OVMS3-idf/tools/idf_size.py
2020-02-28 11:55:53 +01:00

560 lines
25 KiB
Python
Executable file

#!/usr/bin/env python
#
# esp-idf alternative to "size" to print ELF file sizes, also analyzes
# the linker map file to dump higher resolution details.
#
# Includes information which is not shown in "xtensa-esp32-elf-size",
# or easy to parse from "xtensa-esp32-elf-objdump" or raw map files.
#
# Copyright 2017-2020 Espressif Systems (Shanghai) PTE LTD
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from future.utils import iteritems
import argparse
import collections
import json
import os.path
import re
import sys
DEFAULT_TOOLCHAIN_PREFIX = "xtensa-esp32-elf-"
GLOBAL_JSON_INDENT = 4
GLOBAL_JSON_SEPARATORS = (',', ': ')
class MemRegions(object):
(DRAM_ID, IRAM_ID, DIRAM_ID) = range(3)
@staticmethod
def get_mem_regions(target):
# The target specific memory structure is deduced from soc_memory_types defined in
# $IDF_PATH/components/soc/**/soc_memory_layout.c files.
# The order of variables in the tuple is the same as in the soc_memory_layout.c files
MemRegDef = collections.namedtuple('MemRegDef', ['primary_addr', 'length', 'type', 'secondary_addr'])
if target == 'esp32':
return sorted([
# Consecutive MemRegDefs of the same type are joined into one MemRegDef
MemRegDef(0x3FFAE000, 17 * 0x2000 + 4 * 0x8000 + 4 * 0x4000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFAE000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFB0000, 0x8000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFB8000, 0x8000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFC0000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFC2000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFC4000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFC6000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFC8000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFCA000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFCC000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFCE000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFD0000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFD2000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFD4000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFD6000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFD8000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFDA000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFDC000, 0x2000, MemRegions.DRAM_ID, 0),
# MemRegDef(0x3FFDE000, 0x2000, MemRegions.DRAM_ID, 0),
#
# The bootloader is there and it has to been counted as DRAM
# MemRegDef(0x3FFE0000, 0x4000, MemRegions.DIRAM_ID, 0x400BC000),
# MemRegDef(0x3FFE4000, 0x4000, MemRegions.DIRAM_ID, 0x400B8000),
# MemRegDef(0x3FFE8000, 0x8000, MemRegions.DIRAM_ID, 0x400B0000),
# MemRegDef(0x3FFF0000, 0x8000, MemRegions.DIRAM_ID, 0x400A8000),
# MemRegDef(0x3FFF8000, 0x4000, MemRegions.DIRAM_ID, 0x400A4000),
# MemRegDef(0x3FFFC000, 0x4000, MemRegions.DIRAM_ID, 0x400A0000),
#
MemRegDef(0x40070000, 2 * 0x8000 + 16 * 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40070000, 0x8000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40078000, 0x8000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40080000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40082000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40084000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40086000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40088000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x4008A000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x4008C000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x4008E000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40090000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40092000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40094000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40096000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x40098000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x4009A000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x4009C000, 0x2000, MemRegions.IRAM_ID, 0),
# MemRegDef(0x4009E000, 0x2000, MemRegions.IRAM_ID, 0),
])
