD_INITIALIZER(context.recv_link_list);
|
|
context.recv_reg_list = (buf_tailq_t)TAILQ_HEAD_INITIALIZER(context.recv_reg_list);
|
|
return ESP_OK;
|
|
|
|
no_mem:
|
|
deinit_context();
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
static void configure_pin(int pin, uint32_t func, bool pullup)
|
|
{
|
|
const int sdmmc_func = func;
|
|
const int drive_strength = 3;
|
|
assert(pin!=-1);
|
|
uint32_t reg = GPIO_PIN_MUX_REG[pin];
|
|
assert(reg!=UINT32_MAX);
|
|
|
|
PIN_INPUT_ENABLE(reg);
|
|
PIN_FUNC_SELECT(reg, sdmmc_func);
|
|
PIN_SET_DRV(reg, drive_strength);
|
|
if (pullup) {
|
|
gpio_pullup_en(pin);
|
|
gpio_pulldown_dis(pin);
|
|
}
|
|
}
|
|
|
|
static inline esp_err_t sdio_slave_hw_init(sdio_slave_config_t *config)
|
|
{
|
|
//enable interrupts
|
|
SLC.slc0_int_ena.val = 0;
|
|
|
|
//initialize pin
|
|
const sdio_slave_slot_info_t *slot = &sdio_slave_slot_info[1];
|
|
|
|
bool pullup = config->flags & SDIO_SLAVE_FLAG_INTERNAL_PULLUP;
|
|
configure_pin(slot->clk_gpio, slot->func, false); //clk doesn't need a pullup
|
|
configure_pin(slot->cmd_gpio, slot->func, pullup);
|
|
configure_pin(slot->d0_gpio, slot->func, pullup);
|
|
if ((config->flags & SDIO_SLAVE_FLAG_HOST_INTR_DISABLED)==0) {
|
|
configure_pin(slot->d1_gpio, slot->func, pullup);
|
|
}
|
|
if ((config->flags & SDIO_SLAVE_FLAG_DAT2_DISABLED)==0) {
|
|
configure_pin(slot->d2_gpio, slot->func, pullup);
|
|
}
|
|
configure_pin(slot->d3_gpio, slot->func, pullup);
|
|
|
|
//enable module and config
|
|
periph_module_reset(PERIPH_SDIO_SLAVE_MODULE);
|
|
periph_module_enable(PERIPH_SDIO_SLAVE_MODULE);
|
|
|
|
SLC.conf0.slc0_rx_auto_wrback = 1;
|
|
SLC.conf0.slc0_token_auto_clr = 0;
|
|
SLC.conf0.slc0_rx_loop_test = 0;
|
|
SLC.conf0.slc0_tx_loop_test = 0;
|
|
|
|
SLC.conf1.slc0_rx_stitch_en = 0;
|
|
SLC.conf1.slc0_tx_stitch_en = 0;
|
|
SLC.conf1.slc0_len_auto_clr = 0;
|
|
|
|
SLC.rx_dscr_conf.slc0_token_no_replace = 1;
|
|
HINF.cfg_data1.highspeed_enable = 1;
|
|
|
|
switch(config->timing) {
|
|
case SDIO_SLAVE_TIMING_PSEND_PSAMPLE:
|
|
HOST.conf.frc_sdio20 = 0xf;
|
|
HOST.conf.frc_sdio11 = 0;
|
|
HOST.conf.frc_pos_samp = 0xf;
|
|
HOST.conf.frc_neg_samp = 0;
|
|
break;
|
|
case SDIO_SLAVE_TIMING_PSEND_NSAMPLE:
|
|
HOST.conf.frc_sdio20 = 0xf;
|
|
HOST.conf.frc_sdio11 = 0;
|
|
HOST.conf.frc_pos_samp = 0;
|
|
HOST.conf.frc_neg_samp = 0xf;
|
|
break;
|
|
case SDIO_SLAVE_TIMING_NSEND_PSAMPLE:
|
|
HOST.conf.frc_sdio20 = 0;
|
|
HOST.conf.frc_sdio11 = 0xf;
|
|
HOST.conf.frc_pos_samp = 0xf;
|
|
HOST.conf.frc_neg_samp = 0;
|
|
break;
|
|
case SDIO_SLAVE_TIMING_NSEND_NSAMPLE:
|
|
HOST.conf.frc_sdio20 = 0;
|
|
HOST.conf.frc_sdio11 = 0xf;
|
|
HOST.conf.frc_pos_samp = 0;
|
|
HOST.conf.frc_neg_samp = 0xf;
|
|
break;
|
|
}
|
|
|
|
SLC.slc0_int_ena.frhost_bit0 = 1;
|
|
SLC.slc0_int_ena.frhost_bit1 = 1;
|
|
SLC.slc0_int_ena.frhost_bit2 = 1;
|
|
SLC.slc0_int_ena.frhost_bit3 = 1;
|
|
SLC.slc0_int_ena.frhost_bit4 = 1;
|
|
SLC.slc0_int_ena.frhost_bit5 = 1;
|
|
SLC.slc0_int_ena.frhost_bit6 = 1;
|
|
SLC.slc0_int_ena.frhost_bit7 = 1;
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdio_slave_initialize(sdio_slave_config_t *config)
|
|
{
|
|
esp_err_t r;
|
|
