503 lines
20 KiB
C
503 lines
20 KiB
C
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
|
|
#include <string.h>
|
|
#include "driver/spi_master.h"
|
|
#include "soc/gpio_sig_map.h"
|
|
#include "soc/spi_reg.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "soc/spi_struct.h"
|
|
#include "rom/ets_sys.h"
|
|
#include "esp_types.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_intr.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_log.h"
|
|
#include "esp_err.h"
|
|
#include "soc/soc.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "rom/lldesc.h"
|
|
#include "driver/gpio.h"
|
|
#include "driver/periph_ctrl.h"
|
|
#include "esp_heap_caps.h"
|
|
|
|
#include "driver/spi_common.h"
|
|
|
|
static const char *SPI_TAG = "spi";
|
|
|
|
#define SPI_CHECK(a, str, ret_val) \
|
|
if (!(a)) { \
|
|
ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
|
|
return (ret_val); \
|
|
}
|
|
|
|
|
|
typedef struct spi_device_t spi_device_t;
|
|
|
|
#define FUNC_SPI 1 //all pins of HSPI and VSPI shares this function number
|
|
#define FUNC_GPIO PIN_FUNC_GPIO
|
|
|
|
/*
|
|
Stores a bunch of per-spi-peripheral data.
|
|
*/
|
|
typedef struct {
|
|
const uint8_t spiclk_out; //GPIO mux output signals
|
|
const uint8_t spiclk_in;
|
|
const uint8_t spid_out;
|
|
const uint8_t spiq_out;
|
|
const uint8_t spiwp_out;
|
|
const uint8_t spihd_out;
|
|
const uint8_t spid_in; //GPIO mux input signals
|
|
const uint8_t spiq_in;
|
|
const uint8_t spiwp_in;
|
|
const uint8_t spihd_in;
|
|
const uint8_t spics_out[3]; // /CS GPIO output mux signals
|
|
const uint8_t spics_in;
|
|
const uint8_t spiclk_native; //IO pins of IO_MUX muxed signals
|
|
const uint8_t spid_native;
|
|
const uint8_t spiq_native;
|
|
const uint8_t spiwp_native;
|
|
const uint8_t spihd_native;
|
|
const uint8_t spics0_native;
|
|
const uint8_t irq; //irq source for interrupt mux
|
|
const uint8_t irq_dma; //dma irq source for interrupt mux
|
|
const periph_module_t module; //peripheral module, for enabling clock etc
|
|
spi_dev_t *hw; //Pointer to the hardware registers
|
|
} spi_signal_conn_t;
|
|
|
|
/*
|
|
Bunch of constants for every SPI peripheral: GPIO signals, irqs, hw addr of registers etc
|
|
*/
|
|
static const spi_signal_conn_t io_signal[3] = {
|
|
{
|
|
.spiclk_out = SPICLK_OUT_IDX,
|
|
.spiclk_in = SPICLK_IN_IDX,
|
|
.spid_out = SPID_OUT_IDX,
|
|
.spiq_out = SPIQ_OUT_IDX,
|
|
.spiwp_out = SPIWP_OUT_IDX,
|
|
.spihd_out = SPIHD_OUT_IDX,
|
|
.spid_in = SPID_IN_IDX,
|
|
.spiq_in = SPIQ_IN_IDX,
|
|
.spiwp_in = SPIWP_IN_IDX,
|
|
.spihd_in = SPIHD_IN_IDX,
|
|
.spics_out = {SPICS0_OUT_IDX, SPICS1_OUT_IDX, SPICS2_OUT_IDX},
|
|
.spics_in = SPICS0_IN_IDX,
|
|
.spiclk_native = 6,
|
|
.spid_native = 8,
|
|
.spiq_native = 7,
|
|
.spiwp_native = 10,
|
|
.spihd_native = 9,
|
|
.spics0_native = 11,
|
|
.irq = ETS_SPI1_INTR_SOURCE,
|
|
.irq_dma = ETS_SPI1_DMA_INTR_SOURCE,
|
