OVMS3-idf/components/bootloader/src/main/bootloader_start.c

582 lines
20 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdint.h>
#include <limits.h>
#include "esp_attr.h"
#include "esp_log.h"
#include "rom/cache.h"
#include "rom/ets_sys.h"
#include "rom/spi_flash.h"
#include "rom/crc.h"
#include "rom/rtc.h"
#include "soc/soc.h"
#include "soc/cpu.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_reg.h"
#include "sdkconfig.h"
#include "esp_image_format.h"
#include "bootloader_flash.h"
#include "bootloader_config.h"
extern int _bss_start;
extern int _bss_end;
static const char* TAG = "boot";
/*
We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
flash cache is down and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
*/
// TODO: make a nice header file for ROM functions instead of adding externs all over the place
extern void Cache_Flush(int);
void bootloader_main();
static void unpack_load_app(const esp_partition_pos_t *app_node);
void print_flash_info(const esp_image_header_t* pfhdr);
void IRAM_ATTR set_cache_and_start_app(uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr);
static void update_flash_config(const esp_image_header_t* pfhdr);
void IRAM_ATTR call_start_cpu0()
{
cpu_configure_region_protection();
//Clear bss
memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
/* completely reset MMU for both CPUs
(in case serial bootloader was running) */
Cache_Read_Disable(0);
Cache_Read_Disable(1);
Cache_Flush(0);
Cache_Flush(1);
mmu_init(0);
REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
mmu_init(1);
REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
/* (above steps probably unnecessary for most serial bootloader
usage, all that's absolutely needed is that we unmask DROM0
cache on the following two lines - normal ROM boot exits with
DROM0 cache unmasked, but serial bootloader exits with it
masked. However can't hurt to be thorough and reset
everything.)
The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are
necessary to work around a hardware bug.
*/
REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0);
REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0);
bootloader_main();
}
/**
* @function : load_partition_table
* @description: Parse partition table, get useful data such as location of
* OTA info sector, factory app sector, and test app sector.
*
* @inputs: bs bootloader state structure used to save the data
* addr address of partition table in flash
* @return: return true, if the partition table is loaded (and MD5 checksum is valid)
*
*/
bool load_partition_table(bootloader_state_t* bs, uint32_t addr)
{
const esp_partition_info_t *partitions;
const int PARTITION_TABLE_SIZE = 0x1000;
const int MAX_PARTITIONS = PARTITION_TABLE_SIZE / sizeof(esp_partition_info_t);
char *partition_usage;
ESP_LOGI(TAG, "Partition Table:");
ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
partitions = bootloader_mmap(addr, 0x1000);
if (!partitions) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", addr, 0x1000);
return false;
}
ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", addr, (intptr_t)partitions);
for(int i = 0; i < MAX_PARTITIONS; i++) {
const esp_partition_info_t *partition = &partitions[i];
ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
partition_usage = "unknown";
if (partition->magic != ESP_PARTITION_MAGIC) {
/* invalid partition definition indicates end-of-table */
break;
}
/* valid partition table */
switch(partition->type) {
case PART_TYPE_APP: /* app partition */
switch(partition->subtype) {
case PART_SUBTYPE_FACTORY: /* factory binary */
bs->factory = partition->pos;
partition_usage = "factory app";
break;
case PART_SUBTYPE_TEST: /* test binary */
bs->test = partition->pos;
partition_usage = "test app";
break;
default:
/* OTA binary */
if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
++bs->app_count;
partition_usage = "OTA app";
}
else {
partition_usage = "Unknown app";
}
break;
}
break; /* PART_TYPE_APP */
case PART_TYPE_DATA: /* data partition */
switch(partition->subtype) {
case PART_SUBTYPE_DATA_OTA: /* ota data */
bs->ota_info = partition->pos;
partition_usage = "OTA data";
break;
case PART_SUBTYPE_DATA_RF:
partition_usage = "RF data";