intr_handle_t intr_handle = NULL;
|
|
const int flags = 0;
|
|
r = esp_intr_alloc(ETS_SLC0_INTR_SOURCE, flags, sdio_intr, NULL, &intr_handle);
|
|
if (r != ESP_OK) return r;
|
|
|
|
r = sdio_slave_hw_init(config);
|
|
if (r != ESP_OK) return r;
|
|
r = init_context(config);
|
|
if (r != ESP_OK) return r;
|
|
context.intr_handle = intr_handle;
|
|
|
|
sdio_slave_reset();
|
|
return ESP_OK;
|
|
}
|
|
|
|
void sdio_slave_deinit()
|
|
{
|
|
esp_err_t ret = esp_intr_free(context.intr_handle);
|
|
assert(ret==ESP_OK);
|
|
context.intr_handle = NULL;
|
|
deinit_context();
|
|
}
|
|
|
|
esp_err_t sdio_slave_start()
|
|
{
|
|
esp_err_t ret;
|
|
HOST.slc0_int_clr.val = UINT32_MAX;//clear all interrupts
|
|
ret = send_start();
|
|
if (ret != ESP_OK) return ret;
|
|
ret = recv_start();
|
|
if (ret != ESP_OK) return ret;
|
|
HINF.cfg_data1.sdio_ioready1 = 1; //set IO ready to 1 to allow host to use
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdio_slave_reset()
|
|
{
|
|
send_flush_data();
|
|
send_reset_counter();
|
|
recv_flush_data();
|
|
recv_reset_counter();
|
|
return ESP_OK;
|
|
}
|
|
|
|
void sdio_slave_stop()
|
|
{
|
|
HINF.cfg_data1.sdio_ioready1 = 0; //set IO ready to 1 to stop host from using
|
|
send_stop();
|
|
recv_stop();
|
|
}
|
|
|
|
#define SDIO_SLAVE_SLC_INT_TX_MASK (SLC_SLC0_TX_ERR_EOF_INT_ST_M | SLC_SLC0_TX_DSCR_EMPTY_INT_ST_M | SLC_SLC0_TX_DSCR_ERR_INT_ST_M | SLC_SLC0_TX_SUC_EOF_INT_ST_M | SLC_SLC0_TX_DONE_INT_ST_M | SLC_SLC0_TX_OVF_INT_ST_M | SLC_SLC0_TX_START_INT_ST_M)
|
|
#define SDIO_SLAVE_SLC_INT_RX_MASK (SLC_SLC0_RX_DSCR_ERR_INT_ST_M | SLC_SLC0_RX_EOF_INT_ST_M | SLC_SLC0_RX_DONE_INT_ST_M | SLC_SLC0_RX_UDF_INT_ST_M | SLC_SLC0_RX_START_INT_ST_M)
|
|
#define SDIO_SLAVE_SLC_INT_HOST_MASK (SLC_FRHOST_BIT7_INT_ST_M | SLC_FRHOST_BIT6_INT_ST_M | SLC_FRHOST_BIT5_INT_ST_M | SLC_FRHOST_BIT4_INT_ST_M | SLC_FRHOST_BIT3_INT_ST_M | SLC_FRHOST_BIT2_INT_ST_M | SLC_FRHOST_BIT1_INT_ST_M | SLC_FRHOST_BIT0_INT_ST_M)
|
|
|
|
//strange but `tx_*` regs for host->slave transfers while `rx_*` regs for slave->host transfers
|
|
static void sdio_intr(void* arg)
|
|
{
|
|
uint32_t int_val = SLC.slc0_int_st.val;
|
|
uint32_t int_raw = SLC.slc0_int_raw.val;
|
|
ESP_EARLY_LOGV(TAG, "sdio_intr: %08X(%08X)", int_val, int_raw);
|
|
|
|
if (int_val & SDIO_SLAVE_SLC_INT_RX_MASK) sdio_intr_send(arg);
|
|
if (int_val & SDIO_SLAVE_SLC_INT_TX_MASK) sdio_intr_recv(arg);
|
|
if (int_val & SDIO_SLAVE_SLC_INT_HOST_MASK) sdio_intr_host(arg);
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------
|
|
* Host
|
|
*--------------------------------------------------------------------------*/
|
|
static void sdio_intr_host(void* arg)
|
|
{
|
|
uint8_t int_val = SLC.slc0_int_st.val & 0xff;
|
|
|
|
portBASE_TYPE yield = pdFALSE;
|
|
SLC.slc0_int_clr.val = int_val;
|
|
for(int i = 0; i < 8; i++) {
|
|
if (BIT(i) & int_val) {
|
|
if (context.config.event_cb != NULL) (*context.config.event_cb)(i);
|
|
xSemaphoreGiveFromISR(context.events[i], &yield);
|
|
}
|
|
}
|
|
if (yield) portYIELD_FROM_ISR();
|
|
}
|
|
|
|
esp_err_t sdio_slave_wait_int(int pos, TickType_t wait)
|
|
{
|
|
SDIO_SLAVE_CHECK(pos >= 0 && pos < 8, "interrupt num invalid", ESP_ERR_INVALID_ARG);
