OVMS3-idf/components/esp32/system_api_esp32.c
houwenxiang 46713a5275 driver(uart): fix uart module reset issue
On ESP32, due to fifo reset issue, UART2 will work incorrectly if reset the fifo of UART1(TX fifo and RX fifo). The software can workaround the RX fifo reset issue,

        while the TX fifo reset issue can not. When UART2 is used and UART1 is used as the log output port, a software reset can reproduce this issue. So we should reset the UART memory

        before the software reset to solve this problem.
2020-06-01 11:01:26 +08:00

165 lines
5.9 KiB
C

// Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "esp_system.h"
#include "esp_private/system_internal.h"
#include "esp_attr.h"
#include "esp_efuse.h"
#include "esp_wifi.h"
#include "esp_log.h"
#include "sdkconfig.h"
#include "esp32/rom/efuse.h"
#include "esp32/rom/cache.h"
#include "esp32/rom/uart.h"
#include "soc/dport_reg.h"
#include "soc/gpio_periph.h"
#include "soc/efuse_periph.h"
#include "soc/rtc_periph.h"
#include "soc/timer_periph.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "hal/wdt_hal.h"
#include "freertos/xtensa_api.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/cache_err_int.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/cache_err_int.h"
#endif
/* "inner" restart function for after RTOS, interrupts & anything else on this
* core are already stopped. Stalls other core, resets hardware,
* triggers restart.
*/
void IRAM_ATTR esp_restart_noos(void)
{
// Disable interrupts
xt_ints_off(0xFFFFFFFF);
// Enable RTC watchdog for 1 second
wdt_hal_context_t rtc_wdt_ctx;
wdt_hal_init(&rtc_wdt_ctx, WDT_RWDT, 0, false);
uint32_t stage_timeout_ticks = (uint32_t)(1000ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_SYSTEM);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE1, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_set_flashboot_en(&rtc_wdt_ctx, true);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
// Reset and stall the other CPU.
// CPU must be reset before stalling, in case it was running a s32c1i
// instruction. This would cause memory pool to be locked by arbiter
// to the stalled CPU, preventing current CPU from accessing this pool.
const uint32_t core_id = xPortGetCoreID();
const uint32_t other_core_id = (core_id == 0) ? 1 : 0;
esp_cpu_reset(other_core_id);
esp_cpu_stall(other_core_id);
// Other core is now stalled, can access DPORT registers directly
esp_dport_access_int_abort();
//Todo: Refactor to use Interrupt or Task Watchdog API, and a system level WDT context
// Disable TG0/TG1 watchdogs
wdt_hal_context_t wdt0_context = {.inst = WDT_MWDT0, .mwdt_dev = &TIMERG0};
wdt_hal_write_protect_disable(&wdt0_context);
wdt_hal_disable(&wdt0_context);
wdt_hal_write_protect_enable(&wdt0_context);
wdt_hal_context_t wdt1_context = {.inst = WDT_MWDT1, .mwdt_dev = &TIMERG1};
wdt_hal_write_protect_disable(&wdt1_context);
wdt_hal_disable(&wdt1_context);
wdt_hal_write_protect_enable(&wdt1_context);
// Flush any data left in UART FIFOs
uart_tx_wait_idle(0);
uart_tx_wait_idle(1);
uart_tx_wait_idle(2);
// Disable cache
Cache_Read_Disable(0);
Cache_Read_Disable(1);
// 2nd stage bootloader reconfigures SPI flash signals.
// Reset them to the defaults expected by ROM.
WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30);
// Reset wifi/bluetooth/ethernet/sdio (bb/mac)
DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG,
DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST |
DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST |
DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST |
DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST);
DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0);
// Reset timer/spi/uart
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,
//UART TX FIFO cannot be reset correctly on ESP32, so reset the UART memory by DPORT here.
DPORT_TIMERS_RST | DPORT_SPI01_RST | DPORT_UART_RST | DPORT_UART1_RST | DPORT_UART2_RST | DPORT_UART_MEM_RST);
DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
// Set CPU back to XTAL source, no PLL, same as hard reset
rtc_clk_cpu_freq_set_xtal();
// Clear entry point for APP CPU
DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0);
// Reset CPUs
if (core_id == 0) {
// Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
esp_cpu_reset(1);
esp_cpu_reset(0);
} else {
// Running on APP CPU: need to reset PRO CPU and unstall it,
// then reset APP CPU
esp_cpu_reset(0);
esp_cpu_unstall(0);
esp_cpu_reset(1);
}
while(true) {
;
}
}
void esp_chip_info(esp_chip_info_t* out_info)
{
uint32_t efuse_rd3 = REG_READ(EFUSE_BLK0_RDATA3_REG);
memset(out_info, 0, sizeof(*out_info));
out_info->model = CHIP_ESP32;
out_info->revision = esp_efuse_get_chip_ver();
if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_APP_CPU_M) == 0) {
out_info->cores = 2;
} else {
out_info->cores = 1;
}
out_info->features = CHIP_FEATURE_WIFI_BGN;
if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_BT_M) == 0) {
out_info->features |= CHIP_FEATURE_BT | CHIP_FEATURE_BLE;
}
int package = (efuse_rd3 & EFUSE_RD_CHIP_VER_PKG_M) >> EFUSE_RD_CHIP_VER_PKG_S;
if (package == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 ||
package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 ||
package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) {
out_info->features |= CHIP_FEATURE_EMB_FLASH;
}
}