elif target == 'esp32s2':
return sorted([
MemRegDef(0x3FFB2000, 3 * 0x2000 + 18 * 0x4000, MemRegions.DIRAM_ID, 0x40022000),
# MemRegDef(0x3FFB2000, 0x2000, MemRegions.DIRAM_ID, 0x40022000),
# MemRegDef(0x3FFB4000, 0x2000, MemRegions.DIRAM_ID, 0x40024000),
# MemRegDef(0x3FFB6000, 0x2000, MemRegions.DIRAM_ID, 0x40026000),
# MemRegDef(0x3FFB8000, 0x4000, MemRegions.DIRAM_ID, 0x40028000),
# MemRegDef(0x3FFBC000, 0x4000, MemRegions.DIRAM_ID, 0x4002C000),
# MemRegDef(0x3FFC0000, 0x4000, MemRegions.DIRAM_ID, 0x40030000),
# MemRegDef(0x3FFC4000, 0x4000, MemRegions.DIRAM_ID, 0x40034000),
# MemRegDef(0x3FFC8000, 0x4000, MemRegions.DIRAM_ID, 0x40038000),
# MemRegDef(0x3FFCC000, 0x4000, MemRegions.DIRAM_ID, 0x4003C000),
# MemRegDef(0x3FFD0000, 0x4000, MemRegions.DIRAM_ID, 0x40040000),
# MemRegDef(0x3FFD4000, 0x4000, MemRegions.DIRAM_ID, 0x40044000),
# MemRegDef(0x3FFD8000, 0x4000, MemRegions.DIRAM_ID, 0x40048000),
# MemRegDef(0x3FFDC000, 0x4000, MemRegions.DIRAM_ID, 0x4004C000),
# MemRegDef(0x3FFE0000, 0x4000, MemRegions.DIRAM_ID, 0x40050000),
#
# MemRegDef(0x3FFE4000, 0x4000, MemRegions.DIRAM_ID, 0x40054000),
# MemRegDef(0x3FFE8000, 0x4000, MemRegions.DIRAM_ID, 0x40058000),
# MemRegDef(0x3FFEC000, 0x4000, MemRegions.DIRAM_ID, 0x4005C000),
# MemRegDef(0x3FFF0000, 0x4000, MemRegions.DIRAM_ID, 0x40060000),
# MemRegDef(0x3FFF4000, 0x4000, MemRegions.DIRAM_ID, 0x40064000),
# MemRegDef(0x3FFF8000, 0x4000, MemRegions.DIRAM_ID, 0x40068000),
# MemRegDef(0x3FFFC000, 0x4000, MemRegions.DIRAM_ID, 0x4006C000),
])
else:
return None
def __init__(self, target):
self.chip_mem_regions = self.get_mem_regions(target)
if not self.chip_mem_regions:
raise RuntimeError('Target {} is not implemented in idf_size'.format(target))
def _address_in_range(self, address, length, reg_address, reg_length):
return address >= reg_address and (address - reg_address) <= (reg_length - length)
def get_names(self, dictionary, region_id):
def get_address(d):
try:
return d['address']
except KeyError:
return d['origin']
def get_size(d):
try:
return d['size']
except KeyError:
return d['length']
result = set() # using a set will remove possible duplicates and consequent operations with sets are more
# efficient
for m in self.chip_mem_regions:
if m.type != region_id:
continue
# the following code is intentionally not a one-liner for better readability
for (n, c) in iteritems(dictionary):
if (self._address_in_range(get_address(c), get_size(c), m.primary_addr, m.length) or
(m.type == self.DIRAM_ID and
self._address_in_range(get_address(c), get_size(c), m.secondary_addr, m.length))):
result.add(n)
return result
def scan_to_header(f, header_line):
""" Scan forward in a file until you reach 'header_line', then return """
for line in f:
if line.strip() == header_line:
return
raise RuntimeError("Didn't find line '%s' in file" % header_line)
def format_json(json_object):
return json.dumps(json_object, indent=GLOBAL_JSON_INDENT, separators=GLOBAL_JSON_SEPARATORS) + "\n"
def load_map_data(map_file):
memory_config = load_memory_config(map_file)
sections = load_sections(map_file)
return memory_config, sections
def load_memory_config(map_file):
""" Memory Configuration section is the total size of each output section """
result = {}
scan_to_header(map_file, "Memory Configuration")
RE_MEMORY_SECTION = re.compile(r"(?P<name>[^ ]+) +0x(?P<origin>[\da-f]+) +0x(?P<length>[\da-f]+)")
for line in map_file:
m = RE_MEMORY_SECTION.match(line)
if m is None:
if len(result) == 0:
continue # whitespace or a header, before the content we want
else:
return result # we're at the end of the Memory Configuration
section = {
"name": m.group("name"),
"origin": int(m.group("origin"), 16),
"length": int(m.group("length"), 16),
}
if section["name"] != "*default*":
result[section["name"]] = section
raise RuntimeError("End of file while scanning memory configuration?")
def load_sections(map_file):
""" Load section size information from the MAP file.
Returns a dict of 'sections', where each key is a section name and the value
is a dict with details about this section, including a "sources" key which holds a list of source file line
information for each symbol linked into the section.