|
|
return xSemaphoreTake(context.events[pos], wait);
|
|
}
|
|
|
|
|
|
uint8_t sdio_slave_read_reg(int pos)
|
|
{
|
|
if (pos >= 28 && pos <= 31) SDIO_SLAVE_LOGW("%s: interrupt reg, for reference", __FUNCTION__);
|
|
if (pos < 0 || pos >= 64) SDIO_SLAVE_LOGE("read register address wrong");
|
|
|
|
return *(uint8_t*)(HOST_SLCHOST_CONF_W_REG(pos));
|
|
}
|
|
|
|
esp_err_t sdio_slave_write_reg(int pos, uint8_t reg)
|
|
{
|
|
if (pos >= 28 && pos <= 31) {
|
|
SDIO_SLAVE_LOGE("interrupt reg, please use sdio_slave_clear_int");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (pos < 0 || pos >= 64) {
|
|
SDIO_SLAVE_LOGE("write register address wrong");
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
uint32_t addr = HOST_SLCHOST_CONF_W_REG(pos) & (~3);
|
|
uint32_t shift = (pos % 4)*8;
|
|
|
|
portENTER_CRITICAL(&context.reg_spinlock);
|
|
int val = *(uint32_t*)addr;
|
|
*(uint32_t*)addr = (val & ~(0xff << shift)) | (reg<<shift);
|
|
portEXIT_CRITICAL(&context.reg_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
sdio_slave_hostint_t sdio_slave_get_host_intena()
|
|
{
|
|
return HOST.slc0_func1_int_ena.val;
|
|
}
|
|
|
|
void sdio_slave_set_host_intena(sdio_slave_hostint_t ena)
|
|
{
|
|
HOST.slc0_func1_int_ena.val = ena;
|
|
}
|
|
|
|
void sdio_slave_clear_host_int(uint8_t mask)
|
|
{
|
|
SLC.intvec_tohost.slc0_intvec = mask;
|
|
}
|
|
|
|
esp_err_t sdio_slave_send_host_int(uint8_t pos)
|
|
{
|
|
SDIO_SLAVE_CHECK(pos < 8, "interrupt num invalid", ESP_ERR_INVALID_ARG);
|
|
SLC.intvec_tohost.slc0_intvec = BIT(pos);
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------
|
|
* Send
|
|
*--------------------------------------------------------------------------*/
|
|
//it's strange but the register is really called 'rx' for slave->host transfers.
|
|
/* The link list is handled in the app, while counter and pointer processed in ISR.
|
|
* Driver abuse rx_done bit to invoke ISR.
|
|
* If driver is stopped, the link list is stopped as well as the ISR invoker.
|
|
*/
|
|
static inline void send_length_write(uint32_t len)
|
|
{
|
|
SLC.slc0_len_conf.val = FIELD_TO_VALUE2(SLC_SLC0_LEN_WDATA, len) | FIELD_TO_VALUE2(SLC_SLC0_LEN_WR, 1);
|
|
ESP_EARLY_LOGV(TAG, "send_length_write: %d, last_len: %08X", len, HOST.pkt_len.reg_slc0_len);
|
|
}
|
|
|
|
static inline void send_start_transmission(const void* desc)
|
|
{
|
|
//reset to flush previous packets
|
|
SLC.conf0.slc0_rx_rst = 1;
|
|
SLC.conf0.slc0_rx_rst = 0;
|
|
SLC.slc0_rx_link.addr = (uint32_t)desc;
|
|
SLC.slc0_rx_link.start = 1;
|
|
}
|
|
|
|
static inline void send_stop_ll_operation()
|
|
{
|
|
SLC.slc0_rx_link.stop = 1;
|
|
}
|
|
|
|
static inline uint32_t send_length_read()
|
|
{
|
|
return HOST.pkt_len.reg_slc0_len;
|
|
}
|
|
|
|
DMA_ATTR static const buf_desc_t start_desc = {
|
|
.owner = 1,
|
|
.buf = (void*)0x3ffbbbbb, //assign a dma-capable pointer other than NULL, which will not be used
|
|
.size = 1,
|
|
.length = 1,
|
|
.eof = 1,
|
|
};
|
|
|
|
static inline void send_isr_invoker_enable()
|
|
{
|
|
//force trigger rx_done interrupt. the interrupt is abused to invoke ISR from the app by the enable bit and never cleared.