|
.module = PERIPH_SPI_MODULE,
|
|
.hw = &SPI1
|
|
}, {
|
|
.spiclk_out = HSPICLK_OUT_IDX,
|
|
.spiclk_in = HSPICLK_IN_IDX,
|
|
.spid_out = HSPID_OUT_IDX,
|
|
.spiq_out = HSPIQ_OUT_IDX,
|
|
.spiwp_out = HSPIWP_OUT_IDX,
|
|
.spihd_out = HSPIHD_OUT_IDX,
|
|
.spid_in = HSPID_IN_IDX,
|
|
.spiq_in = HSPIQ_IN_IDX,
|
|
.spiwp_in = HSPIWP_IN_IDX,
|
|
.spihd_in = HSPIHD_IN_IDX,
|
|
.spics_out = {HSPICS0_OUT_IDX, HSPICS1_OUT_IDX, HSPICS2_OUT_IDX},
|
|
.spics_in = HSPICS0_IN_IDX,
|
|
.spiclk_native = 14,
|
|
.spid_native = 13,
|
|
.spiq_native = 12,
|
|
.spiwp_native = 2,
|
|
.spihd_native = 4,
|
|
.spics0_native = 15,
|
|
.irq = ETS_SPI2_INTR_SOURCE,
|
|
.irq_dma = ETS_SPI2_DMA_INTR_SOURCE,
|
|
.module = PERIPH_HSPI_MODULE,
|
|
.hw = &SPI2
|
|
}, {
|
|
.spiclk_out = VSPICLK_OUT_IDX,
|
|
.spiclk_in = VSPICLK_IN_IDX,
|
|
.spid_out = VSPID_OUT_IDX,
|
|
.spiq_out = VSPIQ_OUT_IDX,
|
|
.spiwp_out = VSPIWP_OUT_IDX,
|
|
.spihd_out = VSPIHD_OUT_IDX,
|
|
.spid_in = VSPID_IN_IDX,
|
|
.spiq_in = VSPIQ_IN_IDX,
|
|
.spiwp_in = VSPIWP_IN_IDX,
|
|
.spihd_in = VSPIHD_IN_IDX,
|
|
.spics_out = {VSPICS0_OUT_IDX, VSPICS1_OUT_IDX, VSPICS2_OUT_IDX},
|
|
.spics_in = VSPICS0_IN_IDX,
|
|
.spiclk_native = 18,
|
|
.spid_native = 23,
|
|
.spiq_native = 19,
|
|
.spiwp_native = 22,
|
|
.spihd_native = 21,
|
|
.spics0_native = 5,
|
|
.irq = ETS_SPI3_INTR_SOURCE,
|
|
.irq_dma = ETS_SPI3_DMA_INTR_SOURCE,
|
|
.module = PERIPH_VSPI_MODULE,
|
|
.hw = &SPI3
|
|
}
|
|
};
|
|
|
|
#define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1))
|
|
|
|
//Periph 1 is 'claimed' by SPI flash code.
|
|
static bool spi_periph_claimed[3] = {true, false, false};
|
|
static uint8_t spi_dma_chan_enabled = 0;
|
|
static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
|
|
|
|
|
//Returns true if this peripheral is successfully claimed, false if otherwise.
|
|
bool spicommon_periph_claim(spi_host_device_t host)
|
|
{
|
|
bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], false, true);
|
|
if (ret) periph_module_enable(io_signal[host].module);
|
|
return ret;
|
|
}
|
|
|
|
//Returns true if this peripheral is successfully freed, false if otherwise.
|
|
bool spicommon_periph_free(spi_host_device_t host)
|
|
{
|
|
bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], true, false);
|
|
if (ret) periph_module_disable(io_signal[host].module);
|
|
return ret;
|
|
}
|
|
|
|
|
|
int spicommon_irqsource_for_host(spi_host_device_t host)
|
|
{
|
|
return io_signal[host].irq;
|
|
}
|
|
|
|
spi_dev_t *spicommon_hw_for_host(spi_host_device_t host)
|
|
{
|
|
return io_signal[host].hw;
|
|
}
|
|
|
|
bool spicommon_dma_chan_claim (int dma_chan)
|
|
{
|
|
bool ret = false;
|
|
assert( dma_chan == 1 || dma_chan == 2 );
|
|
|
|
portENTER_CRITICAL(&spi_dma_spinlock);
|
|
if ( !(spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan)) ) {
|
|
// get the channel only when it's not claimed yet.
