OVMS3-idf/components/nvs_flash/src/nvs_page.cpp
2017-03-15 17:28:07 +08:00

871 lines
25 KiB
C++

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "nvs_page.hpp"
#if defined(ESP_PLATFORM)
#include <rom/crc.h>
#else
#include "crc.h"
#endif
#include <cstdio>
#include <cstring>
namespace nvs
{
uint32_t Page::Header::calculateCrc32()
{
return crc32_le(0xffffffff,
reinterpret_cast<uint8_t*>(this) + offsetof(Header, mSeqNumber),
offsetof(Header, mCrc32) - offsetof(Header, mSeqNumber));
}
esp_err_t Page::load(uint32_t sectorNumber)
{
mBaseAddress = sectorNumber * SEC_SIZE;
mUsedEntryCount = 0;
mErasedEntryCount = 0;
Header header;
auto rc = spi_flash_read(mBaseAddress, &header, sizeof(header));
if (rc != ESP_OK) {
mState = PageState::INVALID;
return rc;
}
if (header.mState == PageState::UNINITIALIZED) {
mState = header.mState;
// check if the whole page is really empty
// reading the whole page takes ~40 times less than erasing it
uint32_t line[8];
for (uint32_t i = 0; i < SPI_FLASH_SEC_SIZE; i += sizeof(line)) {
rc = spi_flash_read(mBaseAddress + i, line, sizeof(line));
if (rc != ESP_OK) {
mState = PageState::INVALID;
return rc;
}
if (std::any_of(line, line + 4, [](uint32_t val) -> bool { return val != 0xffffffff; })) {
// page isn't as empty after all, mark it as corrupted
mState = PageState::CORRUPT;
break;
}
}
} else if (header.mCrc32 != header.calculateCrc32()) {
header.mState = PageState::CORRUPT;
} else {
mState = header.mState;
mSeqNumber = header.mSeqNumber;
}
switch (mState) {
case PageState::UNINITIALIZED:
break;
case PageState::FULL:
case PageState::ACTIVE:
case PageState::FREEING:
mLoadEntryTable();
break;
default:
mState = PageState::CORRUPT;
break;
}
return ESP_OK;
}
esp_err_t Page::writeEntry(const Item& item)
{
auto rc = spi_flash_write(getEntryAddress(mNextFreeEntry), &item, sizeof(item));
if (rc != ESP_OK) {
mState = PageState::INVALID;
return rc;
}
auto err = alterEntryState(mNextFreeEntry, EntryState::WRITTEN);
if (err != ESP_OK) {
return err;
}
if (mFirstUsedEntry == INVALID_ENTRY) {
mFirstUsedEntry = mNextFreeEntry;
}
++mUsedEntryCount;
++mNextFreeEntry;
return ESP_OK;
}
esp_err_t Page::writeEntryData(const uint8_t* data, size_t size)
{
assert(size % ENTRY_SIZE == 0);
assert(mNextFreeEntry != INVALID_ENTRY);
assert(mFirstUsedEntry != INVALID_ENTRY);
const uint16_t count = size / ENTRY_SIZE;
const uint8_t* buf = data;
#ifdef ESP_PLATFORM
/* On the ESP32, data can come from DROM, which is not accessible by spi_flash_write
* function. To work around this, we copy the data to heap if it came from DROM.
* Hopefully this won't happen very often in practice. For data from DRAM, we should
* still be able to write it to flash directly.
* TODO: figure out how to make this platform-specific check nicer (probably by introducing
* a platform-specific flash layer).
