OVMS3-idf/components/esp32/test/test_esp_timer.c
Ivan Grokhotkov 6e7eb3c776 esp_timer: fix for the case when timer is deleted in callback
Timer callback can delete the timer. If CONFIG_ESP_TIMER_PROFILING was
enabled, this caused an access to invalid (freed) memory.
This fix adds a pointer to track the timer while executing the callback.
This is needed so that we can check if callback deletes the timer,
in which case we won't try updating profiling counters for this timer
after the callback is done.
2017-11-29 11:44:46 +08:00

417 lines
13 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include "unity.h"
#include "esp_timer.h"
#include "esp_heap_caps.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "test_utils.h"
TEST_CASE("esp_timer orders timers correctly", "[esp_timer]")
{
void dummy_cb(void* arg)
{
}
uint64_t timeouts[] = { 10000, 1000, 10000, 5000, 20000, 1000 };
size_t indices[] = { 3, 0, 4, 2, 5, 1 };
const size_t num_timers = sizeof(timeouts)/sizeof(timeouts[0]);
esp_timer_handle_t handles[num_timers];
char* names[num_timers];
for (size_t i = 0; i < num_timers; ++i) {
asprintf(&names[i], "timer%d", i);
esp_timer_create_args_t args = {
.callback = &dummy_cb,
.name = names[i]
};
TEST_ESP_OK(esp_timer_create(&args, &handles[i]));
TEST_ESP_OK(esp_timer_start_once(handles[i], timeouts[i] * 100));
}
char* stream_str[1024];
FILE* stream = fmemopen(stream_str, sizeof(stream_str), "r+");
TEST_ESP_OK(esp_timer_dump(stream));
for (size_t i = 0; i < num_timers; ++i) {
TEST_ESP_OK(esp_timer_stop(handles[i]));
TEST_ESP_OK(esp_timer_delete(handles[i]));
free(names[i]);
}
fflush(stream);
fseek(stream, 0, SEEK_SET);
for (size_t i = 0; i < num_timers; ++i) {
char line[128];
TEST_ASSERT_NOT_NULL(fgets(line, sizeof(line), stream));
#if WITH_PROFILING
int timer_id;
sscanf(line, "timer%d", &timer_id);
TEST_ASSERT_EQUAL(indices[timer_id], i);
#else
intptr_t timer_ptr;
sscanf(line, "timer@0x%x", &timer_ptr);
for (size_t j = 0; j < num_timers; ++j) {
if (indices[j] == i) {
TEST_ASSERT_EQUAL_PTR(handles[j], timer_ptr);
break;
}
}
#endif
}
fclose(stream);
}
TEST_CASE("esp_timer produces correct delay", "[esp_timer]")
{
void timer_func(void* arg)
{
int64_t* p_end = (int64_t*) arg;
*p_end = ref_clock_get();
}
int64_t t_end;
esp_timer_handle_t timer1;
esp_timer_create_args_t args = {
.callback = &timer_func,
.arg = &t_end,
.name = "timer1"
};
TEST_ESP_OK(esp_timer_create(&args, &timer1));
const int delays_ms[] = {20, 100, 200, 250};
const size_t delays_count = sizeof(delays_ms)/sizeof(delays_ms[0]);
ref_clock_init();
for (size_t i = 0; i < delays_count; ++i) {
t_end = 0;
int64_t t_start = ref_clock_get();
TEST_ESP_OK(esp_timer_start_once(timer1, delays_ms[i] * 1000));
vTaskDelay(delays_ms[i] * 2 / portTICK_PERIOD_MS);
TEST_ASSERT(t_end != 0);
int32_t ms_diff = (t_end - t_start) / 1000;
printf("%d %d\n", delays_ms[i], ms_diff);
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, delays_ms[i], ms_diff);
}
ref_clock_deinit();
TEST_ESP_OK( esp_timer_dump(stdout) );
esp_timer_delete(timer1);
}
TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]")
{
// no, we can't make this a const size_t (§6.7.5.2)
#define NUM_INTERVALS 16
typedef struct {
esp_timer_handle_t timer;
size_t cur_interval;
int intervals[NUM_INTERVALS];
int64_t t_start;
SemaphoreHandle_t done;
} test_args_t;
void timer_func(void* arg)
{
test_args_t* p_args = (test_args_t*) arg;
int64_t t_end = ref_clock_get();
int32_t ms_diff = (t_end - p_args->t_start) / 1000;
printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
p_args->intervals[p_args->cur_interval++] = ms_diff;
// Deliberately make timer handler run longer.
