4eb28b9ace
spi_master: change to DMA burst mode when access descriptors See merge request idf/esp-idf!2824
905 lines
38 KiB
C
905 lines
38 KiB
C
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
/*
|
|
Architecture:
|
|
|
|
We can initialize a SPI driver, but we don't talk to the SPI driver itself, we address a device. A device essentially
|
|
is a combination of SPI port and CS pin, plus some information about the specifics of communication to the device
|
|
(timing, command/address length etc)
|
|
|
|
The essence of the interface to a device is a set of queues; one per device. The idea is that to send something to a SPI
|
|
device, you allocate a transaction descriptor. It contains some information about the transfer like the lenghth, address,
|
|
command etc, plus pointers to transmit and receive buffer. The address of this block gets pushed into the transmit queue.
|
|
The SPI driver does its magic, and sends and retrieves the data eventually. The data gets written to the receive buffers,
|
|
if needed the transaction descriptor is modified to indicate returned parameters and the entire thing goes into the return
|
|
queue, where whatever software initiated the transaction can retrieve it.
|
|
|
|
The entire thing is run from the SPI interrupt handler. If SPI is done transmitting/receiving but nothing is in the queue,
|
|
it will not clear the SPI interrupt but just disable it. This way, when a new thing is sent, pushing the packet into the send
|
|
queue and re-enabling the interrupt will trigger the interrupt again, which can then take care of the sending.
|
|
*/
|
|
|
|
|
|
|
|
#include <string.h>
|
|
#include "driver/spi_common.h"
|
|
#include "driver/spi_master.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "soc/spi_periph.h"
|
|
#include "rom/ets_sys.h"
|
|
#include "esp_types.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_intr.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_log.h"
|
|
#include "esp_err.h"
|
|
#include "esp_pm.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/semphr.h"
|
|
#include "freertos/xtensa_api.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/ringbuf.h"
|
|
#include "soc/soc.h"
|
|
#include "soc/soc_memory_layout.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "rom/lldesc.h"
|
|
#include "driver/gpio.h"
|
|
#include "driver/periph_ctrl.h"
|
|
#include "esp_heap_caps.h"
|
|
|
|
typedef struct spi_device_t spi_device_t;
|
|
typedef typeof(SPI1.clock) spi_clock_reg_t;
|
|
|
|
#define NO_CS 3 //Number of CS pins per SPI host
|
|
|
|
#ifdef CONFIG_SPI_MASTER_ISR_IN_IRAM
|
|
#define SPI_MASTER_ISR_ATTR IRAM_ATTR
|
|
#else
|
|
#define SPI_MASTER_ISR_ATTR
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPI_MASTER_IN_IRAM
|
|
#define SPI_MASTER_ATTR IRAM_ATTR
|
|
#else
|
|
#define SPI_MASTER_ATTR
|
|
#endif
|
|
|
|
|
|
/// struct to hold private transaction data (like tx and rx buffer for DMA).
|
|
typedef struct {
|
|
spi_transaction_t *trans;
|
|
uint32_t *buffer_to_send; //equals to tx_data, if SPI_TRANS_USE_RXDATA is applied; otherwise if original buffer wasn't in DMA-capable memory, this gets the address of a temporary buffer that is;
|
|
//otherwise sets to the original buffer or NULL if no buffer is assigned.
|
|
uint32_t *buffer_to_rcv; // similar to buffer_to_send
|
|
} spi_trans_priv;
|
|
|
|
typedef struct {
|
|
spi_device_t *device[NO_CS];
|
|
intr_handle_t intr;
|
|
spi_dev_t *hw;
|
|
spi_trans_priv cur_trans_buf;
|
|
int cur_cs;
|
|
int prev_cs;
|
|
lldesc_t *dmadesc_tx;
|
|
lldesc_t *dmadesc_rx;
|
|
uint32_t flags;
|
|
int dma_chan;
|
|
int max_transfer_sz;
|
|
spi_bus_config_t bus_cfg;
|
|
#ifdef CONFIG_PM_ENABLE
|
|
esp_pm_lock_handle_t pm_lock;
|
|
#endif
|
|
} spi_host_t;
|
|
|
|
typedef struct {
|
|
spi_clock_reg_t reg;
|
|
int eff_clk;
|
|
int dummy_num;
|
|
int miso_delay;
|
|
} clock_config_t;
|
|
|
|
struct spi_device_t {
|
|
QueueHandle_t trans_queue;
|
|
QueueHandle_t ret_queue;
|
|
spi_device_interface_config_t cfg;
|
|
clock_config_t clk_cfg;
|
|
spi_host_t *host;
|
|
};
|
|
|
|
static spi_host_t *spihost[3];
|
|
|
|
|
|
static const char *SPI_TAG = "spi_master";
|
|
#define SPI_CHECK(a, str, ret_val, ...) \
|
|
if (!(a)) { \
|
|
ESP_LOGE(SPI_TAG,"%s(%d): "str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
|
|
return (ret_val); \
|
|
}
|
|
|
|
|
|
static void spi_intr(void *arg);
|
|
|
|
esp_err_t spi_bus_initialize(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan)
|
|
{
|
|
bool spi_chan_claimed, dma_chan_claimed;
|
|
esp_err_t ret = ESP_OK;
|
|
esp_err_t err;
|
|
/* ToDo: remove this when we have flash operations cooperating with this */
|
|
SPI_CHECK(host!=SPI_HOST, "SPI1 is not supported", ESP_ERR_NOT_SUPPORTED);
|
|
|
|
SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
|
|
SPI_CHECK( dma_chan >= 0 && dma_chan <= 2, "invalid dma channel", ESP_ERR_INVALID_ARG );
|
|
|
|
spi_chan_claimed=spicommon_periph_claim(host);
|
|
SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE);
|