break;
case PART_SUBTYPE_DATA_WIFI:
partition_usage = "WiFi data";
break;
default:
partition_usage = "Unknown data";
break;
}
break; /* PARTITION_USAGE_DATA */
default: /* other partition type */
break;
}
/* print partition type info */
ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
partition->type, partition->subtype,
partition->pos.offset, partition->pos.size);
}
bootloader_unmap(partitions);
ESP_LOGI(TAG,"End of partition table");
return true;
}
static uint32_t ota_select_crc(const esp_ota_select_entry_t *s)
{
return crc32_le(UINT32_MAX, (uint8_t*)&s->ota_seq, 4);
}
static bool ota_select_valid(const esp_ota_select_entry_t *s)
{
return s->ota_seq != UINT32_MAX && s->crc == ota_select_crc(s);
}
/**
* @function : bootloader_main
* @description: entry function of 2nd bootloader
*
* @inputs: void
*/
void bootloader_main()
{
ESP_LOGI(TAG, "Espressif ESP32 2nd stage bootloader v. %s", BOOT_VERSION);
esp_image_header_t fhdr;
bootloader_state_t bs;
SpiFlashOpResult spiRet1,spiRet2;
esp_ota_select_entry_t sa,sb;
const esp_ota_select_entry_t *ota_select_map;
memset(&bs, 0, sizeof(bs));
ESP_LOGI(TAG, "compile time " __TIME__ );
/* disable watch dog here */
REG_CLR_BIT( RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN );
REG_CLR_BIT( TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN );
SPIUnlock();
if(esp_image_load_header(0x1000, &fhdr) != ESP_OK) {
ESP_LOGE(TAG, "failed to load bootloader header!");
return;
}
print_flash_info(&fhdr);
update_flash_config(&fhdr);
if (!load_partition_table(&bs, ESP_PARTITION_TABLE_ADDR)) {
ESP_LOGE(TAG, "load partition table error!");
return;
}
esp_partition_pos_t load_part_pos;
if (bs.ota_info.offset != 0) { // check if partition table has OTA info partition
//ESP_LOGE("OTA info sector handling is not implemented");
if (bs.ota_info.size < 2 * sizeof(esp_ota_select_entry_t)) {
ESP_LOGE(TAG, "ERROR: ota_info partition size %d is too small (minimum %d bytes)", bs.ota_info.size, sizeof(esp_ota_select_entry_t));
return;
}
ota_select_map = bootloader_mmap(bs.ota_info.offset, bs.ota_info.size);
if (!ota_select_map) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", bs.ota_info.offset, bs.ota_info.size);
return;
}
sa = ota_select_map[0];
sb = ota_select_map[1];
bootloader_unmap(ota_select_map);
if(sa.ota_seq == 0xFFFFFFFF && sb.ota_seq == 0xFFFFFFFF) {
// init status flash
load_part_pos = bs.ota[0];
sa.ota_seq = 0x01;
sa.crc = ota_select_crc(&sa);
sb.ota_seq = 0x00;
sb.crc = ota_select_crc(&sb);
Cache_Read_Disable(0);
spiRet1 = SPIEraseSector(bs.ota_info.offset/0x1000);
spiRet2 = SPIEraseSector(bs.ota_info.offset/0x1000+1);
if (spiRet1 != SPI_FLASH_RESULT_OK || spiRet2 != SPI_FLASH_RESULT_OK ) {
ESP_LOGE(TAG, SPI_ERROR_LOG);
return;
}
spiRet1 = SPIWrite(bs.ota_info.offset,(uint32_t *)&sa,sizeof(esp_ota_select_entry_t));
spiRet2 = SPIWrite(bs.ota_info.offset + 0x1000,(uint32_t *)&sb,sizeof(esp_ota_select_entry_t));
if (spiRet1 != SPI_FLASH_RESULT_OK || spiRet2 != SPI_FLASH_RESULT_OK ) {
ESP_LOGE(TAG, SPI_ERROR_LOG);
return;
}
Cache_Read_Enable(0);
//TODO:write data in ota info
} else {
if(ota_select_valid(&sa) && ota_select_valid(&sb)) {
load_part_pos = bs.ota[(((sa.ota_seq > sb.ota_seq)?sa.ota_seq:sb.ota_seq) - 1)%bs.app_count];
}else if(ota_select_valid(&sa)) {
load_part_pos = bs.ota[(sa.ota_seq - 1) % bs.app_count];
}else if(ota_select_valid(&sb)) {
load_part_pos = bs.ota[(sb.ota_seq - 1) % bs.app_count];
}else {
ESP_LOGE(TAG, "ota data partition info error");
return;
}
}
} else if (bs.factory.offset != 0) { // otherwise, look for factory app partition
load_part_pos = bs.factory;
} else if (bs.test.offset != 0) { // otherwise, look for test app parition
load_part_pos = bs.test;
} else { // nothing to load, bail out
ESP_LOGE(TAG, "nothing to load");
return;
}
ESP_LOGI(TAG, "Loading app partition at offset %08x", load_part_pos);
if(fhdr.secure_boot_flag == 0x01) {
/* Generate secure digest from this bootloader to protect future
modifications */
if (secure_boot_generate_bootloader_digest() == false){
ESP_LOGE(TAG, "Bootloader digest generation failed. SECURE BOOT IS NOT ENABLED.");
/* Allow booting to continue, as the failure is probably
due to user-configured EFUSEs for testing...