|
|
send_start_transmission(&start_desc);
|
|
//wait for rx_done
|
|
while(!SLC.slc0_int_raw.rx_done);
|
|
HOST.slc0_int_clr.rx_new_packet = 1;
|
|
send_stop_ll_operation();
|
|
}
|
|
|
|
static inline void send_isr_invoker_disable()
|
|
{
|
|
SLC.slc0_int_clr.rx_done = 1;
|
|
}
|
|
|
|
static inline void send_intr_enable()
|
|
{
|
|
SLC.slc0_int_ena.rx_eof = 1;
|
|
send_isr_invoker_enable();
|
|
}
|
|
|
|
static inline void send_intr_disable()
|
|
{
|
|
send_isr_invoker_disable();
|
|
SLC.slc0_int_ena.rx_eof = 0;
|
|
}
|
|
|
|
static inline void send_isr_invoke()
|
|
{
|
|
SLC.slc0_int_ena.rx_done = 1;
|
|
}
|
|
|
|
static inline send_state_t send_get_state()
|
|
{
|
|
return context.send_state;
|
|
}
|
|
|
|
static inline void send_set_state(send_state_t state)
|
|
{
|
|
context.send_state = state;
|
|
}
|
|
|
|
//start hw operation with existing data (if exist)
|
|
static esp_err_t send_start()
|
|
{
|
|
SDIO_SLAVE_CHECK(send_get_state() == STATE_IDLE,
|
|
"already started", ESP_ERR_INVALID_STATE);
|
|
SLC.slc0_int_clr.rx_eof = 1;
|
|
send_set_state(STATE_WAIT_FOR_START);
|
|
send_intr_enable();
|
|
return ESP_OK;
|
|
}
|
|
|
|
//only stop hw operations, no touch to data as well as counter
|
|
static void send_stop()
|
|
{
|
|
SLC.slc0_rx_link.stop = 1;
|
|
send_intr_disable();
|
|
|
|
send_set_state(STATE_IDLE);
|
|
}
|
|
|
|
static inline esp_err_t send_isr_eof(portBASE_TYPE *yield)
|
|
{
|
|
// inform app to recycle descs
|
|
portBASE_TYPE ret = pdTRUE;
|
|
buf_desc_t *desc = context.in_flight;
|
|
assert(desc != NULL);
|
|
|
|
do {
|
|
ESP_EARLY_LOGV(TAG, "end: %x", desc->arg);
|
|
ret = xQueueSendFromISR(context.ret_queue, &desc->arg, yield);
|
|
assert(ret == pdTRUE);
|
|
buf_desc_t* next = STAILQ_NEXT(desc, qe);
|
|
desc = next;
|
|
} while(desc!=NULL);
|
|
STAILQ_NEXT(context.in_flight_end, qe) = context.in_flight_next;
|
|
sdio_ringbuf_return_from_isr(&context.sendbuf, (uint8_t*)context.in_flight, yield);
|
|
context.in_flight = NULL;
|
|
context.in_flight_end = NULL;
|
|
// Go to wait for packet state
|
|
send_set_state(STATE_WAIT_FOR_START);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static inline esp_err_t send_isr_check_new_pkt(portBASE_TYPE *yield)
|
|
{
|
|
esp_err_t ret;
|
|
buf_desc_t *start = NULL;
|
|
buf_desc_t *end = NULL;
|
|
if (context.config.sending_mode == SDIO_SLAVE_SEND_PACKET) {
|
|
ret = sdio_ringbuf_recv(&context.sendbuf, (uint8_t**)&start, (uint8_t**)&end, RINGBUF_GET_ONE, 0);
|
|
} else { //stream mode
|
|
ret = sdio_ringbuf_recv(&context.sendbuf, (uint8_t**)&start, (uint8_t**)&end, RINGBUF_GET_ALL, 0);
|
|
}
|
|
if (ret == ESP_OK) {
|
|
context.in_flight = start;
|
|
context.in_flight_end = end;
|
|
end->eof = 1;
|
|
//temporarily break the link ring here, the ring will be re-connected in ``send_isr_eof()``.