|
|
|
if ( dma_chan != 0 ) {
|
|
dma_chan_claimed=spicommon_dma_chan_claim(dma_chan);
|
|
if ( !dma_chan_claimed ) {
|
|
spicommon_periph_free( host );
|
|
SPI_CHECK(dma_chan_claimed, "dma channel already in use", ESP_ERR_INVALID_STATE);
|
|
}
|
|
}
|
|
|
|
spihost[host]=malloc(sizeof(spi_host_t));
|
|
if (spihost[host]==NULL) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
memset(spihost[host], 0, sizeof(spi_host_t));
|
|
memcpy( &spihost[host]->bus_cfg, bus_config, sizeof(spi_bus_config_t));
|
|
#ifdef CONFIG_PM_ENABLE
|
|
err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master",
|
|
&spihost[host]->pm_lock);
|
|
if (err != ESP_OK) {
|
|
ret = err;
|
|
goto cleanup;
|
|
}
|
|
#endif //CONFIG_PM_ENABLE
|
|
|
|
err = spicommon_bus_initialize_io(host, bus_config, dma_chan, SPICOMMON_BUSFLAG_MASTER|bus_config->flags, &spihost[host]->flags);
|
|
if (err != ESP_OK) {
|
|
ret = err;
|
|
goto cleanup;
|
|
}
|
|
|
|
spihost[host]->dma_chan=dma_chan;
|
|
if (dma_chan == 0) {
|
|
spihost[host]->max_transfer_sz = 64;
|
|
} else {
|
|
//See how many dma descriptors we need and allocate them
|
|
int dma_desc_ct=(bus_config->max_transfer_sz+SPI_MAX_DMA_LEN-1)/SPI_MAX_DMA_LEN;
|
|
if (dma_desc_ct==0) dma_desc_ct=1; //default to 4k when max is not given
|
|
spihost[host]->max_transfer_sz = dma_desc_ct*SPI_MAX_DMA_LEN;
|
|
spihost[host]->dmadesc_tx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
|
|
spihost[host]->dmadesc_rx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
|
|
if (!spihost[host]->dmadesc_tx || !spihost[host]->dmadesc_rx) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
int flags = ESP_INTR_FLAG_INTRDISABLED;
|
|
#ifdef CONFIG_SPI_MASTER_ISR_IN_IRAM
|
|
flags |= ESP_INTR_FLAG_IRAM;
|
|
#endif
|
|
err = esp_intr_alloc(spicommon_irqsource_for_host(host), flags, spi_intr, (void*)spihost[host], &spihost[host]->intr);
|
|
if (err != ESP_OK) {
|
|
ret = err;
|
|
goto cleanup;
|
|
}
|
|
spihost[host]->hw=spicommon_hw_for_host(host);
|
|
|
|
spihost[host]->cur_cs = NO_CS;
|
|
spihost[host]->prev_cs = NO_CS;
|
|
|
|
//Reset DMA
|
|
spihost[host]->hw->dma_conf.val|=SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
|
|
spihost[host]->hw->dma_out_link.start=0;
|
|
spihost[host]->hw->dma_in_link.start=0;
|
|
spihost[host]->hw->dma_conf.val&=~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
|
|
//Reset timing
|
|
spihost[host]->hw->ctrl2.val=0;
|
|
|
|
//master use all 64 bytes of the buffer
|
|
spihost[host]->hw->user.usr_miso_highpart=0;
|
|
spihost[host]->hw->user.usr_mosi_highpart=0;
|
|
|
|
//Disable unneeded ints
|
|
spihost[host]->hw->slave.rd_buf_done=0;
|
|
spihost[host]->hw->slave.wr_buf_done=0;
|
|
spihost[host]->hw->slave.rd_sta_done=0;
|
|
spihost[host]->hw->slave.wr_sta_done=0;
|
|
spihost[host]->hw->slave.rd_buf_inten=0;
|
|
spihost[host]->hw->slave.wr_buf_inten=0;
|
|
spihost[host]->hw->slave.rd_sta_inten=0;
|
|
spihost[host]->hw->slave.wr_sta_inten=0;
|
|
|
|
//Force a transaction done interrupt. This interrupt won't fire yet because we initialized the SPI interrupt as
|
|
//disabled. This way, we can just enable the SPI interrupt and the interrupt handler will kick in, handling
|
|
//any transactions that are queued.
|
|
spihost[host]->hw->slave.trans_inten=1;
|
|
spihost[host]->hw->slave.trans_done=1;
|
|
|
|
return ESP_OK;
|
|
|
|
cleanup:
|
|
if (spihost[host]) {
|
|
free(spihost[host]->dmadesc_tx);
|
|
free(spihost[host]->dmadesc_rx);
|
|
#ifdef CONFIG_PM_ENABLE
|
|
if (spihost[host]->pm_lock) {
|
|
esp_pm_lock_delete(spihost[host]->pm_lock);
|
|
}
|
|
#endif
|
|
}
|
|
free(spihost[host]);
|
|
spicommon_periph_free(host);
|
|
spicommon_dma_chan_free(dma_chan);
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t spi_bus_free(spi_host_device_t host)
|
|
{
|
|
int x;
|
|
SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
|
|
SPI_CHECK(spihost[host]!=NULL, "host not in use", ESP_ERR_INVALID_STATE);
|
|
for (x=0; x<NO_CS; x++) {
|
|
SPI_CHECK(spihost[host]->device[x]==NULL, "not all CSses freed", ESP_ERR_INVALID_STATE);
|
|
}
|
|
spicommon_bus_free_io_cfg(&spihost[host]->bus_cfg);
|
|
|
|
if ( spihost[host]->dma_chan > 0 ) {
|
|
spicommon_dma_chan_free ( spihost[host]->dma_chan );
|
|
}
|
|
#ifdef CONFIG_PM_ENABLE
|
|
esp_pm_lock_delete(spihost[host]->pm_lock);
|
|
#endif
|
|
spihost[host]->hw->slave.trans_inten=0;
|
|
spihost[host]->hw->slave.trans_done=0;
|
|
esp_intr_free(spihost[host]->intr);
|
|
spicommon_periph_free(host);
|
|
free(spihost[host]->dmadesc_tx);
|
|
free(spihost[host]->dmadesc_rx);
|
|
free(spihost[host]);
|
|
spihost[host]=NULL;
|
|
return ESP_OK;
|
|
}
|
|
|
|
void spi_get_timing(bool gpio_is_used, int input_delay_ns, int eff_clk, int* dummy_o, int* cycles_remain_o)
|
|
{
|
|
const int apbclk_kHz = APB_CLK_FREQ/1000;
|
|
const int apbclk_n = APB_CLK_FREQ/eff_clk;
|
|
const int gpio_delay_ns=(gpio_is_used?25:0);
|
|
|
|
//calculate how many apb clocks a period has, the 1 is to compensate in case ``input_delay_ns`` is rounded off.