// We check that this doesn't affect the result.
ets_delay_us(10*1000);
if (p_args->cur_interval == NUM_INTERVALS) {
printf("done\n");
TEST_ESP_OK(esp_timer_stop(p_args->timer));
xSemaphoreGive(p_args->done);
}
}
const int delay_ms = 100;
test_args_t args = {0};
esp_timer_handle_t timer1;
esp_timer_create_args_t create_args = {
.callback = &timer_func,
.arg = &args,
.name = "timer1",
};
TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
ref_clock_init();
args.timer = timer1;
args.t_start = ref_clock_get();
args.done = xSemaphoreCreateBinary();
TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000));
TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * NUM_INTERVALS * 2));
TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval);
for (size_t i = 0; i < NUM_INTERVALS; ++i) {
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]);
}
ref_clock_deinit();
TEST_ESP_OK( esp_timer_dump(stdout) );
TEST_ESP_OK( esp_timer_delete(timer1) );
vSemaphoreDelete(args.done);
#undef NUM_INTERVALS
}
TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
{
#define N 5
typedef struct {
const int order[N * 3];
size_t count;
} test_common_t;
typedef struct {
int timer_index;
const int intervals[N];
size_t intervals_count;
esp_timer_handle_t timer;
test_common_t* common;
bool pass;
SemaphoreHandle_t done;
int64_t t_start;
} test_args_t;
void timer_func(void* arg)
{
test_args_t* p_args = (test_args_t*) arg;
// check order
size_t count = p_args->common->count;
int expected_index = p_args->common->order[count];
int ms_since_start = (ref_clock_get() - p_args->t_start) / 1000;
printf("Time %dms, at count %d, expected timer %d, got timer %d\n",
ms_since_start, count, expected_index, p_args->timer_index);
if (expected_index != p_args->timer_index) {
p_args->pass = false;
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
p_args->common->count++;
if (++p_args->intervals_count == N) {
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
int next_interval = p_args->intervals[p_args->intervals_count];
printf("starting timer %d interval #%d, %d ms\n",
p_args->timer_index, p_args->intervals_count, next_interval);
esp_timer_start_once(p_args->timer, next_interval * 1000);
}
test_common_t common = {
.order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2},
.count = 0
};
SemaphoreHandle_t done = xSemaphoreCreateCounting(3, 0);
ref_clock_init();
int64_t now = ref_clock_get();
test_args_t args1 = {
.timer_index = 1,
.intervals = {10, 40, 20, 40, 30},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
test_args_t args2 = {
.timer_index = 2,
.intervals = {20, 20, 60, 30, 40},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
test_args_t args3 = {
.timer_index = 3,
.intervals = {30, 30, 60, 30, 10},
.common = &common,
.pass = true,
.done = done,
.t_start = now
};
esp_timer_create_args_t create_args = {
.callback = &timer_func,
.arg = &args1,
.name = "1"
};
TEST_ESP_OK(esp_timer_create(&create_args, &args1.timer));
create_args.name = "2";
create_args.arg = &args2;
TEST_ESP_OK(esp_timer_create(&create_args, &args2.timer));
create_args.name = "3";
create_args.arg = &args3;
TEST_ESP_OK(esp_timer_create(&create_args, &args3.timer));
esp_timer_start_once(args1.timer, args1.intervals[0] * 1000);
esp_timer_start_once(args2.timer, args2.intervals[0] * 1000);
esp_timer_start_once(args3.timer, args3.intervals[0] * 1000);
for (int i = 0; i < 3; ++i) {
int result = xSemaphoreTake(done, 1000 / portTICK_PERIOD_MS);
TEST_ASSERT_TRUE(result == pdPASS);
}
TEST_ASSERT_TRUE(args1.pass);
TEST_ASSERT_TRUE(args2.pass);
TEST_ASSERT_TRUE(args3.pass);
ref_clock_deinit();
TEST_ESP_OK( esp_timer_dump(stdout) );
TEST_ESP_OK( esp_timer_delete(args1.timer) );
TEST_ESP_OK( esp_timer_delete(args2.timer) );
TEST_ESP_OK( esp_timer_delete(args3.timer) );
#undef N
}
/* Create two timers, start them around the same time, and search through
* timeout delta values to reproduce the case when timeouts occur close to
* each other, testing the "multiple timers triggered" code path in timer_process_alarm.