|
|
spi_dma_chan_enabled |= DMA_CHANNEL_ENABLED(dma_chan);
|
|
ret = true;
|
|
}
|
|
periph_module_enable( PERIPH_SPI_DMA_MODULE );
|
|
portEXIT_CRITICAL(&spi_dma_spinlock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool spicommon_dma_chan_free(int dma_chan)
|
|
{
|
|
assert( dma_chan == 1 || dma_chan == 2 );
|
|
assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) );
|
|
|
|
portENTER_CRITICAL(&spi_dma_spinlock);
|
|
spi_dma_chan_enabled &= ~DMA_CHANNEL_ENABLED(dma_chan);
|
|
if ( spi_dma_chan_enabled == 0 ) {
|
|
//disable the DMA only when all the channels are freed.
|
|
periph_module_disable( PERIPH_SPI_DMA_MODULE );
|
|
}
|
|
portEXIT_CRITICAL(&spi_dma_spinlock);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a
|
|
bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value,
|
|
it should be able to be initialized.
|
|
*/
|
|
esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, uint32_t flags, uint32_t* flags_o)
|
|
{
|
|
bool native = true;
|
|
uint32_t temp_flag=0;
|
|
bool quad_pins_exist = true;
|
|
//the MISO should be output capable in slave mode, or in DIO/QIO mode.
|
|
bool miso_output = !(flags&SPICOMMON_BUSFLAG_MASTER) || flags&SPICOMMON_BUSFLAG_DUAL;
|
|
//the MOSI should be output capble in master mode, or in DIO/QIO mode.
|
|
bool mosi_output = (flags&SPICOMMON_BUSFLAG_MASTER)!=0 || flags&SPICOMMON_BUSFLAG_DUAL;
|
|
|
|
//check pins existence and if the selected pins correspond to the native pins of the peripheral
|
|
if (bus_config->sclk_io_num>=0) {
|
|
temp_flag |= SPICOMMON_BUSFLAG_SCLK;
|
|
SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(bus_config->sclk_io_num), "sclk not valid", ESP_ERR_INVALID_ARG);
|
|
if (bus_config->sclk_io_num != io_signal[host].spiclk_native) native = false;
|
|
} else {
|
|
SPI_CHECK((flags&SPICOMMON_BUSFLAG_SCLK)==0, "sclk pin required.", ESP_ERR_INVALID_ARG);
|
|
}
|
|
if (bus_config->quadwp_io_num>=0) {
|
|
SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadwp_io_num), "spiwp not valid", ESP_ERR_INVALID_ARG);
|
|
if (bus_config->quadwp_io_num != io_signal[host].spiwp_native) native = false;
|
|
} else {
|
|
quad_pins_exist = false;
|
|
SPI_CHECK((flags&SPICOMMON_BUSFLAG_WPHD)==0, "spiwp pin required.", ESP_ERR_INVALID_ARG);
|
|
}
|
|
if (bus_config->quadhd_io_num>=0) {
|
|
SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadhd_io_num), "spihd not valid", ESP_ERR_INVALID_ARG);
|
|
if (bus_config->quadhd_io_num != io_signal[host].spihd_native) native = false;
|
|
} else {
|
|
quad_pins_exist = false;
|
|
SPI_CHECK((flags&SPICOMMON_BUSFLAG_WPHD)==0, "spihd pin required.", ESP_ERR_INVALID_ARG);
|
|
}
|
|
if (bus_config->mosi_io_num >= 0) {
|
|
temp_flag |= SPICOMMON_BUSFLAG_MOSI;
|
|
if (mosi_output) {
|
|
SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num), "mosi not valid", ESP_ERR_INVALID_ARG);
|
|
} else {
|
|
SPI_CHECK(GPIO_IS_VALID_GPIO(bus_config->mosi_io_num), "mosi not valid", ESP_ERR_INVALID_ARG);
|
|
}
|
|
if (bus_config->mosi_io_num != io_signal[host].spid_native) native = false;
|
|
} else {
|
|
SPI_CHECK((flags&SPICOMMON_BUSFLAG_MOSI)==0, "mosi pin required.", ESP_ERR_INVALID_ARG);
|
|
}
|
|
if (bus_config->miso_io_num>=0) {
|
|
temp_flag |= SPICOMMON_BUSFLAG_MISO;
|
|
if (miso_output) {
|
|
SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num), "miso not valid", ESP_ERR_INVALID_ARG);
|
|
} else {
|
|
SPI_CHECK(GPIO_IS_VALID_GPIO(bus_config->miso_io_num), "miso not valid", ESP_ERR_INVALID_ARG);