|
|
int apb_period_n = (1 + input_delay_ns + gpio_delay_ns)*apbclk_kHz/1000/1000;
|
|
int dummy_required = apb_period_n/apbclk_n;
|
|
|
|
int miso_delay = 0;
|
|
if (dummy_required > 0) {
|
|
//due to the clock delay between master and slave, there's a range in which data is random
|
|
//give MISO a delay if needed to make sure we sample at the time MISO is stable
|
|
miso_delay = (dummy_required+1)*apbclk_n-apb_period_n-1;
|
|
} else {
|
|
//if the dummy is not required, maybe we should also delay half a SPI clock if the data comes too early
|
|
if (apb_period_n*4 <= apbclk_n) miso_delay = -1;
|
|
}
|
|
if (dummy_o!=NULL) *dummy_o = dummy_required;
|
|
if (cycles_remain_o!=NULL) *cycles_remain_o = miso_delay;
|
|
ESP_LOGD(SPI_TAG,"eff: %d, limit: %dk(/%d), %d dummy, %d delay", eff_clk/1000, apbclk_kHz/(apb_period_n+1), apb_period_n, dummy_required, miso_delay);
|
|
}
|
|
|
|
int spi_get_freq_limit(bool gpio_is_used, int input_delay_ns)
|
|
{
|
|
const int apbclk_kHz = APB_CLK_FREQ/1000;
|
|
const int gpio_delay_ns=(gpio_is_used?25:0);
|
|
|
|
//calculate how many apb clocks a period has, the 1 is to compensate in case ``input_delay_ns`` is rounded off.
|
|
int apb_period_n = (1 + input_delay_ns + gpio_delay_ns)*apbclk_kHz/1000/1000;
|
|
return APB_CLK_FREQ/(apb_period_n+1);
|
|
}
|
|
|
|
/*
|
|
Add a device. This allocates a CS line for the device, allocates memory for the device structure and hooks
|
|
up the CS pin to whatever is specified.
|
|
*/
|
|
esp_err_t spi_bus_add_device(spi_host_device_t host, const spi_device_interface_config_t *dev_config, spi_device_handle_t *handle)
|
|
{
|
|
int freecs;
|
|
int apbclk=APB_CLK_FREQ;
|
|
int eff_clk;
|
|
int duty_cycle;
|
|
int dummy_required;
|
|
int miso_delay;
|
|
|
|
spi_clock_reg_t clk_reg;
|
|
SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
|
|
SPI_CHECK(spihost[host]!=NULL, "host not initialized", ESP_ERR_INVALID_STATE);
|
|
SPI_CHECK(dev_config->spics_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(dev_config->spics_io_num), "spics pin invalid", ESP_ERR_INVALID_ARG);
|
|
SPI_CHECK(dev_config->clock_speed_hz > 0, "invalid sclk speed", ESP_ERR_INVALID_ARG);
|
|
for (freecs=0; freecs<NO_CS; freecs++) {
|
|
//See if this slot is free; reserve if it is by putting a dummy pointer in the slot. We use an atomic compare&swap to make this thread-safe.
|
|
if (__sync_bool_compare_and_swap(&spihost[host]->device[freecs], NULL, (spi_device_t *)1)) break;
|
|
}
|
|
SPI_CHECK(freecs!=NO_CS, "no free cs pins for host", ESP_ERR_NOT_FOUND);
|
|
//The hardware looks like it would support this, but actually setting cs_ena_pretrans when transferring in full
|
|
//duplex mode does absolutely nothing on the ESP32.
|
|
SPI_CHECK( dev_config->cs_ena_pretrans <= 1 || (dev_config->address_bits == 0 && dev_config->command_bits == 0) ||
|
|
(dev_config->flags & SPI_DEVICE_HALFDUPLEX), "In full-duplex mode, only support cs pretrans delay = 1 and without address_bits and command_bits", ESP_ERR_INVALID_ARG);
|
|
|
|
duty_cycle = (dev_config->duty_cycle_pos==0? 128: dev_config->duty_cycle_pos);
|
|
eff_clk = spi_cal_clock(apbclk, dev_config->clock_speed_hz, duty_cycle, (uint32_t*)&clk_reg);
|
|
int freq_limit = spi_get_freq_limit(!(spihost[host]->flags&SPICOMMON_BUSFLAG_NATIVE_PINS), dev_config->input_delay_ns);
|
|
//GPIO matrix can only change data at 80Mhz rate, which only allows 40MHz SPI clock.
|
|
SPI_CHECK(eff_clk <= 40*1000*1000 || spihost[host]->flags&SPICOMMON_BUSFLAG_NATIVE_PINS, "80MHz only supported on iomux pins", ESP_ERR_INVALID_ARG);
|
|
//Speed >=40MHz over GPIO matrix needs a dummy cycle, but these don't work for full-duplex connections.
|
|
spi_get_timing(!(spihost[host]->flags&SPICOMMON_BUSFLAG_NATIVE_PINS), dev_config->input_delay_ns, eff_clk, &dummy_required, &miso_delay);
|
|
SPI_CHECK( dev_config->flags & SPI_DEVICE_HALFDUPLEX || dummy_required == 0 ||
|
|
dev_config->flags & SPI_DEVICE_NO_DUMMY,
|
|
"When GPIO matrix is used in full-duplex mode at frequency > %.1fMHz, device cannot read correct data.\n\
|
|
Please note the SPI can only work at divisors of 80MHz, and the driver always tries to find the closest frequency to your configuration.\n\
|
|
Specify ``SPI_DEVICE_NO_DUMMY`` to ignore this checking. Then you can output data at higher speed, or read data at your own risk.",
|
|
ESP_ERR_INVALID_ARG, freq_limit/1000./1000 );
|
|
|
|
//Allocate memory for device
|
|
spi_device_t *dev=malloc(sizeof(spi_device_t));
|
|
if (dev==NULL) goto nomem;
|
|
memset(dev, 0, sizeof(spi_device_t));
|
|
spihost[host]->device[freecs]=dev;
|
|
|
|
//Allocate queues, set defaults
|
|
dev->trans_queue=xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv));
|
|
dev->ret_queue=xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv));
|
|
if (!dev->trans_queue || !dev->ret_queue) goto nomem;
|
|
dev->host=spihost[host];
|
|
|
|
//We want to save a copy of the dev config in the dev struct.