*/
if ((uint32_t) data < 0x3ff00000) {
buf = (uint8_t*) malloc(size);
if (!buf) {
return ESP_ERR_NO_MEM;
}
memcpy((void*)buf, data, size);
}
#endif //ESP_PLATFORM
auto rc = spi_flash_write(getEntryAddress(mNextFreeEntry), buf, size);
#ifdef ESP_PLATFORM
if (buf != data) {
free((void*)buf);
}
#endif //ESP_PLATFORM
if (rc != ESP_OK) {
mState = PageState::INVALID;
return rc;
}
auto err = alterEntryRangeState(mNextFreeEntry, mNextFreeEntry + count, EntryState::WRITTEN);
if (err != ESP_OK) {
return err;
}
mUsedEntryCount += count;
mNextFreeEntry += count;
return ESP_OK;
}
esp_err_t Page::writeItem(uint8_t nsIndex, ItemType datatype, const char* key, const void* data, size_t dataSize)
{
Item item;
esp_err_t err;
if (mState == PageState::INVALID) {
return ESP_ERR_NVS_INVALID_STATE;
}
if (mState == PageState::UNINITIALIZED) {
err = initialize();
if (err != ESP_OK) {
return err;
}
}
if (mState == PageState::FULL) {
return ESP_ERR_NVS_PAGE_FULL;
}
const size_t keySize = strlen(key);
if (keySize > Item::MAX_KEY_LENGTH) {
return ESP_ERR_NVS_KEY_TOO_LONG;
}
size_t totalSize = ENTRY_SIZE;
size_t entriesCount = 1;
if (datatype == ItemType::SZ || datatype == ItemType::BLOB) {
size_t roundedSize = (dataSize + ENTRY_SIZE - 1) & ~(ENTRY_SIZE - 1);
totalSize += roundedSize;
entriesCount += roundedSize / ENTRY_SIZE;
}
// primitive types should fit into one entry
assert(totalSize == ENTRY_SIZE || datatype == ItemType::BLOB || datatype == ItemType::SZ);
if (mNextFreeEntry == INVALID_ENTRY || mNextFreeEntry + entriesCount > ENTRY_COUNT) {
// page will not fit this amount of data
return ESP_ERR_NVS_PAGE_FULL;
}
// write first item
size_t span = (totalSize + ENTRY_SIZE - 1) / ENTRY_SIZE;
item = Item(nsIndex, datatype, span, key);
mHashList.insert(item, mNextFreeEntry);
if (datatype != ItemType::SZ && datatype != ItemType::BLOB) {
memcpy(item.data, data, dataSize);
item.crc32 = item.calculateCrc32();
err = writeEntry(item);
if (err != ESP_OK) {
return err;
}
} else {
const uint8_t* src = reinterpret_cast<const uint8_t*>(data);
item.varLength.dataCrc32 = Item::calculateCrc32(src, dataSize);
item.varLength.dataSize = dataSize;
item.varLength.reserved2 = 0xffff;
item.crc32 = item.calculateCrc32();
err = writeEntry(item);
if (err != ESP_OK) {
return err;
}
size_t left = dataSize / ENTRY_SIZE * ENTRY_SIZE;
if (left > 0) {
err = writeEntryData(static_cast<const uint8_t*>(data), left);
if (err != ESP_OK) {
return err;
}
}
size_t tail = dataSize - left;
if (tail > 0) {
std::fill_n(item.rawData, ENTRY_SIZE / 4, 0xffffffff);
memcpy(item.rawData, static_cast<const uint8_t*>(data) + left, tail);
err = writeEntry(item);
if (err != ESP_OK) {
return err;
}
}
}
return ESP_OK;
}
esp_err_t Page::readItem(uint8_t nsIndex, ItemType datatype, const char* key, void* data, size_t dataSize)
{
size_t index = 0;
Item item;
if (mState == PageState::INVALID) {
return ESP_ERR_NVS_INVALID_STATE;
}
esp_err_t rc = findItem(nsIndex, datatype, key, index, item);
if (rc != ESP_OK) {
return rc;
}
if (datatype != ItemType::SZ && datatype != ItemType::BLOB) {
if (dataSize != getAlignmentForType(datatype)) {
return ESP_ERR_NVS_TYPE_MISMATCH;
}
memcpy(data, item.data, dataSize);
return ESP_OK;
}
if (dataSize < static_cast<size_t>(item.varLength.dataSize)) {
return ESP_ERR_NVS_INVALID_LENGTH;
}
uint8_t* dst = reinterpret_cast<uint8_t*>(data);
size_t left = item.varLength.dataSize;
for (size_t i = index + 1; i < index + item.span; ++i) {
Item ditem;
rc = readEntry(i, ditem);
if (rc != ESP_OK) {
return rc;
}
size_t willCopy = ENTRY_SIZE;
willCopy = (left < willCopy)?left:willCopy;
memcpy(dst, ditem.rawData, willCopy);
left -= willCopy;
dst += willCopy;
}
if (Item::calculateCrc32(reinterpret_cast<uint8_t*>(data), item.varLength.dataSize) != item.varLength.dataCrc32) {
rc = eraseEntryAndSpan(index);
if (rc != ESP_OK) {
return rc;
