OVMS3-idf/components/bt/esp_ble_mesh/mesh_core/adv.c
lly e24641cc89 ble_mesh: Miscellaneous modifications
1. Add an API to set Provisioner static oob value
2. Add an API to deinit BLE Mesh stack
3. Add an API to set Provisioner unicast address
4. Add an API to provision devices with fixed address
5. Add an API to store node composition data
6. Add an API to get node with device uuid
7. Add an API to get node with unicast address
8. Add an API to delete node with device uuid
9. Add an API to delete node with unicast address
10. Add an API for Provisioner to update local AppKey
11. Add an API for Provisioner to update local NetKey
12. Support Provisioner persistent functionality
13. Fix Provisioner entering IV Update procedure
14. Fix an issue which may cause client failing to send msg
15. Use bt_mesh.flags to indicate device role
16. Remove several useless macros
17. Callback RSSI of received mesh provisioning packets
18. Modify the Provisioner disable function
19. Change some log level from debug to info
20. Add parameters to Provisioner bind AppKey completion event
21. Fix node ignoring relay messages issue
22. Support using a specific partition for BLE Mesh
23. Fix compile warning when proxy related macros are disabled
24. Clean up BLE Mesh stack included header files
25. NULL can be input if client message needs no parameters
26. Fix compile warning when BT log is disabled
27. Initilize BLE Mesh stack local variables
28. Support using PSRAM for BLE Mesh mutex, queue and task
29. Add a menuconfig option to enable using memory from PSRAM
30. Clean up sdkconfig.defaults of BLE Mesh examples
2020-02-27 14:42:25 +08:00

867 lines
27 KiB
C

/* Bluetooth Mesh */
/*
* Copyright (c) 2017 Intel Corporation
* Additional Copyright (c) 2018 Espressif Systems (Shanghai) PTE LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/task.h"
#include "osi/thread.h"
#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BLE_MESH_DEBUG_ADV)
#include "mesh.h"
#include "mesh_hci.h"
#include "adv.h"
#include "beacon.h"
#include "prov.h"
#include "foundation.h"
#include "proxy_server.h"
#include "proxy_client.h"
#include "provisioner_prov.h"
#include "mesh_bearer_adapt.h"
/* Convert from ms to 0.625ms units */
#define ADV_SCAN_UNIT(_ms) ((_ms) * 8 / 5)
/* Window and Interval are equal for continuous scanning */
#define MESH_SCAN_INTERVAL 0x20
#define MESH_SCAN_WINDOW 0x20
/* Pre-5.0 controllers enforce a minimum interval of 100ms
* whereas 5.0+ controllers can go down to 20ms.
*/
#define ADV_INT_DEFAULT_MS 100
#define ADV_INT_FAST_MS 20
#if defined(CONFIG_BT_HOST_CRYPTO)
#define ADV_STACK_SIZE 1024
#else
#define ADV_STACK_SIZE 768
#endif
static const bt_mesh_addr_t *dev_addr;
static const u8_t adv_type[] = {
[BLE_MESH_ADV_PROV] = BLE_MESH_DATA_MESH_PROV,
[BLE_MESH_ADV_DATA] = BLE_MESH_DATA_MESH_MESSAGE,
[BLE_MESH_ADV_BEACON] = BLE_MESH_DATA_MESH_BEACON,
[BLE_MESH_ADV_URI] = BLE_MESH_DATA_URI,
};
NET_BUF_POOL_DEFINE(adv_buf_pool, CONFIG_BLE_MESH_ADV_BUF_COUNT,
BLE_MESH_ADV_DATA_SIZE, BLE_MESH_ADV_USER_DATA_SIZE, NULL);
static struct bt_mesh_adv adv_pool[CONFIG_BLE_MESH_ADV_BUF_COUNT];
struct bt_mesh_queue {
QueueHandle_t queue;
#if CONFIG_SPIRAM_USE_MALLOC
StaticQueue_t *buffer;
u8_t *storage;
#endif
};
static struct bt_mesh_queue xBleMeshQueue;
/* We reserve one queue for bt_mesh_adv_update() */
#define BLE_MESH_QUEUE_SIZE (CONFIG_BLE_MESH_ADV_BUF_COUNT + 1)
#if defined(CONFIG_BLE_MESH_RELAY_ADV_BUF)
NET_BUF_POOL_DEFINE(relay_adv_buf_pool, CONFIG_BLE_MESH_RELAY_ADV_BUF_COUNT,
BLE_MESH_ADV_DATA_SIZE, BLE_MESH_ADV_USER_DATA_SIZE, NULL);
static struct bt_mesh_adv relay_adv_pool[CONFIG_BLE_MESH_RELAY_ADV_BUF_COUNT];
static struct bt_mesh_queue xBleMeshRelayQueue;
#define BLE_MESH_RELAY_QUEUE_SIZE CONFIG_BLE_MESH_RELAY_ADV_BUF_COUNT
static QueueSetHandle_t xBleMeshQueueSet;
#define BLE_MESH_QUEUE_SET_SIZE (BLE_MESH_QUEUE_SIZE + BLE_MESH_RELAY_QUEUE_SIZE)
#define BLE_MESH_RELAY_TIME_INTERVAL K_SECONDS(6)
#define BLE_MESH_MAX_TIME_INTERVAL 0xFFFFFFFF
static bool ignore_relay_packet(u32_t timestamp);
#endif /* defined(CONFIG_BLE_MESH_RELAY_ADV_BUF) */
struct bt_mesh_adv_task {
TaskHandle_t handle;
#if CONFIG_SPIRAM_USE_MALLOC
StaticTask_t *task;
StackType_t *stack;
#endif
};
static struct bt_mesh_adv_task adv_task;
static struct bt_mesh_adv *adv_alloc(int id)
{
return &adv_pool[id];
}
static inline void adv_send_start(u16_t duration, int err,
const struct bt_mesh_send_cb *cb,
void *cb_data)
{
if (cb && cb->start) {
cb->start(duration, err, cb_data);
}
}
static inline void adv_send_end(int err, const struct bt_mesh_send_cb *cb,
void *cb_data)
{
if (cb && cb->end) {
cb->end(err, cb_data);
}
}
static inline int adv_send(struct net_buf *buf)
{
const s32_t adv_int_min = ((bt_mesh_dev.hci_version >= BLE_MESH_HCI_VERSION_5_0) ?