|
|
context.in_flight_next = STAILQ_NEXT(end, qe);
|
|
STAILQ_NEXT(end, qe) = NULL;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
static inline esp_err_t send_isr_new_packet()
|
|
{
|
|
// since eof is changed, we have to stop and reset the link list,
|
|
// and restart new link list operation
|
|
buf_desc_t *const start_desc = context.in_flight;
|
|
buf_desc_t *const end_desc = context.in_flight_end;
|
|
assert(start_desc != NULL && end_desc != NULL);
|
|
|
|
send_stop_ll_operation();
|
|
send_start_transmission(start_desc);
|
|
|
|
// update pkt_len register to allow host reading.
|
|
send_length_write(end_desc->pkt_len);
|
|
|
|
send_set_state(STATE_SENDING);
|
|
|
|
ESP_EARLY_LOGD(TAG, "restart new send: %p->%p, pkt_len: %d", start_desc, end_desc, end_desc->pkt_len);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static void sdio_intr_send(void* arg)
|
|
{
|
|
ESP_EARLY_LOGV(TAG, "intr_send");
|
|
portBASE_TYPE yield = pdFALSE;
|
|
|
|
// this interrupt is abused to get ISR invoked by app
|
|
if (SLC.slc0_int_st.rx_done) SLC.slc0_int_ena.rx_done = 0;
|
|
|
|
// Goto idle state (cur_start=NULL) if transmission done,
|
|
// also update sequence and recycle descs.
|
|
if (SLC.slc0_int_st.rx_eof) {
|
|
SLC.slc0_int_clr.rx_eof = 1;
|
|
//check current state
|
|
assert(send_get_state() == STATE_SENDING);// context.send_start != NOT_YET && context.send_end != NOT_YET);
|
|
send_isr_eof(&yield);
|
|
}
|
|
|
|
// Go to wait sending state (cur_start!=NULL && cur_end==NULL) if not sending and new packet ready.
|
|
// Note we may also enter this state by stopping sending in the app.
|
|
if (send_get_state() == STATE_WAIT_FOR_START) {
|
|
if (context.in_flight == NULL) send_isr_check_new_pkt(&yield);
|
|
// Go to sending state (cur_start and cur_end != NULL) if has packet to send.
|
|
if (context.in_flight) send_isr_new_packet();
|
|
}
|
|
|
|
if (yield) portYIELD_FROM_ISR();
|
|
}
|
|
|
|
esp_err_t send_write_desc(uint8_t* desc, void* arg)
|
|
{
|
|
buf_desc_t *new_desc = (buf_desc_t*)arg;
|
|
buf_desc_t *tail = (buf_desc_t*)sdio_ringbuf_peek_rear(&context.sendbuf);
|
|
new_desc->pkt_len = tail->pkt_len + new_desc->size;
|
|
//copy and keep the link
|
|
STAILQ_NEXT(new_desc, qe) = STAILQ_NEXT((buf_desc_t*)desc, qe);
|
|
|
|
memcpy(desc, new_desc, sizeof(buf_desc_t));
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdio_slave_send_queue(uint8_t* addr, size_t len, void* arg, TickType_t wait)
|
|
{
|
|
SDIO_SLAVE_CHECK(len > 0, "len <= 0", ESP_ERR_INVALID_ARG);
|
|
SDIO_SLAVE_CHECK(esp_ptr_dma_capable(addr) && (uint32_t)addr%4==0, "buffer to send should be DMA capable and 32-bit aligned",
|
|
ESP_ERR_INVALID_ARG);
|
|
|
|
buf_desc_t new_desc = {
|
|
.size = len,
|
|
.length = len,
|
|
.buf = addr,
|
|
.owner = 1,
|
|
// in stream mode, the eof is only appended (in ISR) when new packet is ready to be sent
|
|
.eof = (context.config.sending_mode == SDIO_SLAVE_SEND_PACKET?1:0),
|
|
.arg = arg,
|
|
};
|
|
|
|
esp_err_t ret = sdio_ringbuf_send(&context.sendbuf, send_write_desc, &new_desc, wait);
|
|
if (ret != ESP_OK) return ret;
|
|
|
|
send_isr_invoke();
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdio_slave_send_get_finished(void** arg, TickType_t wait)
|
|
{
|
|
portBASE_TYPE err = xQueueReceive(context.ret_queue, arg, wait);
|
|
if (err != pdTRUE) return ESP_ERR_TIMEOUT;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdio_slave_transmit(uint8_t* addr, size_t len)
|
|
{
|
|
uint32_t timestamp = XTHAL_GET_CCOUNT();
|
|
uint32_t ret_stamp;
|
|
|
|