|
|
}
|
|
if (bus_config->miso_io_num != io_signal[host].spiq_native) native = false;
|
|
} else {
|
|
SPI_CHECK((flags&SPICOMMON_BUSFLAG_MISO)==0, "miso pin required.", ESP_ERR_INVALID_ARG);
|
|
}
|
|
//set flags for DUAL mode according to output-capability of MOSI and MISO pins.
|
|
if ( (bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) &&
|
|
(bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num)) ) {
|
|
temp_flag |= SPICOMMON_BUSFLAG_DUAL;
|
|
}
|
|
//set flags for QUAD mode according to the existence of wp and hd
|
|
if (quad_pins_exist) temp_flag |= SPICOMMON_BUSFLAG_WPHD;
|
|
//check native pins if required.
|
|
SPI_CHECK((flags&SPICOMMON_BUSFLAG_NATIVE_PINS)==0 || native, "not using native pins", ESP_ERR_INVALID_ARG);
|
|
|
|
if (native) {
|
|
//All SPI native pin selections resolve to 1, so we put that here instead of trying to figure
|
|
//out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
|
|
ESP_LOGD(SPI_TAG, "SPI%d use native pins.", host );
|
|
if (bus_config->mosi_io_num >= 0) {
|
|
gpio_iomux_in(bus_config->mosi_io_num, io_signal[host].spid_in);
|
|
gpio_iomux_out(bus_config->mosi_io_num, FUNC_SPI, false);
|
|
}
|
|
if (bus_config->miso_io_num >= 0) {
|
|
gpio_iomux_in(bus_config->miso_io_num, io_signal[host].spiq_in);
|
|
gpio_iomux_out(bus_config->miso_io_num, FUNC_SPI, false);
|
|
}
|
|
if (bus_config->quadwp_io_num >= 0) {
|
|
gpio_iomux_in(bus_config->quadwp_io_num, io_signal[host].spiwp_in);
|
|
gpio_iomux_out(bus_config->quadwp_io_num, FUNC_SPI, false);
|
|
}
|
|
if (bus_config->quadhd_io_num >= 0) {
|
|
gpio_iomux_in(bus_config->quadhd_io_num, io_signal[host].spihd_in);
|
|
gpio_iomux_out(bus_config->quadhd_io_num, FUNC_SPI, false);
|
|
}
|
|
if (bus_config->sclk_io_num >= 0) {
|
|
gpio_iomux_in(bus_config->sclk_io_num, io_signal[host].spiclk_in);
|
|
gpio_iomux_out(bus_config->sclk_io_num, FUNC_SPI, false);
|
|
}
|
|
temp_flag |= SPICOMMON_BUSFLAG_NATIVE_PINS;
|
|
} else {
|
|
//Use GPIO matrix
|
|
ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host );
|
|
if (bus_config->mosi_io_num >= 0) {
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], FUNC_GPIO);
|
|
if (mosi_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
|
|
gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT);
|
|
gpio_matrix_out(bus_config->mosi_io_num, io_signal[host].spid_out, false, false);
|
|
} else {
|
|
gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT);
|
|
}
|
|
gpio_matrix_in(bus_config->mosi_io_num, io_signal[host].spid_in, false);
|
|
}
|
|
if (bus_config->miso_io_num >= 0) {
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], FUNC_GPIO);
|
|
if (miso_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
|
|
gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT);
|
|
gpio_matrix_out(bus_config->miso_io_num, io_signal[host].spiq_out, false, false);
|
|
} else {
|
|
gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT);
|
|
}
|
|
gpio_matrix_in(bus_config->miso_io_num, io_signal[host].spiq_in, false);
|
|
}
|
|
if (bus_config->quadwp_io_num >= 0) {
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], FUNC_GPIO);
|
|
gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT);
|
|
gpio_matrix_out(bus_config->quadwp_io_num, io_signal[host].spiwp_out, false, false);
|
|
gpio_matrix_in(bus_config->quadwp_io_num, io_signal[host].spiwp_in, false);
|
|
}
|
|