|
|
memcpy(&dev->cfg, dev_config, sizeof(spi_device_interface_config_t));
|
|
dev->cfg.duty_cycle_pos = duty_cycle;
|
|
// TODO: if we have to change the apb clock among transactions, re-calculate this each time the apb clock lock is acquired.
|
|
dev->clk_cfg= (clock_config_t) {
|
|
.eff_clk = eff_clk,
|
|
.dummy_num = dummy_required,
|
|
.reg = clk_reg,
|
|
.miso_delay = miso_delay,
|
|
};
|
|
|
|
//Set CS pin, CS options
|
|
if (dev_config->spics_io_num >= 0) {
|
|
gpio_set_direction(dev_config->spics_io_num, GPIO_MODE_OUTPUT);
|
|
spicommon_cs_initialize(host, dev_config->spics_io_num, freecs, !(spihost[host]->flags&SPICOMMON_BUSFLAG_NATIVE_PINS));
|
|
}
|
|
if (dev_config->flags&SPI_DEVICE_CLK_AS_CS) {
|
|
spihost[host]->hw->pin.master_ck_sel |= (1<<freecs);
|
|
} else {
|
|
spihost[host]->hw->pin.master_ck_sel &= (1<<freecs);
|
|
}
|
|
if (dev_config->flags&SPI_DEVICE_POSITIVE_CS) {
|
|
spihost[host]->hw->pin.master_cs_pol |= (1<<freecs);
|
|
} else {
|
|
spihost[host]->hw->pin.master_cs_pol &= (1<<freecs);
|
|
}
|
|
spihost[host]->hw->ctrl2.mosi_delay_mode = 0;
|
|
spihost[host]->hw->ctrl2.mosi_delay_num = 0;
|
|
*handle=dev;
|
|
ESP_LOGD(SPI_TAG, "SPI%d: New device added to CS%d, effective clock: %dkHz", host, freecs, dev->clk_cfg.eff_clk/1000);
|
|
return ESP_OK;
|
|
|
|
nomem:
|
|
if (dev) {
|
|
if (dev->trans_queue) vQueueDelete(dev->trans_queue);
|
|
if (dev->ret_queue) vQueueDelete(dev->ret_queue);
|
|
}
|
|
free(dev);
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
esp_err_t spi_bus_remove_device(spi_device_handle_t handle)
|
|
{
|
|
int x;
|
|
SPI_CHECK(handle!=NULL, "invalid handle", ESP_ERR_INVALID_ARG);
|
|
//These checks aren't exhaustive; another thread could sneak in a transaction inbetween. These are only here to
|
|
//catch design errors and aren't meant to be triggered during normal operation.
|
|
SPI_CHECK(uxQueueMessagesWaiting(handle->trans_queue)==0, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
|
|
SPI_CHECK(handle->host->cur_cs == NO_CS || handle->host->device[handle->host->cur_cs]!=handle, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
|
|
SPI_CHECK(uxQueueMessagesWaiting(handle->ret_queue)==0, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
|
|
|
|
//return
|
|
int spics_io_num = handle->cfg.spics_io_num;
|
|
if (spics_io_num >= 0) spicommon_cs_free_io(spics_io_num);
|
|
|
|
//Kill queues
|
|
vQueueDelete(handle->trans_queue);
|
|
vQueueDelete(handle->ret_queue);
|
|
//Remove device from list of csses and free memory
|
|
for (x=0; x<NO_CS; x++) {
|
|
if (handle->host->device[x] == handle){
|
|
handle->host->device[x]=NULL;
|
|
if ( x == handle->host->prev_cs ) handle->host->prev_cs = NO_CS;
|
|
}
|
|
}
|
|
free(handle);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static int spi_freq_for_pre_n(int fapb, int pre, int n) {
|
|
return (fapb / (pre * n));
|
|
}
|
|
|
|
int spi_cal_clock(int fapb, int hz, int duty_cycle, uint32_t *reg_o)
|
|
{
|
|
spi_clock_reg_t reg;
|
|
int eff_clk;
|
|
|
|
//In hw, n, h and l are 1-64, pre is 1-8K. Value written to register is one lower than used value.
|
|
if (hz>((fapb/4)*3)) {
|
|
//Using Fapb directly will give us the best result here.
|
|
reg.clkcnt_l=0;
|
|
reg.clkcnt_h=0;
|
|
reg.clkcnt_n=0;
|
|
reg.clkdiv_pre=0;
|
|
reg.clk_equ_sysclk=1;
|
|
eff_clk=fapb;
|
|
} else {
|
|
//For best duty cycle resolution, we want n to be as close to 32 as possible, but
|
|
//we also need a pre/n combo that gets us as close as possible to the intended freq.
|
|
//To do this, we bruteforce n and calculate the best pre to go along with that.
|
|
//If there's a choice between pre/n combos that give the same result, use the one
|
|
//with the higher n.
|
|
int pre, n, h, l;
|
|
int bestn=-1;
|
|
int bestpre=-1;
|
|
int besterr=0;
|
|
int errval;
|
|
for (n=2; n<=64; n++) { //Start at 2: we need to be able to set h/l so we have at least one high and one low pulse.
|
|
//Effectively, this does pre=round((fapb/n)/hz).