*/
}
}
if(fhdr.encrypt_flag == 0x01) {
/* encrypt flash */
if (false == flash_encrypt(&bs)) {
ESP_LOGE(TAG, "flash encrypt failed");
return;
}
}
// copy sections to RAM, set up caches, and start application
unpack_load_app(&load_part_pos);
}
static void unpack_load_app(const esp_partition_pos_t* partition)
{
esp_image_header_t image_header;
if (esp_image_load_header(partition->offset, &image_header) != ESP_OK) {
ESP_LOGE(TAG, "Failed to load app image header @ 0x%x", partition->offset);
return;
}
uint32_t drom_addr = 0;
uint32_t drom_load_addr = 0;
uint32_t drom_size = 0;
uint32_t irom_addr = 0;
uint32_t irom_load_addr = 0;
uint32_t irom_size = 0;
/* Reload the RTC memory sections whenever a non-deepsleep reset
is occurring */
bool load_rtc_memory = rtc_get_reset_reason(0) != DEEPSLEEP_RESET;
ESP_LOGD(TAG, "bin_header: %u %u %u %u %08x", image_header.magic,
image_header.segment_count,
image_header.spi_mode,
image_header.spi_size,
(unsigned)image_header.entry_addr);
for (int segment = 0; segment < image_header.segment_count; segment++) {
esp_image_segment_header_t segment_header;
uint32_t data_offs;
if(esp_image_load_segment_header(segment, partition->offset,
&image_header, &segment_header,
&data_offs) != ESP_OK) {
ESP_LOGE(TAG, "failed to load segment header #%d", segment);
return;
}
const uint32_t address = segment_header.load_addr;
bool load = true;
bool map = false;
if (address == 0x00000000) { // padding, ignore block
load = false;
}
if (address == 0x00000004) {
load = false; // md5 checksum block
// TODO: actually check md5
}
if (address >= DROM_LOW && address < DROM_HIGH) {
ESP_LOGD(TAG, "found drom section, map from %08x to %08x", data_offs,
segment_header.load_addr);
drom_addr = data_offs;
drom_load_addr = segment_header.load_addr;
drom_size = segment_header.data_len + sizeof(segment_header);
load = false;
map = true;
}
if (address >= IROM_LOW && address < IROM_HIGH) {
ESP_LOGD(TAG, "found irom section, map from %08x to %08x", data_offs,
segment_header.load_addr);
irom_addr = data_offs;
irom_load_addr = segment_header.load_addr;
irom_size = segment_header.data_len + sizeof(segment_header);
load = false;
map = true;
}
if (!load_rtc_memory && address >= RTC_IRAM_LOW && address < RTC_IRAM_HIGH) {
ESP_LOGD(TAG, "Skipping RTC code section at %08x\n", data_offs);
load = false;
}
if (!load_rtc_memory && address >= RTC_DATA_LOW && address < RTC_DATA_HIGH) {
ESP_LOGD(TAG, "Skipping RTC data section at %08x\n", data_offs);
load = false;
}
ESP_LOGI(TAG, "segment %d: paddr=0x%08x vaddr=0x%08x size=0x%05x (%6d) %s", segment, data_offs - sizeof(esp_image_segment_header_t),
segment_header.load_addr, segment_header.data_len, segment_header.data_len, (load)?"load":(map)?"map":"");
if (load) {
const void *data = bootloader_mmap(data_offs, segment_header.data_len);
if(!data) {
ESP_LOGE(TAG, "bootloader_mmap(0x%xc, 0x%x) failed",
data_offs, segment_header.data_len);
return;
}
memcpy((void *)segment_header.load_addr, data, segment_header.data_len);
bootloader_unmap(data);
}
}
set_cache_and_start_app(drom_addr,
drom_load_addr,
drom_size,
irom_addr,
irom_load_addr,
irom_size,
image_header.entry_addr);
}
void IRAM_ATTR set_cache_and_start_app(
uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr)
{
ESP_LOGD(TAG, "configure drom and irom and start");
Cache_Read_Disable( 0 );
Cache_Read_Disable( 1 );
Cache_Flush( 0 );
Cache_Flush( 1 );
uint32_t drom_page_count = (drom_size + 64*1024 - 1) / (64*1024); // round up to 64k
ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d", drom_addr & 0xffff0000, drom_load_addr & 0xffff0000, drom_size, drom_page_count );
int rc = cache_flash_mmu_set( 0, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
rc = cache_flash_mmu_set( 1, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
uint32_t irom_page_count = (irom_size + 64*1024 - 1) / (64*1024); // round up to 64k
ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d", irom_addr & 0xffff0000, irom_load_addr & 0xffff0000, irom_size, irom_page_count );
rc = cache_flash_mmu_set( 0, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
rc = cache_flash_mmu_set( 1, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 );
REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG, (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) | (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 );
Cache_Read_Enable( 0 );
Cache_Read_Enable( 1 );
ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
typedef void (*entry_t)(void);
entry_t entry = ((entry_t) entry_addr);
// TODO: we have used quite a bit of stack at this point.
// use "movsp" instruction to reset stack back to where ROM stack starts.
(*entry)();
}
static void update_flash_config(const esp_image_header_t* pfhdr)
{
uint32_t size;
switch(pfhdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
size = 1;
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
size = 2;
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
size = 4;
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
size = 8;
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
size = 16;
break;
default:
size = 2;
}
Cache_Read_Disable( 0 );
// Set flash chip size
SPIParamCfg(g_rom_flashchip.deviceId, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff);
// TODO: set mode
// TODO: set frequency
Cache_Flush(0);
Cache_Read_Enable( 0 );
}
void print_flash_info(const esp_image_header_t* phdr)
{
#if (BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE)
ESP_LOGD(TAG, "magic %02x", phdr->magic );
ESP_LOGD(TAG, "segments %02x", phdr->segment_count );
ESP_LOGD(TAG, "spi_mode %02x", phdr->spi_mode );
ESP_LOGD(TAG, "spi_speed %02x", phdr->spi_speed );
ESP_LOGD(TAG, "spi_size %02x", phdr->spi_size );
const char* str;
switch ( phdr->spi_speed ) {
case ESP_IMAGE_SPI_SPEED_40M:
str = "40MHz";
break;
case ESP_IMAGE_SPI_SPEED_26M:
str = "26.7MHz";
break;
case ESP_IMAGE_SPI_SPEED_20M:
str = "20MHz";
break;
case ESP_IMAGE_SPI_SPEED_80M:
str = "80MHz";
break;
default:
str = "20MHz";
break;
}
ESP_LOGI(TAG, "SPI Speed : %s", str );
switch ( phdr->spi_mode ) {
case ESP_IMAGE_SPI_MODE_QIO:
str = "QIO";
break;
case ESP_IMAGE_SPI_MODE_QOUT:
str = "QOUT";
break;
case ESP_IMAGE_SPI_MODE_DIO:
str = "DIO";
break;
case ESP_IMAGE_SPI_MODE_DOUT:
str = "DOUT";
break;
case ESP_IMAGE_SPI_MODE_FAST_READ:
str = "FAST READ";
break;
case ESP_IMAGE_SPI_MODE_SLOW_READ:
str = "SLOW READ";
break;
default:
str = "DIO";
break;
}
ESP_LOGI(TAG, "SPI Mode : %s", str );
switch ( phdr->spi_size ) {
case ESP_IMAGE_FLASH_SIZE_1MB:
str = "1MB";
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
str = "2MB";
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
str = "4MB";
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
str = "8MB";
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
str = "16MB";
break;
default:
str = "2MB";
break;
}
ESP_LOGI(TAG, "SPI Flash Size : %s", str );
#endif
}