esp_err_t err = sdio_slave_send_queue(addr, len, (void*)timestamp, portMAX_DELAY);
|
|
if (err != ESP_OK) return err;
|
|
err = sdio_slave_send_get_finished((void**)&ret_stamp, portMAX_DELAY);
|
|
if (err != ESP_OK) return err;
|
|
SDIO_SLAVE_CHECK(ret_stamp == timestamp, "already sent without return before", ESP_ERR_INVALID_STATE);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
//clear data but keep counter
|
|
static esp_err_t send_flush_data()
|
|
{
|
|
//only works in idle state / wait to send state
|
|
SDIO_SLAVE_CHECK(send_get_state() == STATE_IDLE,
|
|
"flush data when transmission started", ESP_ERR_INVALID_STATE);
|
|
|
|
HOST.slc0_int_clr.rx_new_packet = 1;
|
|
|
|
buf_desc_t *last = NULL;
|
|
if (context.in_flight) {
|
|
buf_desc_t *desc = context.in_flight;
|
|
while(desc != NULL) {
|
|
xQueueSend(context.ret_queue, desc->arg, portMAX_DELAY);
|
|
last = desc;
|
|
desc = STAILQ_NEXT(desc, qe);
|
|
}
|
|
STAILQ_NEXT(context.in_flight_end, qe) = context.in_flight_next;
|
|
sdio_ringbuf_return(&context.sendbuf, (uint8_t*)context.in_flight);
|
|
context.in_flight = NULL;
|
|
context.in_flight_end = NULL;
|
|
}
|
|
|
|
buf_desc_t *head;
|
|
esp_err_t ret = sdio_ringbuf_recv(&context.sendbuf, (uint8_t**)&head, NULL, RINGBUF_GET_ALL, 0);
|
|
if (ret == ESP_OK) {
|
|
buf_desc_t *desc = head;
|
|
while(desc != NULL) {
|
|
xQueueSend(context.ret_queue, desc->arg, portMAX_DELAY);
|
|
last = desc;
|
|
desc = STAILQ_NEXT(desc, qe);
|
|
}
|
|
sdio_ringbuf_return(&context.sendbuf, (uint8_t*)head);
|
|
}
|
|
|
|
// if in wait to send state, set the sequence number of tail to the value last sent, just as if the packet wait to
|
|
// send never queued.
|
|
// Go to idle state (cur_end!=NULL and cur_start=NULL)
|
|
send_set_state(STATE_IDLE);
|
|
|
|
if (last == NULL) last = (buf_desc_t*)sdio_ringbuf_peek_rear(&context.sendbuf);
|
|
last->pkt_len = send_length_read();
|
|
return ESP_OK;
|
|
}
|
|
|
|
//clear counter but keep data
|
|
static esp_err_t send_reset_counter()
|
|
{
|
|
SDIO_SLAVE_CHECK(send_get_state() == STATE_IDLE,
|
|
"reset counter when transmission started", ESP_ERR_INVALID_STATE);
|
|
|
|
send_length_write(0);
|
|
|
|
uint32_t last_cnt=0;
|
|
buf_desc_t *desc = context.in_flight;
|
|
buf_desc_t *last = NULL;
|
|
while(desc != NULL) {
|
|
last_cnt += desc->length;
|
|
desc->pkt_len = last_cnt;
|
|
last = desc;
|
|
desc = STAILQ_NEXT(desc, qe);
|
|
}
|
|
// in theory the desc should be the one right next to the last of in_flight,
|
|
// but the link of last is NULL, so get the desc from the ringbuf directly.
|
|
desc = (buf_desc_t*)sdio_ringbuf_peek_front(&context.sendbuf);
|
|
while(desc != NULL) {
|
|
last_cnt += desc->length;
|
|
desc->pkt_len = last_cnt;
|
|
last = desc;
|
|
desc = STAILQ_NEXT(desc, qe);
|
|
}
|
|
if (last == NULL) {
|
|
last = (buf_desc_t*)sdio_ringbuf_peek_rear(&context.sendbuf);
|
|
last->pkt_len = 0;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------
|
|
* Recv
|
|
*--------------------------------------------------------------------------*/
|
|
//strange but the registers for host->slave transfers are really called "tx*".
|
|
|
|
#define CHECK_HANDLE_IDLE(desc) do { if (desc == NULL || !desc->not_receiving) {\
|
|
return ESP_ERR_INVALID_ARG; } } while(0)
|
|
|
|
static inline void critical_enter_recv()
|
|
{
|
|
portENTER_CRITICAL(&context.recv_spinlock);
|
|
}
|
|
|
|
static inline void critical_exit_recv()
|
|
{
|
|
portEXIT_CRITICAL(&context.recv_spinlock);
|
|
}
|
|
|
|
static inline void recv_size_inc()
|
|
{
|
|
// fields wdata and inc_more should be written by the same instruction.