"""
scan_to_header(map_file, "Linker script and memory map")
# output section header, ie '.iram0.text 0x0000000040080400 0x129a5'
RE_SECTION_HEADER = re.compile(r"(?P<name>[^ ]+) +0x(?P<address>[\da-f]+) +0x(?P<size>[\da-f]+)$")
# source file line, ie
# 0x0000000040080400 0xa4 /home/gus/esp/32/idf/examples/get-started/hello_world/build/esp32/libesp32.a(cpu_start.o)
# cmake build system links some object files directly, not part of any archive, so make that part optional
# .xtensa.info 0x0000000000000000 0x38 CMakeFiles/hello-world.elf.dir/project_elf_src.c.obj
RE_SOURCE_LINE = re.compile(r"\s*(?P<sym_name>\S*) +0x(?P<address>[\da-f]+) +0x(?P<size>[\da-f]+) (?P<archive>.+\.a)?\(?(?P<object_file>.+\.(o|obj))\)?")
# Fast check to see if line is a potential source line before running the slower full regex against it
RE_PRE_FILTER = re.compile(r".*\.(o|obj)\)?")
# Check for lines which only contain the sym name (and rest is on following lines)
RE_SYMBOL_ONLY_LINE = re.compile(r"^ (?P<sym_name>\S*)$")
sections = {}
section = None
sym_backup = None
for line in map_file:
if line.strip() == "Cross Reference Table":
# stop processing lines because we are at the next section in the map file
break
m = RE_SECTION_HEADER.match(line)
if m is not None: # start of a new section
section = {
"name": m.group("name"),
"address": int(m.group("address"), 16),
"size": int(m.group("size"), 16),
"sources": [],
}
sections[section["name"]] = section
continue
if section is not None:
m = RE_SYMBOL_ONLY_LINE.match(line)
if m is not None:
# In some cases the section name appears on the previous line, back it up in here
sym_backup = m.group("sym_name")
continue
if not RE_PRE_FILTER.match(line):
# line does not match our quick check, so skip to next line
continue
m = RE_SOURCE_LINE.match(line)
if m is not None: # input source file details=ma,e
sym_name = m.group("sym_name") if len(m.group("sym_name")) > 0 else sym_backup
archive = m.group("archive")
if archive is None:
# optional named group "archive" was not matched, so assign a value to it
archive = "(exe)"
source = {
"size": int(m.group("size"), 16),
"address": int(m.group("address"), 16),
"archive": os.path.basename(archive),
"object_file": os.path.basename(m.group("object_file")),
"sym_name": sym_name,
}
source["file"] = "%s:%s" % (source["archive"], source["object_file"])
section["sources"] += [source]
return sections
def sizes_by_key(sections, key):
""" Takes a dict of sections (from load_sections) and returns
a dict keyed by 'key' with aggregate output size information.
Key can be either "archive" (for per-archive data) or "file" (for per-file data) in the result.
"""
result = {}
for section in sections.values():
for s in section["sources"]:
if not s[key] in result:
result[s[key]] = {}
archive = result[s[key]]
if not section["name"] in archive:
archive[section["name"]] = 0
archive[section["name"]] += s["size"]
return result
def main():
parser = argparse.ArgumentParser(description="idf_size - a tool to print size information from an IDF MAP file")
parser.add_argument(
# FIXME: toolchain is not used
'--toolchain-prefix',
help="Triplet prefix to add before objdump executable",
default=DEFAULT_TOOLCHAIN_PREFIX)
parser.add_argument(
'--json',
help="Output results as JSON",
action="store_true")
parser.add_argument(
'map_file', help='MAP file produced by linker',
type=argparse.FileType('r'))
parser.add_argument(
'--archives', help='Print per-archive sizes', action='store_true')
parser.add_argument(
'--archive_details', help='Print detailed symbols per archive')
parser.add_argument(
'--files', help='Print per-file sizes', action='store_true')
parser.add_argument(
'--target', help='Set target chip', default='esp32')
parser.add_argument(
'-o',
'--output-file',
type=argparse.FileType('w'),
default=sys.stdout,
help="Print output to the specified file instead of stdout")
args = parser.parse_args()
mem_regions = MemRegions(args.target)
output = ""
memory_config, sections = load_map_data(args.map_file)
MemRegNames = collections.namedtuple('MemRegNames', ['iram_names', 'dram_names', 'diram_names', 'used_iram_names',