}
return ESP_ERR_NVS_NOT_FOUND;
}
return ESP_OK;
}
esp_err_t Page::eraseItem(uint8_t nsIndex, ItemType datatype, const char* key)
{
size_t index = 0;
Item item;
esp_err_t rc = findItem(nsIndex, datatype, key, index, item);
if (rc != ESP_OK) {
return rc;
}
if (CachedFindInfo(nsIndex, datatype, key) == mFindInfo) {
invalidateCache();
}
return eraseEntryAndSpan(index);
}
esp_err_t Page::findItem(uint8_t nsIndex, ItemType datatype, const char* key)
{
size_t index = 0;
Item item;
return findItem(nsIndex, datatype, key, index, item);
}
esp_err_t Page::eraseEntryAndSpan(size_t index)
{
auto state = mEntryTable.get(index);
assert(state == EntryState::WRITTEN || state == EntryState::EMPTY);
mHashList.erase(index);
size_t span = 1;
if (state == EntryState::WRITTEN) {
Item item;
auto rc = readEntry(index, item);
if (rc != ESP_OK) {
return rc;
}
if (item.calculateCrc32() != item.crc32) {
rc = alterEntryState(index, EntryState::ERASED);
--mUsedEntryCount;
++mErasedEntryCount;
if (rc != ESP_OK) {
return rc;
}
} else {
span = item.span;
for (ptrdiff_t i = index + span - 1; i >= static_cast<ptrdiff_t>(index); --i) {
if (mEntryTable.get(i) == EntryState::WRITTEN) {
--mUsedEntryCount;
}
++mErasedEntryCount;
}
if (span == 1) {
rc = alterEntryState(index, EntryState::ERASED);
} else {
rc = alterEntryRangeState(index, index + span, EntryState::ERASED);
}
if (rc != ESP_OK) {
return rc;
}
}
} else {
auto rc = alterEntryState(index, EntryState::ERASED);
if (rc != ESP_OK) {
return rc;
}
}
if (index == mFirstUsedEntry) {
updateFirstUsedEntry(index, span);
}
if (index + span > mNextFreeEntry) {
mNextFreeEntry = index + span;
}
return ESP_OK;
}
void Page::updateFirstUsedEntry(size_t index, size_t span)
{
assert(index == mFirstUsedEntry);
mFirstUsedEntry = INVALID_ENTRY;
size_t end = mNextFreeEntry;
if (end > ENTRY_COUNT) {
end = ENTRY_COUNT;
}
for (size_t i = index + span; i < end; ++i) {
if (mEntryTable.get(i) == EntryState::WRITTEN) {
mFirstUsedEntry = i;
break;
}
}
}
esp_err_t Page::moveItem(Page& other)
{
if (mFirstUsedEntry == INVALID_ENTRY) {
return ESP_ERR_NVS_NOT_FOUND;
}
if (mFindInfo.itemIndex() == mFirstUsedEntry) {
invalidateCache();
}
if (other.mState == PageState::UNINITIALIZED) {
auto err = other.initialize();
if (err != ESP_OK) {
return err;
}
}
Item entry;
auto err = readEntry(mFirstUsedEntry, entry);
if (err != ESP_OK) {
return err;
}
other.mHashList.insert(entry, other.mNextFreeEntry);
err = other.writeEntry(entry);
if (err != ESP_OK) {
return err;
}
size_t span = entry.span;
size_t end = mFirstUsedEntry + span;
assert(mFirstUsedEntry != INVALID_ENTRY || span == 1);
for (size_t i = mFirstUsedEntry + 1; i < end; ++i) {
readEntry(i, entry);
err = other.writeEntry(entry);
if (err != ESP_OK) {
return err;
}
}
return eraseEntryAndSpan(mFirstUsedEntry);
}
esp_err_t Page::mLoadEntryTable()
{
// for states where we actually care about data in the page, read entry state table
if (mState == PageState::ACTIVE ||
mState == PageState::FULL ||
mState == PageState::FREEING) {
auto rc = spi_flash_read(mBaseAddress + ENTRY_TABLE_OFFSET, mEntryTable.data(),
mEntryTable.byteSize());
if (rc != ESP_OK) {
mState = PageState::INVALID;
return rc;
}
}
mErasedEntryCount = 0;
mUsedEntryCount = 0;
for (size_t i = 0; i < ENTRY_COUNT; ++i) {
auto s = mEntryTable.get(i);
if (s == EntryState::WRITTEN) {
if (mFirstUsedEntry == INVALID_ENTRY) {
mFirstUsedEntry = i;
}
++mUsedEntryCount;
} else if (s == EntryState::ERASED) {
++mErasedEntryCount;
}
}
// for PageState::ACTIVE, we may have more data written to this page
// as such, we need to figure out where the first unused entry is
if (mState == PageState::ACTIVE) {
for (size_t i = 0; i < ENTRY_COUNT; ++i) {
if (mEntryTable.get(i) == EntryState::EMPTY) {
mNextFreeEntry = i;
break;
}
}
// however, if power failed after some data was written into the entry.