|
|
pre=((fapb/n)+(hz/2))/hz;
|
|
if (pre<=0) pre=1;
|
|
if (pre>8192) pre=8192;
|
|
errval=abs(spi_freq_for_pre_n(fapb, pre, n)-hz);
|
|
if (bestn==-1 || errval<=besterr) {
|
|
besterr=errval;
|
|
bestn=n;
|
|
bestpre=pre;
|
|
}
|
|
}
|
|
|
|
n=bestn;
|
|
pre=bestpre;
|
|
l=n;
|
|
//This effectively does round((duty_cycle*n)/256)
|
|
h=(duty_cycle*n+127)/256;
|
|
if (h<=0) h=1;
|
|
|
|
reg.clk_equ_sysclk=0;
|
|
reg.clkcnt_n=n-1;
|
|
reg.clkdiv_pre=pre-1;
|
|
reg.clkcnt_h=h-1;
|
|
reg.clkcnt_l=l-1;
|
|
eff_clk=spi_freq_for_pre_n(fapb, pre, n);
|
|
}
|
|
if ( reg_o != NULL ) *reg_o = reg.val;
|
|
return eff_clk;
|
|
}
|
|
|
|
/*
|
|
* Set the spi clock according to pre-calculated register value.
|
|
*/
|
|
static inline void spi_set_clock(spi_dev_t *hw, spi_clock_reg_t reg) {
|
|
hw->clock.val = reg.val;
|
|
}
|
|
|
|
//This is run in interrupt context and apart from initialization and destruction, this is the only code
|
|
//touching the host (=spihost[x]) variable. The rest of the data arrives in queues. That is why there are
|
|
//no muxes in this code.
|
|
static void SPI_MASTER_ISR_ATTR spi_intr(void *arg)
|
|
{
|
|
int i;
|
|
BaseType_t r;
|
|
BaseType_t do_yield=pdFALSE;
|
|
spi_trans_priv *trans_buf=NULL;
|
|
spi_transaction_t *trans=NULL;
|
|
spi_host_t *host=(spi_host_t*)arg;
|
|
|
|
//Ignore all but the trans_done int.
|
|
if (!host->hw->slave.trans_done) return;
|
|
|
|
/*------------ deal with the in-flight transaction -----------------*/
|
|
if (host->cur_cs != NO_CS) {
|
|
spi_transaction_t *cur_trans = host->cur_trans_buf.trans;
|
|
//Okay, transaction is done.
|
|
if (host->cur_trans_buf.buffer_to_rcv && host->dma_chan == 0 ) {
|
|
//Need to copy from SPI regs to result buffer.
|
|
for (int x=0; x < cur_trans->rxlength; x+=32) {
|
|
//Do a memcpy to get around possible alignment issues in rx_buffer
|
|
uint32_t word=host->hw->data_buf[x/32];
|
|
int len=cur_trans->rxlength-x;
|
|
if (len>32) len=32;
|
|
memcpy(&host->cur_trans_buf.buffer_to_rcv[x/32], &word, (len+7)/8);
|
|
}
|
|
}
|
|
//Call post-transaction callback, if any
|
|
if (host->device[host->cur_cs]->cfg.post_cb) host->device[host->cur_cs]->cfg.post_cb(cur_trans);
|
|
//Return transaction descriptor.
|
|
xQueueSendFromISR(host->device[host->cur_cs]->ret_queue, &host->cur_trans_buf, &do_yield);
|
|
host->cur_cs = NO_CS;
|
|
}
|
|
//Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset.
|
|
if (host->dma_chan) spicommon_dmaworkaround_idle(host->dma_chan);
|
|
|
|
/*------------ new transaction starts here ------------------*/
|
|
//ToDo: This is a stupidly simple low-cs-first priority scheme. Make this configurable somehow. - JD
|
|
for (i=0; i<NO_CS; i++) {
|
|
if (host->device[i]) {
|
|
r=xQueueReceiveFromISR(host->device[i]->trans_queue, &host->cur_trans_buf, &do_yield);
|
|
trans_buf = &host->cur_trans_buf;
|
|
//Stop looking if we have a transaction to send.
|
|
if (r) break;
|
|
}
|
|
}
|
|
if (i==NO_CS) {
|
|
//No packet waiting. Disable interrupt.
|
|
esp_intr_disable(host->intr);
|
|
#ifdef CONFIG_PM_ENABLE
|
|
//Release APB frequency lock
|
|
esp_pm_lock_release(host->pm_lock);
|
|
#endif
|
|
} else {
|
|
host->hw->slave.trans_done=0; //clear int bit
|
|
//We have a transaction. Send it.
|
|
spi_device_t *dev=host->device[i];
|
|
trans = trans_buf->trans;
|
|
host->cur_cs=i;
|
|
//We should be done with the transmission.
|
|
assert(host->hw->cmd.usr == 0);
|
|
|
|
//Reconfigure according to device settings, but only if we change CSses.