'used_dram_names', 'used_diram_names'])
mem_reg = MemRegNames
mem_reg.iram_names = mem_regions.get_names(memory_config, MemRegions.IRAM_ID)
mem_reg.dram_names = mem_regions.get_names(memory_config, MemRegions.DRAM_ID)
mem_reg.diram_names = mem_regions.get_names(memory_config, MemRegions.DIRAM_ID)
mem_reg.used_iram_names = mem_regions.get_names(sections, MemRegions.IRAM_ID)
mem_reg.used_dram_names = mem_regions.get_names(sections, MemRegions.DRAM_ID)
mem_reg.used_diram_names = mem_regions.get_names(sections, MemRegions.DIRAM_ID)
if not args.json or not (args.archives or args.files or args.archive_details):
output += get_summary(mem_reg, memory_config, sections, args.json)
if args.archives:
output += get_detailed_sizes(mem_reg, sections, "archive", "Archive File", args.json)
if args.files:
output += get_detailed_sizes(mem_reg, sections, "file", "Object File", args.json)
if args.archive_details:
output += get_archive_symbols(mem_reg, sections, args.archive_details, args.json)
args.output_file.write(output)
def get_summary(mem_reg, memory_config, sections, as_json=False):
def get_size(section):
try:
return sections[section]["size"]
except KeyError:
return 0
dram_data_names = frozenset([n for n in mem_reg.used_dram_names if n.endswith('.data')])
dram_bss_names = frozenset([n for n in mem_reg.used_dram_names if n.endswith('.bss')])
dram_other_names = mem_reg.used_dram_names - dram_data_names - dram_bss_names
diram_data_names = frozenset([n for n in mem_reg.used_diram_names if n.endswith('.data')])
diram_bss_names = frozenset([n for n in mem_reg.used_diram_names if n.endswith('.bss')])
total_iram = sum(memory_config[n]["length"] for n in mem_reg.iram_names)
total_dram = sum(memory_config[n]["length"] for n in mem_reg.dram_names)
total_diram = sum(memory_config[n]["length"] for n in mem_reg.diram_names)
used_dram_data = sum(get_size(n) for n in dram_data_names)
used_dram_bss = sum(get_size(n) for n in dram_bss_names)
used_dram_other = sum(get_size(n) for n in dram_other_names)
used_dram = used_dram_data + used_dram_bss + used_dram_other
try:
used_dram_ratio = used_dram / total_dram
except ZeroDivisionError:
used_dram_ratio = float('nan')
used_iram = sum(get_size(s) for s in sections if s in mem_reg.used_iram_names)
try:
used_iram_ratio = used_iram / total_iram
except ZeroDivisionError:
used_iram_ratio = float('nan')
used_diram_data = sum(get_size(n) for n in diram_data_names)
used_diram_bss = sum(get_size(n) for n in diram_bss_names)
used_diram = sum(get_size(n) for n in mem_reg.used_diram_names)
try:
used_diram_ratio = used_diram / total_diram
except ZeroDivisionError:
used_diram_ratio = float('nan')
flash_code = get_size(".flash.text")
flash_rodata = get_size(".flash.rodata")
total_size = used_dram + used_iram + used_diram + flash_code + flash_rodata
output = ""
if as_json:
output = format_json(collections.OrderedDict([
("dram_data", used_dram_data + used_diram_data),
("dram_bss", used_dram_bss + used_diram_bss),
("dram_other", used_dram_other),
("used_dram", used_dram),
("available_dram", total_dram - used_dram),
("used_dram_ratio", used_dram_ratio if total_dram != 0 else 0),
("used_iram", used_iram),
("available_iram", total_iram - used_iram),
("used_iram_ratio", used_iram_ratio if total_iram != 0 else 0),
("used_diram", used_diram),
("available_diram", total_diram - used_diram),
("used_diram_ratio", used_diram_ratio if total_diram != 0 else 0),
("flash_code", flash_code),
("flash_rodata", flash_rodata),
("total_size", total_size)
]))
else:
output += "Total sizes:\n"
output += " DRAM .data size: {:>7} bytes\n".format(used_dram_data + used_diram_data)
output += " DRAM .bss size: {:>7} bytes\n".format(used_dram_bss + used_diram_bss)
if used_dram_other > 0:
output += " DRAM other size: {:>7} bytes ({})\n".format(used_dram_other, ', '.join(dram_other_names))
output += "Used static DRAM: {:>7} bytes ({:>7} available, {:.1%} used)\n".format(
used_dram, total_dram - used_dram, used_dram_ratio)
output += "Used static IRAM: {:>7} bytes ({:>7} available, {:.1%} used)\n".format(