// but before the entry state table was altered, the entry locacted via
// entry state table may actually be half-written.
// this is easy to check by reading EntryHeader (i.e. first word)
while (mNextFreeEntry < ENTRY_COUNT) {
uint32_t entryAddress = getEntryAddress(mNextFreeEntry);
uint32_t header;
auto rc = spi_flash_read(entryAddress, &header, sizeof(header));
if (rc != ESP_OK) {
mState = PageState::INVALID;
return rc;
}
if (header != 0xffffffff) {
auto oldState = mEntryTable.get(mNextFreeEntry);
auto err = alterEntryState(mNextFreeEntry, EntryState::ERASED);
if (err != ESP_OK) {
mState = PageState::INVALID;
return err;
}
++mNextFreeEntry;
if (oldState == EntryState::WRITTEN) {
--mUsedEntryCount;
}
++mErasedEntryCount;
}
else {
break;
}
}
// check that all variable-length items are written or erased fully
Item item;
size_t lastItemIndex = INVALID_ENTRY;
size_t end = mNextFreeEntry;
if (end > ENTRY_COUNT) {
end = ENTRY_COUNT;
}
size_t span;
for (size_t i = 0; i < end; i += span) {
span = 1;
if (mEntryTable.get(i) == EntryState::ERASED) {
lastItemIndex = INVALID_ENTRY;
continue;
}
lastItemIndex = i;
auto err = readEntry(i, item);
if (err != ESP_OK) {
mState = PageState::INVALID;
return err;
}
mHashList.insert(item, i);
// search for potential duplicate item
size_t duplicateIndex = mHashList.find(0, item);
if (item.crc32 != item.calculateCrc32()) {
err = eraseEntryAndSpan(i);
if (err != ESP_OK) {
mState = PageState::INVALID;
return err;
}
continue;
}
if (item.datatype == ItemType::BLOB || item.datatype == ItemType::SZ) {
span = item.span;
bool needErase = false;
for (size_t j = i; j < i + span; ++j) {
if (mEntryTable.get(j) != EntryState::WRITTEN) {
needErase = true;
lastItemIndex = INVALID_ENTRY;
break;
}
}
if (needErase) {
eraseEntryAndSpan(i);
continue;
}
}
if (duplicateIndex < i) {
eraseEntryAndSpan(duplicateIndex);
}
}
// check that last item is not duplicate
if (lastItemIndex != INVALID_ENTRY) {
size_t findItemIndex = 0;
Item dupItem;
if (findItem(item.nsIndex, item.datatype, item.key, findItemIndex, dupItem) == ESP_OK) {
if (findItemIndex < lastItemIndex) {
auto err = eraseEntryAndSpan(findItemIndex);
if (err != ESP_OK) {
mState = PageState::INVALID;
return err;
}
}
}
}
} else if (mState == PageState::FULL || mState == PageState::FREEING) {
// We have already filled mHashList for page in active state.
// Do the same for the case when page is in full or freeing state.