if (bus_config->quadhd_io_num >= 0) {
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], FUNC_GPIO);
|
|
gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT);
|
|
gpio_matrix_out(bus_config->quadhd_io_num, io_signal[host].spihd_out, false, false);
|
|
gpio_matrix_in(bus_config->quadhd_io_num, io_signal[host].spihd_in, false);
|
|
}
|
|
if (bus_config->sclk_io_num >= 0) {
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], FUNC_GPIO);
|
|
gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT);
|
|
gpio_matrix_out(bus_config->sclk_io_num, io_signal[host].spiclk_out, false, false);
|
|
gpio_matrix_in(bus_config->sclk_io_num, io_signal[host].spiclk_in, false);
|
|
}
|
|
}
|
|
|
|
//Select DMA channel.
|
|
DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
|
|
|
|
if (flags_o) *flags_o = temp_flag;
|
|
return ESP_OK;
|
|
}
|
|
|
|
|
|
//Find any pin with output muxed to ``func`` and reset it to GPIO
|
|
static void reset_func_to_gpio(int func)
|
|
{
|
|
for (int x = 0; x < GPIO_PIN_COUNT; x++) {
|
|
if (GPIO_IS_VALID_GPIO(x) && (READ_PERI_REG(GPIO_FUNC0_OUT_SEL_CFG_REG + (x * 4))&GPIO_FUNC0_OUT_SEL_M) == func) {
|
|
gpio_matrix_out(x, SIG_GPIO_OUT_IDX, false, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
esp_err_t spicommon_bus_free_io(spi_host_device_t host)
|
|
{
|
|
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spid_native], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spid_native], PIN_FUNC_GPIO);
|
|
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spiq_native], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spiq_native], PIN_FUNC_GPIO);
|
|
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spiclk_native], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spiclk_native], PIN_FUNC_GPIO);
|
|
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spiwp_native], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spiwp_native], PIN_FUNC_GPIO);
|
|
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spihd_native], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spihd_native], PIN_FUNC_GPIO);
|
|
reset_func_to_gpio(io_signal[host].spid_out);
|
|
reset_func_to_gpio(io_signal[host].spiq_out);
|
|
reset_func_to_gpio(io_signal[host].spiclk_out);
|
|
reset_func_to_gpio(io_signal[host].spiwp_out);
|
|
reset_func_to_gpio(io_signal[host].spihd_out);
|
|
return ESP_OK;
|
|
}
|
|
|
|
void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix)
|
|
{
|
|
if (!force_gpio_matrix && cs_io_num == io_signal[host].spics0_native && cs_num == 0) {
|
|
//The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
|
|
gpio_iomux_in(cs_io_num, io_signal[host].spics_in);
|
|
gpio_iomux_out(cs_io_num, FUNC_SPI, false);
|
|
} else {
|
|
//Use GPIO matrix
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], FUNC_GPIO);
|
|
gpio_matrix_out(cs_io_num, io_signal[host].spics_out[cs_num], false, false);
|
|
if (cs_num == 0) gpio_matrix_in(cs_io_num, io_signal[host].spics_in, false);
|
|
}
|
|
}
|
|
|
|
void spicommon_cs_free(spi_host_device_t host, int cs_io_num)
|
|
{
|
|
if (cs_io_num == 0 && REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spics0_native], MCU_SEL) == 1) {
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spics0_native], PIN_FUNC_GPIO);
|
|
}
|
|
reset_func_to_gpio(io_signal[host].spics_out[cs_io_num]);
|
|
}
|
|
|
|
//Set up a list of dma descriptors. dmadesc is an array of descriptors. Data is the buffer to point to.