|
|
SLC.slc0_token1.val = FIELD_TO_VALUE2(SLC_SLC0_TOKEN1_WDATA, 1) | FIELD_TO_VALUE2(SLC_SLC0_TOKEN1_INC_MORE, 1);
|
|
}
|
|
|
|
static inline void recv_size_reset()
|
|
{
|
|
SLC.slc0_token1.val = FIELD_TO_VALUE2(SLC_SLC0_TOKEN1_WDATA, 0) | FIELD_TO_VALUE2(SLC_SLC0_TOKEN1_WR, 1);
|
|
}
|
|
|
|
static inline buf_desc_t* recv_get_first_empty_buf()
|
|
{
|
|
buf_stailq_t *const queue = &context.recv_link_list;
|
|
buf_desc_t *desc = STAILQ_FIRST(queue);
|
|
while(desc && desc->owner == 0) {
|
|
desc = STAILQ_NEXT(desc, qe);
|
|
}
|
|
return desc;
|
|
}
|
|
|
|
static esp_err_t recv_start()
|
|
{
|
|
SLC.conf0.slc0_tx_rst = 1;
|
|
SLC.conf0.slc0_tx_rst = 0;
|
|
|
|
critical_enter_recv();
|
|
buf_desc_t *desc = recv_get_first_empty_buf();
|
|
if (!desc) {
|
|
ESP_LOGD(TAG, "recv: restart without desc");
|
|
critical_exit_recv();
|
|
return ESP_OK; // if no buffer loaded, return directly.
|
|
}
|
|
//the counter is handled when add/flush/reset
|
|
SLC.slc0_tx_link.addr = (uint32_t)desc;
|
|
SLC.slc0_tx_link.start = 1;
|
|
critical_exit_recv();
|
|
|
|
SLC.slc0_int_ena.tx_done = 1;
|
|
return ESP_OK;
|
|
}
|
|
|
|
static void recv_stop()
|
|
{
|
|
SLC.slc0_tx_link.stop = 1;
|
|
SLC.slc0_int_ena.tx_done = 0;
|
|
}
|
|
|
|
// reset the counter, but keep the data
|
|
static void recv_reset_counter()
|
|
{
|
|
recv_size_reset();
|
|
|
|
critical_enter_recv();
|
|
buf_desc_t *desc = recv_get_first_empty_buf();
|
|
while (desc != NULL) {
|
|
assert(desc->owner == 1);
|
|
recv_size_inc();
|
|
desc = STAILQ_NEXT(desc, qe);
|
|
}
|
|
critical_exit_recv();
|
|
}
|
|
|
|
// remove data, still increase the counter
|
|
static void recv_flush_data()
|
|
{
|
|
buf_stailq_t *const queue = &context.recv_link_list;
|
|
|
|
critical_enter_recv();
|
|
while(1) {
|
|
portBASE_TYPE ret = xSemaphoreTake(context.recv_event, 0);
|
|
if (ret == pdFALSE) break;
|
|
|
|
buf_desc_t *desc = STAILQ_FIRST(queue);
|
|
assert (desc != NULL && desc->owner == 0);
|
|
STAILQ_REMOVE_HEAD(queue, qe);
|
|
desc->owner = 1;
|
|
STAILQ_INSERT_TAIL(queue, desc, qe);
|
|
recv_size_inc();
|
|
//we only add it to the tail here, without start the DMA nor increase buffer num.
|
|
}
|
|
critical_exit_recv();
|
|
}
|
|
|
|
static void sdio_intr_recv(void* arg)
|
|
{
|
|
portBASE_TYPE yield = 0;
|
|
if (SLC.slc0_int_raw.tx_done) {
|
|
SLC.slc0_int_clr.tx_done = 1;
|
|
while (context.recv_cur_ret && context.recv_cur_ret->owner == 0) {
|
|
// This may cause the ``cur_ret`` pointer to be NULL, indicating the list is empty,
|
|
// in this case the ``tx_done`` should happen no longer until new desc is appended.
|
|
// The app is responsible to place the pointer to the right place again when appending new desc.