*/
TEST_CASE("esp_timer for very short intervals", "[esp_timer]")
{
SemaphoreHandle_t semaphore = xSemaphoreCreateCounting(2, 0);
void timer_func(void* arg) {
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
xSemaphoreGive(done);
printf(".");
}
esp_timer_create_args_t timer_args = {
.callback = &timer_func,
.arg = (void*) semaphore,
.name = "foo"
};
esp_timer_handle_t timer1, timer2;
ESP_ERROR_CHECK( esp_timer_create(&timer_args, &timer1) );
ESP_ERROR_CHECK( esp_timer_create(&timer_args, &timer2) );
const int timeout_ms = 10;
for (int timeout_delta_us = -150; timeout_delta_us < 150; timeout_delta_us++) {
printf("delta=%d", timeout_delta_us);
ESP_ERROR_CHECK( esp_timer_start_once(timer1, timeout_ms * 1000) );
ESP_ERROR_CHECK( esp_timer_start_once(timer2, timeout_ms * 1000 + timeout_delta_us) );
TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2));
TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2));
printf("\n");
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer1));
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer2));
}
vSemaphoreDelete(semaphore);
}
TEST_CASE("esp_timer_get_time call takes less than 1us", "[esp_timer]")
{
int64_t begin = esp_timer_get_time();
volatile int64_t end;
const int iter_count = 10000;
for (int i = 0; i < iter_count; ++i) {
end = esp_timer_get_time();
}
int ns_per_call = (int) ((end - begin) * 1000 / iter_count);
TEST_PERFORMANCE_LESS_THAN(ESP_TIMER_GET_TIME_PER_CALL, "%dns", ns_per_call);
}
/* This test runs for about 10 minutes and is disabled in CI.
* Such run time is needed to have FRC2 timer overflow a few times.
*/
TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer][ignore]")
{
void timer_test_task(void* arg) {
int64_t delta = esp_timer_get_time() - ref_clock_get();
const int iter_count = 1000000000;
for (int i = 0; i < iter_count; ++i) {
int64_t now = esp_timer_get_time();
int64_t ref_now = ref_clock_get();
int64_t diff = now - (ref_now + delta);
/* Allow some difference due to rtos tick interrupting task between
* getting 'now' and 'ref_now'.
*/
TEST_ASSERT_INT32_WITHIN(100, 0, (int) diff);
}
xSemaphoreGive((SemaphoreHandle_t) arg);
vTaskDelete(NULL);
}
ref_clock_init();
SemaphoreHandle_t done_1 = xSemaphoreCreateBinary();
SemaphoreHandle_t done_2 = xSemaphoreCreateBinary();
xTaskCreatePinnedToCore(&timer_test_task, "t1", 4096, (void*) done_1, 6, NULL, 0);
xTaskCreatePinnedToCore(&timer_test_task, "t2", 4096, (void*) done_2, 6, NULL, 1);
TEST_ASSERT_TRUE( xSemaphoreTake(done_1, portMAX_DELAY) );
TEST_ASSERT_TRUE( xSemaphoreTake(done_2, portMAX_DELAY) );
vSemaphoreDelete(done_1);
vSemaphoreDelete(done_2);
ref_clock_deinit();
}
TEST_CASE("Can dump esp_timer stats", "[esp_timer]")
{
esp_timer_dump(stdout);
}
TEST_CASE("Can delete timer from callback", "[esp_timer]")
{
typedef struct {
SemaphoreHandle_t notify_from_timer_cb;
esp_timer_handle_t timer;
} test_arg_t;
void timer_func(void* varg)
{
test_arg_t arg = *(test_arg_t*) varg;
esp_timer_delete(arg.timer);
printf("Timer %p is deleted\n", arg.timer);
xSemaphoreGive(arg.notify_from_timer_cb);
}
test_arg_t args = {
.notify_from_timer_cb = xSemaphoreCreateBinary(),
};
esp_timer_create_args_t timer_args = {
.callback = &timer_func,
.arg = &args,
.name = "self_deleter"
};
esp_timer_create(&timer_args, &args.timer);
esp_timer_start_once(args.timer, 10000);
TEST_ASSERT_TRUE(xSemaphoreTake(args.notify_from_timer_cb, 1000 / portTICK_PERIOD_MS));
printf("Checking heap at %p\n", args.timer);
TEST_ASSERT_TRUE(heap_caps_check_integrity_addr((intptr_t) args.timer, true));
vSemaphoreDelete(args.notify_from_timer_cb);
}