Item item;
for (size_t i = mFirstUsedEntry; i < ENTRY_COUNT; ++i) {
if (mEntryTable.get(i) != EntryState::WRITTEN) {
continue;
}
auto err = readEntry(i, item);
if (err != ESP_OK) {
mState = PageState::INVALID;
return err;
}
mHashList.insert(item, i);
size_t span = item.span;
i += span - 1;
}
}
return ESP_OK;
}
esp_err_t Page::initialize()
{
assert(mState == PageState::UNINITIALIZED);
mState = PageState::ACTIVE;
Header header;
header.mState = mState;
header.mSeqNumber = mSeqNumber;
header.mCrc32 = header.calculateCrc32();
auto rc = spi_flash_write(mBaseAddress, &header, sizeof(header));
if (rc != ESP_OK) {
mState = PageState::INVALID;
return rc;
}
mNextFreeEntry = 0;
std::fill_n(mEntryTable.data(), mEntryTable.byteSize() / sizeof(uint32_t), 0xffffffff);
invalidateCache();
return ESP_OK;
}
esp_err_t Page::alterEntryState(size_t index, EntryState state)
{
assert(index < ENTRY_COUNT);
mEntryTable.set(index, state);
size_t wordToWrite = mEntryTable.getWordIndex(index);
uint32_t word = mEntryTable.data()[wordToWrite];
auto rc = spi_flash_write(mBaseAddress + ENTRY_TABLE_OFFSET + static_cast<uint32_t>(wordToWrite) * 4,
&word, sizeof(word));
if (rc != ESP_OK) {
mState = PageState::INVALID;
return rc;
}
return ESP_OK;
}
esp_err_t Page::alterEntryRangeState(size_t begin, size_t end, EntryState state)
{
assert(end <= ENTRY_COUNT);
assert(end > begin);
size_t wordIndex = mEntryTable.getWordIndex(end - 1);
for (ptrdiff_t i = end - 1; i >= static_cast<ptrdiff_t>(begin); --i) {
mEntryTable.set(i, state);
size_t nextWordIndex;
if (i == static_cast<ptrdiff_t>(begin)) {
nextWordIndex = (size_t) -1;
} else {
nextWordIndex = mEntryTable.getWordIndex(i - 1);
}
if (nextWordIndex != wordIndex) {
uint32_t word = mEntryTable.data()[wordIndex];
auto rc = spi_flash_write(mBaseAddress + ENTRY_TABLE_OFFSET + static_cast<uint32_t>(wordIndex) * 4,
&word, 4);
if (rc != ESP_OK) {
return rc;
}
}
wordIndex = nextWordIndex;
}
return ESP_OK;
}
esp_err_t Page::alterPageState(PageState state)
{
uint32_t state_val = static_cast<uint32_t>(state);
auto rc = spi_flash_write(mBaseAddress, &state_val, sizeof(state));
if (rc != ESP_OK) {
mState = PageState::INVALID;
return rc;
}
mState = (PageState) state;
return ESP_OK;
}
esp_err_t Page::readEntry(size_t index, Item& dst) const
{
auto rc = spi_flash_read(getEntryAddress(index), &dst, sizeof(dst));
if (rc != ESP_OK) {
return rc;
}
return ESP_OK;
}
esp_err_t Page::findItem(uint8_t nsIndex, ItemType datatype, const char* key, size_t &itemIndex, Item& item)
{
if (mState == PageState::CORRUPT || mState == PageState::INVALID || mState == PageState::UNINITIALIZED) {
return ESP_ERR_NVS_NOT_FOUND;
}
size_t findBeginIndex = itemIndex;
if (findBeginIndex >= ENTRY_COUNT) {
return ESP_ERR_NVS_NOT_FOUND;
}
CachedFindInfo findInfo(nsIndex, datatype, key);
if (mFindInfo == findInfo) {
findBeginIndex = mFindInfo.itemIndex();
}
size_t start = mFirstUsedEntry;
if (findBeginIndex > mFirstUsedEntry && findBeginIndex < ENTRY_COUNT) {
start = findBeginIndex;
}
size_t end = mNextFreeEntry;
if (end > ENTRY_COUNT) {
end = ENTRY_COUNT;
}
if (nsIndex != NS_ANY && datatype != ItemType::ANY && key != NULL) {
size_t cachedIndex = mHashList.find(start, Item(nsIndex, datatype, 0, key));
if (cachedIndex < ENTRY_COUNT) {
start = cachedIndex;
} else {
return ESP_ERR_NVS_NOT_FOUND;
}