|
|
if (i!=host->prev_cs) {
|
|
spi_set_clock(host->hw, dev->clk_cfg.reg);
|
|
//Configure bit order
|
|
host->hw->ctrl.rd_bit_order=(dev->cfg.flags & SPI_DEVICE_RXBIT_LSBFIRST)?1:0;
|
|
host->hw->ctrl.wr_bit_order=(dev->cfg.flags & SPI_DEVICE_TXBIT_LSBFIRST)?1:0;
|
|
|
|
//Configure polarity
|
|
if (dev->cfg.mode==0) {
|
|
host->hw->pin.ck_idle_edge=0;
|
|
host->hw->user.ck_out_edge=0;
|
|
} else if (dev->cfg.mode==1) {
|
|
host->hw->pin.ck_idle_edge=0;
|
|
host->hw->user.ck_out_edge=1;
|
|
} else if (dev->cfg.mode==2) {
|
|
host->hw->pin.ck_idle_edge=1;
|
|
host->hw->user.ck_out_edge=1;
|
|
} else if (dev->cfg.mode==3) {
|
|
host->hw->pin.ck_idle_edge=1;
|
|
host->hw->user.ck_out_edge=0;
|
|
}
|
|
//Configure misc stuff
|
|
host->hw->user.doutdin=(dev->cfg.flags & SPI_DEVICE_HALFDUPLEX)?0:1;
|
|
host->hw->user.sio=(dev->cfg.flags & SPI_DEVICE_3WIRE)?1:0;
|
|
|
|
host->hw->ctrl2.setup_time=dev->cfg.cs_ena_pretrans-1;
|
|
host->hw->user.cs_setup=dev->cfg.cs_ena_pretrans?1:0;
|
|
//set hold_time to 0 will not actually append delay to CS
|
|
//set it to 1 since we do need at least one clock of hold time in most cases
|
|
host->hw->ctrl2.hold_time=dev->cfg.cs_ena_posttrans;
|
|
if ( host->hw->ctrl2.hold_time == 0 ) host->hw->ctrl2.hold_time = 1;
|
|
host->hw->user.cs_hold=1;
|
|
|
|
//Configure CS pin
|
|
host->hw->pin.cs0_dis=(i==0)?0:1;
|
|
host->hw->pin.cs1_dis=(i==1)?0:1;
|
|
host->hw->pin.cs2_dis=(i==2)?0:1;
|
|
}
|
|
host->prev_cs = i;
|
|
//Reset SPI peripheral
|
|
host->hw->dma_conf.val |= SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
|
|
host->hw->dma_out_link.start=0;
|
|
host->hw->dma_in_link.start=0;
|
|
host->hw->dma_conf.val &= ~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
|
|
host->hw->dma_conf.out_data_burst_en=1;
|
|
host->hw->dma_conf.indscr_burst_en=1;
|
|
host->hw->dma_conf.outdscr_burst_en=1;
|
|
//Set up QIO/DIO if needed
|
|
host->hw->ctrl.val &= ~(SPI_FREAD_DUAL|SPI_FREAD_QUAD|SPI_FREAD_DIO|SPI_FREAD_QIO);
|
|
host->hw->user.val &= ~(SPI_FWRITE_DUAL|SPI_FWRITE_QUAD|SPI_FWRITE_DIO|SPI_FWRITE_QIO);
|
|
if (trans->flags & SPI_TRANS_MODE_DIO) {
|
|
if (trans->flags & SPI_TRANS_MODE_DIOQIO_ADDR) {
|
|
host->hw->ctrl.fread_dio=1;
|
|
host->hw->user.fwrite_dio=1;
|
|
} else {
|
|
host->hw->ctrl.fread_dual=1;
|
|
host->hw->user.fwrite_dual=1;
|
|
}
|
|
host->hw->ctrl.fastrd_mode=1;
|
|
} else if (trans->flags & SPI_TRANS_MODE_QIO) {
|
|
if (trans->flags & SPI_TRANS_MODE_DIOQIO_ADDR) {
|
|
host->hw->ctrl.fread_qio=1;
|
|
host->hw->user.fwrite_qio=1;
|
|
} else {
|
|
host->hw->ctrl.fread_quad=1;
|
|
host->hw->user.fwrite_quad=1;
|
|
}
|
|
host->hw->ctrl.fastrd_mode=1;
|
|
}
|
|
|
|
//Fill DMA descriptors
|
|
int extra_dummy=0;
|
|
if (trans_buf->buffer_to_rcv) {
|
|
if (host->dma_chan == 0) {
|
|
//No need to setup anything; we'll copy the result out of the work registers directly later.
|
|
} else {
|
|
spicommon_dmaworkaround_transfer_active(host->dma_chan); //mark channel as active
|
|
spicommon_setup_dma_desc_links(host->dmadesc_rx, ((trans->rxlength+7)/8), (uint8_t*)trans_buf->buffer_to_rcv, true);
|
|
host->hw->dma_in_link.addr=(int)(&host->dmadesc_rx[0]) & 0xFFFFF;
|
|
host->hw->dma_in_link.start=1;
|
|
}
|
|
//when no_dummy is not set and in half-duplex mode, sets the dummy bit if RX phase exist
|
|
if (((dev->cfg.flags&SPI_DEVICE_NO_DUMMY)==0) && (dev->cfg.flags&SPI_DEVICE_HALFDUPLEX)) {
|
|
extra_dummy=dev->clk_cfg.dummy_num;
|
|
}
|
|
} else {
|
|
//DMA temporary workaround: let RX DMA work somehow to avoid the issue in ESP32 v0/v1 silicon
|
|
if (host->dma_chan != 0 ) {
|
|
host->hw->dma_in_link.addr=0;
|
|
host->hw->dma_in_link.start=1;
|
|
}
|
|
}
|
|
|
|
|
|
if (trans_buf->buffer_to_send) {
|
|
if (host->dma_chan == 0) {
|
|
//Need to copy data to registers manually
|
|
for (int x=0; x < trans->length; x+=32) {
|
|
//Use memcpy to get around alignment issues for txdata
|
|
uint32_t word;
|
|
memcpy(&word, &trans_buf->buffer_to_send[x/32], 4);
|
|
host->hw->data_buf[(x/32)]=word;
|
|
}
|
|
} else {
|
|
spicommon_dmaworkaround_transfer_active(host->dma_chan); //mark channel as active
|
|
spicommon_setup_dma_desc_links(host->dmadesc_tx, (trans->length+7)/8, (uint8_t*)trans_buf->buffer_to_send, false);
|
|
host->hw->dma_out_link.addr=(int)(&host->dmadesc_tx[0]) & 0xFFFFF;
|
|
host->hw->dma_out_link.start=1;
|
|
}
|
|
}
|
|
|
|
//SPI iface needs to be configured for a delay in some cases.