|
|
void spicommon_setup_dma_desc_links(lldesc_t *dmadesc, int len, const uint8_t *data, bool isrx)
|
|
{
|
|
int n = 0;
|
|
while (len) {
|
|
int dmachunklen = len;
|
|
if (dmachunklen > SPI_MAX_DMA_LEN) dmachunklen = SPI_MAX_DMA_LEN;
|
|
if (isrx) {
|
|
//Receive needs DMA length rounded to next 32-bit boundary
|
|
dmadesc[n].size = (dmachunklen + 3) & (~3);
|
|
dmadesc[n].length = (dmachunklen + 3) & (~3);
|
|
} else {
|
|
dmadesc[n].size = dmachunklen;
|
|
dmadesc[n].length = dmachunklen;
|
|
}
|
|
dmadesc[n].buf = (uint8_t *)data;
|
|
dmadesc[n].eof = 0;
|
|
dmadesc[n].sosf = 0;
|
|
dmadesc[n].owner = 1;
|
|
dmadesc[n].qe.stqe_next = &dmadesc[n + 1];
|
|
len -= dmachunklen;
|
|
data += dmachunklen;
|
|
n++;
|
|
}
|
|
dmadesc[n - 1].eof = 1; //Mark last DMA desc as end of stream.
|
|
dmadesc[n - 1].qe.stqe_next = NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
Code for workaround for DMA issue in ESP32 v0/v1 silicon
|
|
*/
|
|
|
|
|
|
static volatile int dmaworkaround_channels_busy[2] = {0, 0};
|
|
static dmaworkaround_cb_t dmaworkaround_cb;
|
|
static void *dmaworkaround_cb_arg;
|
|
static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED;
|
|
static int dmaworkaround_waiting_for_chan = 0;
|
|
|
|
bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
|
|
{
|
|
int otherchan = (dmachan == 1) ? 2 : 1;
|
|
bool ret;
|
|
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
|
|
if (dmaworkaround_channels_busy[otherchan-1]) {
|
|
//Other channel is busy. Call back when it's done.
|
|
dmaworkaround_cb = cb;
|
|
dmaworkaround_cb_arg = arg;
|
|
dmaworkaround_waiting_for_chan = otherchan;
|
|
ret = false;
|
|
} else {
|
|
//Reset DMA
|
|
periph_module_reset( PERIPH_SPI_DMA_MODULE );
|
|
ret = true;
|
|
}
|
|
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
|
|
return ret;
|
|
}
|
|
|
|
bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress()
|
|
{
|
|
return (dmaworkaround_waiting_for_chan != 0);
|
|
}
|
|
|
|
void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan)
|
|
{
|
|
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
|
|
dmaworkaround_channels_busy[dmachan-1] = 0;
|
|
if (dmaworkaround_waiting_for_chan == dmachan) {
|
|
//Reset DMA
|
|
periph_module_reset( PERIPH_SPI_DMA_MODULE );
|
|
dmaworkaround_waiting_for_chan = 0;
|
|
//Call callback
|
|
dmaworkaround_cb(dmaworkaround_cb_arg);
|
|
|
|
}
|
|
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
|
|
}
|
|
|
|
void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan)
|
|
{
|
|
portENTER_CRITICAL_ISR(&dmaworkaround_mux);
|
|
dmaworkaround_channels_busy[dmachan-1] = 1;
|
|
portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
|
|
}
|
|
|
|
|