|
|
context.recv_cur_ret = STAILQ_NEXT(context.recv_cur_ret, qe);
|
|
ESP_EARLY_LOGV(TAG, "intr_recv: Give");
|
|
xSemaphoreGiveFromISR(context.recv_event, &yield);
|
|
};
|
|
}
|
|
if (yield) portYIELD_FROM_ISR();
|
|
}
|
|
|
|
esp_err_t sdio_slave_recv_load_buf(sdio_slave_buf_handle_t handle)
|
|
{
|
|
buf_desc_t *desc = (buf_desc_t*)handle;
|
|
CHECK_HANDLE_IDLE(desc);
|
|
|
|
buf_stailq_t *const queue = &context.recv_link_list;
|
|
|
|
critical_enter_recv();
|
|
TAILQ_REMOVE(&context.recv_reg_list, desc, te);
|
|
desc->owner = 1;
|
|
desc->not_receiving = 0; //manually remove the prev link (by set not_receiving=0), to indicate this is in the queue
|
|
|
|
buf_desc_t *const tail = STAILQ_LAST(queue, buf_desc_s, qe);
|
|
|
|
STAILQ_INSERT_TAIL(queue, desc, qe);
|
|
if (tail == NULL || (tail->owner == 0)) {
|
|
//in this case we have to set the ret pointer
|
|
if (tail != NULL) {
|
|
/* if the owner of the tail is returned to the software, the ISR is
|
|
* expect to write this pointer to NULL in a short time, wait until
|
|
* that and set new value for this pointer
|
|
*/
|
|
while (context.recv_cur_ret != NULL) {}
|
|
}
|
|
assert(context.recv_cur_ret == NULL);
|
|
context.recv_cur_ret = desc;
|
|
}
|
|
assert(context.recv_cur_ret != NULL);
|
|
|
|
if (tail == NULL) {
|
|
//no one in the ll, start new ll operation.
|
|
SLC.slc0_tx_link.addr = (uint32_t)desc;
|
|
SLC.slc0_tx_link.start = 1;
|
|
ESP_LOGV(TAG, "recv_load_buf: start new");
|
|
} else {
|
|
//restart former ll operation
|
|
SLC.slc0_tx_link.restart = 1;
|
|
ESP_LOGV(TAG, "recv_load_buf: restart");
|
|
}
|
|
critical_exit_recv();
|
|
recv_size_inc();
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
sdio_slave_buf_handle_t sdio_slave_recv_register_buf(uint8_t *start)
|
|
{
|
|
SDIO_SLAVE_CHECK(esp_ptr_dma_capable(start) && (uint32_t)start%4==0,
|
|
"buffer to register should be DMA capable and 32-bit aligned", NULL);
|
|
buf_desc_t *desc = (buf_desc_t*)malloc(sizeof(buf_desc_t));
|
|
if (desc == NULL) {
|
|
SDIO_SLAVE_LOGE("cannot allocate lldesc for new buffer");
|
|
return NULL;
|
|
}
|
|
|
|
//initially in the reg list
|
|
*desc = (buf_desc_t) {
|
|
.size = context.config.recv_buffer_size,
|
|
.buf = start,
|
|
//no length required, eof always=0
|
|
};
|
|
critical_enter_recv();
|
|
TAILQ_INSERT_TAIL(&context.recv_reg_list, desc, te);
|
|
critical_exit_recv();
|
|
return desc;
|
|
}
|
|
|
|
esp_err_t sdio_slave_recv(sdio_slave_buf_handle_t* handle_ret, uint8_t **out_addr, size_t *out_len, TickType_t wait)
|
|
{
|
|
SDIO_SLAVE_CHECK(handle_ret != NULL, "handle address cannot be 0", ESP_ERR_INVALID_ARG);
|
|
portBASE_TYPE ret = xSemaphoreTake(context.recv_event, wait);
|
|
if (ret == pdFALSE) return ESP_ERR_TIMEOUT;
|
|
|
|
buf_stailq_t *const queue = &context.recv_link_list;
|
|
|
|
critical_enter_recv();
|
|
//remove from queue, add back to reg list.
|
|
buf_desc_t *desc = STAILQ_FIRST(queue);
|
|
STAILQ_REMOVE_HEAD(queue, qe);
|
|
TAILQ_INSERT_TAIL(&context.recv_reg_list, desc, te);
|
|
critical_exit_recv();
|
|
|
|
assert(desc != NULL && desc->owner == 0);
|
|
*handle_ret = (sdio_slave_buf_handle_t)desc;
|
|
if (out_addr) *out_addr = desc->buf;
|
|
if (out_len) *out_len = desc->length;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t sdio_slave_recv_unregister_buf(sdio_slave_buf_handle_t handle)
|
|
{
|
|
buf_desc_t *desc = (buf_desc_t*)handle;
|
|
CHECK_HANDLE_IDLE(desc); //in the queue, fail.
|
|
|
|
critical_enter_recv();
|
|
TAILQ_REMOVE(&context.recv_reg_list, desc, te);
|
|
critical_exit_recv();
|
|
free(desc);
|
|
return ESP_OK;
|
|
}
|
|
|
|
uint8_t* sdio_slave_recv_get_buf(sdio_slave_buf_handle_t handle, size_t *len_o)
|
|
{
|
|
buf_desc_t *desc = (buf_desc_t*)handle;
|
|
if (handle == NULL) return NULL;
|
|
|
|
if (len_o!= NULL) *len_o= desc->length;
|
|
return desc->buf;
|
|
}
|