}
size_t next;
for (size_t i = start; i < end; i = next) {
next = i + 1;
if (mEntryTable.get(i) != EntryState::WRITTEN) {
continue;
}
auto rc = readEntry(i, item);
if (rc != ESP_OK) {
mState = PageState::INVALID;
return rc;
}
auto crc32 = item.calculateCrc32();
if (item.crc32 != crc32) {
eraseEntryAndSpan(i);
continue;
}
if (item.datatype == ItemType::BLOB || item.datatype == ItemType::SZ) {
next = i + item.span;
}
if (nsIndex != NS_ANY && item.nsIndex != nsIndex) {
continue;
}
if (key != nullptr && strncmp(key, item.key, Item::MAX_KEY_LENGTH) != 0) {
continue;
}
if (datatype != ItemType::ANY && item.datatype != datatype) {
return ESP_ERR_NVS_TYPE_MISMATCH;
}
itemIndex = i;
findInfo.setItemIndex(static_cast<uint32_t>(itemIndex));
mFindInfo = findInfo;
return ESP_OK;
}
return ESP_ERR_NVS_NOT_FOUND;
}
esp_err_t Page::getSeqNumber(uint32_t& seqNumber) const
{
if (mState != PageState::UNINITIALIZED && mState != PageState::INVALID && mState != PageState::CORRUPT) {
seqNumber = mSeqNumber;
return ESP_OK;
}
return ESP_ERR_NVS_NOT_INITIALIZED;
}
esp_err_t Page::setSeqNumber(uint32_t seqNumber)
{
if (mState != PageState::UNINITIALIZED) {
return ESP_ERR_NVS_INVALID_STATE;
}
mSeqNumber = seqNumber;
return ESP_OK;
}
esp_err_t Page::erase()
{
auto sector = mBaseAddress / SPI_FLASH_SEC_SIZE;
auto rc = spi_flash_erase_sector(sector);
if (rc != ESP_OK) {
mState = PageState::INVALID;
return rc;
}
mUsedEntryCount = 0;
mErasedEntryCount = 0;
mFirstUsedEntry = INVALID_ENTRY;
mNextFreeEntry = INVALID_ENTRY;
mState = PageState::UNINITIALIZED;
mHashList.clear();
return ESP_OK;
}
esp_err_t Page::markFreeing()
{
if (mState != PageState::FULL && mState != PageState::ACTIVE) {
return ESP_ERR_NVS_INVALID_STATE;
}
return alterPageState(PageState::FREEING);
}
esp_err_t Page::markFull()
{
if (mState != PageState::ACTIVE) {
return ESP_ERR_NVS_INVALID_STATE;
}
return alterPageState(PageState::FULL);
}
void Page::invalidateCache()
{
mFindInfo = CachedFindInfo();
}
const char* Page::pageStateToName(PageState ps)
{
switch (ps) {
case PageState::CORRUPT:
return "CORRUPT";
case PageState::ACTIVE:
return "ACTIVE";
case PageState::FREEING:
return "FREEING";
case PageState::FULL:
return "FULL";
case PageState::INVALID:
return "INVALID";
case PageState::UNINITIALIZED:
return "UNINITIALIZED";
default:
assert(0 && "invalid state value");
return "";
}
}
void Page::debugDump() const
{
printf("state=%x (%s) addr=%x seq=%d\nfirstUsed=%d nextFree=%d used=%d erased=%d\n", (uint32_t) mState, pageStateToName(mState), mBaseAddress, mSeqNumber, static_cast<int>(mFirstUsedEntry), static_cast<int>(mNextFreeEntry), mUsedEntryCount, mErasedEntryCount);
size_t skip = 0;
for (size_t i = 0; i < ENTRY_COUNT; ++i) {
printf("%3d: ", static_cast<int>(i));
EntryState state = mEntryTable.get(i);
if (state == EntryState::EMPTY) {
printf("E\n");
} else if (state == EntryState::ERASED) {
printf("X\n");
} else if (state == EntryState::WRITTEN) {
Item item;
readEntry(i, item);
if (skip == 0) {
printf("W ns=%2u type=%2u span=%3u key=\"%s\" len=%d\n", item.nsIndex, static_cast<unsigned>(item.datatype), item.span, item.key, (item.span != 1)?((int)item.varLength.dataSize):-1);
if (item.span > 0 && item.span <= ENTRY_COUNT - i) {
skip = item.span - 1;
} else {
skip = 0;
}
} else {
printf("D\n");
skip--;
}
}
}
}
} // namespace nvs