|
|
//configure dummy bits
|
|
host->hw->user.usr_dummy=(dev->cfg.dummy_bits+extra_dummy)?1:0;
|
|
host->hw->user1.usr_dummy_cyclelen=dev->cfg.dummy_bits+extra_dummy-1;
|
|
|
|
int miso_long_delay = 0;
|
|
if (dev->clk_cfg.miso_delay<0) {
|
|
//if the data comes too late, delay half a SPI clock to improve reading
|
|
miso_long_delay = 1;
|
|
host->hw->ctrl2.miso_delay_num = 0;
|
|
} else {
|
|
//if the data is so fast that dummy_bit is used, delay some apb clocks to meet the timing
|
|
host->hw->ctrl2.miso_delay_num = (extra_dummy? dev->clk_cfg.miso_delay: 0);
|
|
}
|
|
|
|
if (dev->cfg.mode==0) {
|
|
host->hw->ctrl2.miso_delay_mode=miso_long_delay?2:0;
|
|
} else if (dev->cfg.mode==1) {
|
|
host->hw->ctrl2.miso_delay_mode=miso_long_delay?1:0;
|
|
} else if (dev->cfg.mode==2) {
|
|
host->hw->ctrl2.miso_delay_mode=miso_long_delay?1:0;
|
|
} else if (dev->cfg.mode==3) {
|
|
host->hw->ctrl2.miso_delay_mode=miso_long_delay?2:0;
|
|
}
|
|
|
|
host->hw->mosi_dlen.usr_mosi_dbitlen=trans->length-1;
|
|
if ( dev->cfg.flags & SPI_DEVICE_HALFDUPLEX ) {
|
|
host->hw->miso_dlen.usr_miso_dbitlen=trans->rxlength-1;
|
|
} else {
|
|
//rxlength is not used in full-duplex mode
|
|
host->hw->miso_dlen.usr_miso_dbitlen=trans->length-1;
|
|
}
|
|
|
|
//Configure bit sizes, load addr and command
|
|
int cmdlen;
|
|
int addrlen;
|
|
if (!(dev->cfg.flags & SPI_DEVICE_HALFDUPLEX) && dev->cfg.cs_ena_pretrans != 0) {
|
|
/* The command and address phase is not compatible with cs_ena_pretrans
|
|
* in full duplex mode.
|
|
*/
|
|
cmdlen = 0;
|
|
addrlen = 0;
|
|
} else {
|
|
if (trans->flags & SPI_TRANS_VARIABLE_CMD) {
|
|
cmdlen = ((spi_transaction_ext_t *)trans)->command_bits;
|
|
} else {
|
|
cmdlen = dev->cfg.command_bits;
|
|
}
|
|
if (trans->flags & SPI_TRANS_VARIABLE_ADDR) {
|
|
addrlen = ((spi_transaction_ext_t *)trans)->address_bits;
|
|
} else {
|
|
addrlen = dev->cfg.address_bits;
|
|
}
|
|
}
|
|
|
|
host->hw->user1.usr_addr_bitlen=addrlen-1;
|
|
host->hw->user2.usr_command_bitlen=cmdlen-1;
|
|
host->hw->user.usr_addr=addrlen?1:0;
|
|
host->hw->user.usr_command=cmdlen?1:0;
|
|
|
|
/* Output command will be sent from bit 7 to 0 of command_value, and
|
|
* then bit 15 to 8 of the same register field. Shift and swap to send
|
|
* more straightly.
|
|
*/
|
|
host->hw->user2.usr_command_value = SPI_SWAP_DATA_TX(trans->cmd, cmdlen);
|
|
|
|
// shift the address to MSB of addr (and maybe slv_wr_status) register.
|
|
// output address will be sent from MSB to LSB of addr register, then comes the MSB to LSB of slv_wr_status register.
|
|
if (addrlen>32) {
|
|
host->hw->addr = trans->addr >> (addrlen- 32);
|
|
host->hw->slv_wr_status = trans->addr << (64 - addrlen);
|
|
} else {
|
|
host->hw->addr = trans->addr << (32 - addrlen);
|
|
}
|
|
|
|
host->hw->user.usr_mosi=( (!(dev->cfg.flags & SPI_DEVICE_HALFDUPLEX) && trans_buf->buffer_to_rcv) || trans_buf->buffer_to_send)?1:0;
|
|
host->hw->user.usr_miso=(trans_buf->buffer_to_rcv)?1:0;
|
|
|
|
//Call pre-transmission callback, if any
|
|
if (dev->cfg.pre_cb) dev->cfg.pre_cb(trans);
|
|
//Kick off transfer
|
|
host->hw->cmd.usr=1;
|
|
}
|
|
if (do_yield) portYIELD_FROM_ISR();
|
|
}
|
|
|
|
|
|
esp_err_t SPI_MASTER_ATTR spi_device_queue_trans(spi_device_handle_t handle, spi_transaction_t *trans_desc, TickType_t ticks_to_wait)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
BaseType_t r;
|
|
SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
|
|
//check transmission length
|
|
SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_RXDATA)==0 ||trans_desc->rxlength <= 32, "rxdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
|
|
SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_TXDATA)==0 ||trans_desc->length <= 32, "txdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
|
|
SPI_CHECK(trans_desc->length <= handle->host->max_transfer_sz*8, "txdata transfer > host maximum", ESP_ERR_INVALID_ARG);
|
|
SPI_CHECK(trans_desc->rxlength <= handle->host->max_transfer_sz*8, "rxdata transfer > host maximum", ESP_ERR_INVALID_ARG);
|
|
SPI_CHECK((handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || trans_desc->rxlength <= trans_desc->length, "rx length > tx length in full duplex mode", ESP_ERR_INVALID_ARG);
|
|
//check working mode
|
|
SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (handle->cfg.flags & SPI_DEVICE_3WIRE)), "incompatible iface params", ESP_ERR_INVALID_ARG);
|
|
SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (!(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX))), "incompatible iface params", ESP_ERR_INVALID_ARG);
|
|
SPI_CHECK( !(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || handle->host->dma_chan == 0 || !(trans_desc->flags & SPI_TRANS_USE_RXDATA || trans_desc->rx_buffer != NULL)
|
|
|| !(trans_desc->flags & SPI_TRANS_USE_TXDATA || trans_desc->tx_buffer!=NULL), "SPI half duplex mode does not support using DMA with both MOSI and MISO phases.", ESP_ERR_INVALID_ARG );
|
|
//In Full duplex mode, default rxlength to be the same as length, if not filled in.