used_iram, total_iram - used_iram, used_iram_ratio)
if total_diram > 0:
output += "Used stat D/IRAM: {:>7} bytes ({:>7} available, {:.1%} used)\n".format(
used_diram, total_diram - used_diram, used_diram_ratio)
output += " Flash code: {:>7} bytes\n".format(flash_code)
output += " Flash rodata: {:>7} bytes\n".format(flash_rodata)
output += "Total image size:~{:>7} bytes (.bin may be padded larger)\n".format(total_size)
return output
def get_detailed_sizes(mem_reg, sections, key, header, as_json=False):
sizes = sizes_by_key(sections, key)
# these sets are also computed in get_summary() but they are small ones so it should not matter
dram_data_names = frozenset([n for n in mem_reg.used_dram_names if n.endswith('.data')])
dram_bss_names = frozenset([n for n in mem_reg.used_dram_names if n.endswith('.bss')])
dram_other_names = mem_reg.used_dram_names - dram_data_names - dram_bss_names
diram_data_names = frozenset([n for n in mem_reg.used_diram_names if n.endswith('.data')])
diram_bss_names = frozenset([n for n in mem_reg.used_diram_names if n.endswith('.bss')])
result = {}
for k in sizes:
v = sizes[k]
r = collections.OrderedDict()
r["data"] = sum(v.get(n, 0) for n in dram_data_names | diram_data_names)
r["bss"] = sum(v.get(n, 0) for n in dram_bss_names | diram_bss_names)
r["other"] = sum(v.get(n, 0) for n in dram_other_names)
r["iram"] = sum(t for (s,t) in iteritems(v) if s in mem_reg.used_iram_names)
r["diram"] = sum(t for (s,t) in iteritems(v) if s in mem_reg.used_diram_names)
r["flash_text"] = v.get(".flash.text", 0)
r["flash_rodata"] = v.get(".flash.rodata", 0)
r["total"] = sum(r.values())
result[k] = r
s = sorted(list(result.items()), key=lambda elem: elem[0])
# do a secondary sort in order to have consistent order (for diff-ing the output)
s = sorted(s, key=lambda elem: elem[1]['total'], reverse=True)
output = ""
if as_json:
output = format_json(collections.OrderedDict(s))
else:
header_format = "{:>24} {:>10} {:>6} {:>7} {:>6} {:>8} {:>10} {:>8} {:>7}\n"
output += "Per-{} contributions to ELF file:\n".format(key)
output += header_format.format(header,
"DRAM .data",
"& .bss",
"& other",
"IRAM",
"D/IRAM",
"Flash code",
"& rodata",
"Total")
for k,v in s:
if ":" in k: # print subheadings for key of format archive:file
sh,k = k.split(":")
output += header_format.format(k[:24],
v["data"],
v["bss"],
v["other"],
v["iram"],
v["diram"],
v["flash_text"],
v["flash_rodata"],
v["total"])
return output
def get_archive_symbols(mem_reg, sections, archive, as_json=False):
interested_sections = mem_reg.used_dram_names | mem_reg.used_iram_names | mem_reg.used_diram_names
interested_sections |= frozenset([".flash.text", ".flash.rodata"])
# sort the list for consistent order in the output
interested_sections = sorted(list(interested_sections))
result = {}
for t in interested_sections:
result[t] = {}
for section in sections.values():
section_name = section["name"]
if section_name not in interested_sections:
continue
for s in section["sources"]:
if archive != s["archive"]:
continue
s["sym_name"] = re.sub("(.text.|.literal.|.data.|.bss.|.rodata.)", "", s["sym_name"])
result[section_name][s["sym_name"]] = result[section_name].get(s["sym_name"], 0) + s["size"]
# build a new ordered dict of each section, where each entry is an ordereddict of symbols to sizes
section_symbols = collections.OrderedDict()
for t in interested_sections:
s = sorted(list(result[t].items()), key=lambda k_v: k_v[0])
# do a secondary sort in order to have consistent order (for diff-ing the output)
s = sorted(s, key=lambda k_v: k_v[1], reverse=True)
section_symbols[t] = collections.OrderedDict(s)
output = ""
if as_json:
output = format_json(section_symbols)
else:
output += "Symbols within the archive: {} (Not all symbols may be reported)\n".format(archive)
for t,s in section_symbols.items():
section_total = 0
output += "\nSymbols from section: {}\n".format(t)
for key, val in s.items():
output += "{}({}) ".format(key.replace(t + ".", ""), val)
section_total += val
output += "\nSection total: {}\n".format(section_total)
return output
if __name__ == "__main__":
main()