|
|
// set rxlength to length is ok, even when rx buffer=NULL
|
|
if (trans_desc->rxlength==0 && !(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX)) {
|
|
trans_desc->rxlength=trans_desc->length;
|
|
}
|
|
|
|
spi_trans_priv trans_buf;
|
|
memset( &trans_buf, 0, sizeof(spi_trans_priv) );
|
|
trans_buf.trans = trans_desc;
|
|
|
|
// rx memory assign
|
|
if ( trans_desc->flags & SPI_TRANS_USE_RXDATA ) {
|
|
trans_buf.buffer_to_rcv = (uint32_t*)&trans_desc->rx_data[0];
|
|
} else {
|
|
//if not use RXDATA neither rx_buffer, buffer_to_rcv assigned to NULL
|
|
trans_buf.buffer_to_rcv = trans_desc->rx_buffer;
|
|
}
|
|
if ( trans_buf.buffer_to_rcv && handle->host->dma_chan && (!esp_ptr_dma_capable( trans_buf.buffer_to_rcv ) || ((int)trans_buf.buffer_to_rcv%4!=0)) ) {
|
|
//if rxbuf in the desc not DMA-capable, malloc a new one. The rx buffer need to be length of multiples of 32 bits to avoid heap corruption.
|
|
ESP_LOGV( SPI_TAG, "Allocate RX buffer for DMA" );
|
|
trans_buf.buffer_to_rcv = heap_caps_malloc((trans_desc->rxlength+31)/8, MALLOC_CAP_DMA);
|
|
if ( trans_buf.buffer_to_rcv==NULL ) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto clean_up;
|
|
}
|
|
}
|
|
|
|
const uint32_t *txdata;
|
|
// tx memory assign
|
|
if ( trans_desc->flags & SPI_TRANS_USE_TXDATA ) {
|
|
txdata = (uint32_t*)&trans_desc->tx_data[0];
|
|
} else {
|
|
//if not use TXDATA neither tx_buffer, tx data assigned to NULL
|
|
txdata = trans_desc->tx_buffer ;
|
|
}
|
|
if ( txdata && handle->host->dma_chan && !esp_ptr_dma_capable( txdata )) {
|
|
//if txbuf in the desc not DMA-capable, malloc a new one
|
|
ESP_LOGV( SPI_TAG, "Allocate TX buffer for DMA" );
|
|
trans_buf.buffer_to_send = heap_caps_malloc((trans_desc->length+7)/8, MALLOC_CAP_DMA);
|
|
if ( trans_buf.buffer_to_send==NULL ) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto clean_up;
|
|
}
|
|
memcpy( trans_buf.buffer_to_send, txdata, (trans_desc->length+7)/8 );
|
|
} else {
|
|
// else use the original buffer (forced-conversion) or assign to NULL
|
|
trans_buf.buffer_to_send = (uint32_t*)txdata;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_ENABLE
|
|
esp_pm_lock_acquire(handle->host->pm_lock);
|
|
#endif
|
|
r=xQueueSend(handle->trans_queue, (void*)&trans_buf, ticks_to_wait);
|
|
if (!r) {
|
|
ret = ESP_ERR_TIMEOUT;
|
|
#ifdef CONFIG_PM_ENABLE
|
|
//Release APB frequency lock
|
|
esp_pm_lock_release(handle->host->pm_lock);
|
|
#endif
|
|
goto clean_up;
|
|
}
|
|
esp_intr_enable(handle->host->intr);
|
|
return ESP_OK;
|
|
|
|
clean_up:
|
|
// free malloc-ed buffer (if needed) before return.
|
|
if ( (void*)trans_buf.buffer_to_rcv != trans_desc->rx_buffer && (void*)trans_buf.buffer_to_rcv != &trans_desc->rx_data[0] ) {
|
|
free( trans_buf.buffer_to_rcv );
|
|
}
|
|
if ( (void*)trans_buf.buffer_to_send!= trans_desc->tx_buffer && (void*)trans_buf.buffer_to_send != &trans_desc->tx_data[0] ) {
|
|
free( trans_buf.buffer_to_send );
|
|
}
|
|
assert( ret != ESP_OK );
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t SPI_MASTER_ATTR spi_device_get_trans_result(spi_device_handle_t handle, spi_transaction_t **trans_desc, TickType_t ticks_to_wait)
|
|
{
|
|
BaseType_t r;
|
|
spi_trans_priv trans_buf;
|
|
|
|
SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
|
|
r=xQueueReceive(handle->ret_queue, (void*)&trans_buf, ticks_to_wait);
|
|
if (!r) {
|
|
// The memory occupied by rx and tx DMA buffer destroyed only when receiving from the queue (transaction finished).
|
|
// If timeout, wait and retry.
|
|
// Every on-flight transaction request occupies internal memory as DMA buffer if needed.
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
|
|
(*trans_desc) = trans_buf.trans;
|
|
|
|
if ( (void*)trans_buf.buffer_to_send != &(*trans_desc)->tx_data[0] && trans_buf.buffer_to_send != (*trans_desc)->tx_buffer ) {
|
|
free( trans_buf.buffer_to_send );
|
|
}
|
|
|
|
//copy data from temporary DMA-capable buffer back to IRAM buffer and free the temporary one.
|
|
if ( (void*)trans_buf.buffer_to_rcv != &(*trans_desc)->rx_data[0] && trans_buf.buffer_to_rcv != (*trans_desc)->rx_buffer ) {
|
|
if ( (*trans_desc)->flags & SPI_TRANS_USE_RXDATA ) {
|
|
memcpy( (uint8_t*)&(*trans_desc)->rx_data[0], trans_buf.buffer_to_rcv, ((*trans_desc)->rxlength+7)/8 );
|
|
} else {
|
|
memcpy( (*trans_desc)->rx_buffer, trans_buf.buffer_to_rcv, ((*trans_desc)->rxlength+7)/8 );
|
|
}
|
|
free( trans_buf.buffer_to_rcv );
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
//Porcelain to do one blocking transmission.
|
|
esp_err_t SPI_MASTER_ATTR spi_device_transmit(spi_device_handle_t handle, spi_transaction_t *trans_desc)
|
|
{
|
|
esp_err_t ret;
|
|
spi_transaction_t *ret_trans;
|
|
//ToDo: check if any spi transfers in flight
|
|
ret=spi_device_queue_trans(handle, trans_desc, portMAX_DELAY);
|
|
if (ret!=ESP_OK) return ret;
|
|
ret=spi_device_get_trans_result(handle, &ret_trans, portMAX_DELAY);
|
|
if (ret!=ESP_OK) return ret;
|
|
assert(ret_trans==trans_desc);
|
|
return ESP_OK;
|
|
}
|
|
|