ADV_INT_FAST_MS : ADV_INT_DEFAULT_MS);
const struct bt_mesh_send_cb *cb = BLE_MESH_ADV(buf)->cb;
void *cb_data = BLE_MESH_ADV(buf)->cb_data;
struct bt_mesh_adv_param param = {0};
u16_t duration = 0U, adv_int = 0U;
struct bt_mesh_adv_data ad = {0};
int err = 0;
adv_int = MAX(adv_int_min,
BLE_MESH_TRANSMIT_INT(BLE_MESH_ADV(buf)->xmit));
duration = (BLE_MESH_TRANSMIT_COUNT(BLE_MESH_ADV(buf)->xmit) + 1) *
(adv_int + 10);
BT_DBG("type %u len %u: %s", BLE_MESH_ADV(buf)->type,
buf->len, bt_hex(buf->data, buf->len));
BT_DBG("count %u interval %ums duration %ums",
BLE_MESH_TRANSMIT_COUNT(BLE_MESH_ADV(buf)->xmit) + 1, adv_int,
duration);
ad.type = adv_type[BLE_MESH_ADV(buf)->type];
ad.data_len = buf->len;
ad.data = buf->data;
param.options = 0U;
param.interval_min = ADV_SCAN_UNIT(adv_int);
param.interval_max = param.interval_min;
bt_mesh_adv_buf_ref_debug(__func__, buf, 4U, BLE_MESH_BUF_REF_SMALL);
err = bt_le_adv_start(&param, &ad, 1, NULL, 0);
net_buf_unref(buf);
adv_send_start(duration, err, cb, cb_data);
if (err) {
BT_ERR("%s, Advertising failed: err %d", __func__, err);
return err;
}
BT_DBG("Advertising started. Sleeping %u ms", duration);
k_sleep(K_MSEC(duration));
err = bt_le_adv_stop();
adv_send_end(err, cb, cb_data);
if (err) {
BT_ERR("%s, Stop advertising failed: err %d", __func__, err);
return 0;
}
BT_DBG("Advertising stopped");
return 0;
}
static void adv_thread(void *p)
{
#if defined(CONFIG_BLE_MESH_RELAY_ADV_BUF)
QueueSetMemberHandle_t handle = NULL;
#endif
bt_mesh_msg_t msg = {0};
struct net_buf **buf = NULL;
buf = (struct net_buf **)(&msg.arg);
BT_DBG("%s, starts", __func__);
while (1) {
*buf = NULL;
#if !defined(CONFIG_BLE_MESH_RELAY_ADV_BUF)
#if (CONFIG_BLE_MESH_NODE && CONFIG_BLE_MESH_PB_GATT) || \
CONFIG_BLE_MESH_GATT_PROXY_SERVER
xQueueReceive(xBleMeshQueue.queue, &msg, K_NO_WAIT);
while (!(*buf)) {
s32_t timeout;
BT_DBG("Mesh Proxy Advertising start");
timeout = bt_mesh_proxy_adv_start();
BT_DBG("Mesh Proxy Advertising up to %d ms", timeout);
xQueueReceive(xBleMeshQueue.queue, &msg, timeout);
BT_DBG("Mesh Proxy Advertising stop");
bt_mesh_proxy_adv_stop();
}
#else
xQueueReceive(xBleMeshQueue.queue, &msg, portMAX_DELAY);
#endif /* (CONFIG_BLE_MESH_NODE && CONFIG_BLE_MESH_PB_GATT) || CONFIG_BLE_MESH_GATT_PROXY_SERVER */
#else /* !defined(CONFIG_BLE_MESH_RELAY_ADV_BUF) */
#if (CONFIG_BLE_MESH_NODE && CONFIG_BLE_MESH_PB_GATT) || \
CONFIG_BLE_MESH_GATT_PROXY_SERVER
handle = xQueueSelectFromSet(xBleMeshQueueSet, K_NO_WAIT);
if (handle) {
if (uxQueueMessagesWaiting(xBleMeshQueue.queue)) {
xQueueReceive(xBleMeshQueue.queue, &msg, K_NO_WAIT);
} else if (uxQueueMessagesWaiting(xBleMeshRelayQueue.queue)) {
xQueueReceive(xBleMeshRelayQueue.queue, &msg, K_NO_WAIT);
}
} else {
while (!(*buf)) {
s32_t timeout = 0;
BT_DBG("Mesh Proxy Advertising start");
timeout = bt_mesh_proxy_adv_start();
BT_DBG("Mesh Proxy Advertising up to %d ms", timeout);
handle = xQueueSelectFromSet(xBleMeshQueueSet, timeout);
BT_DBG("Mesh Proxy Advertising stop");
bt_mesh_proxy_adv_stop();
if (handle) {
if (uxQueueMessagesWaiting(xBleMeshQueue.queue)) {
xQueueReceive(xBleMeshQueue.queue, &msg, K_NO_WAIT);
} else if (uxQueueMessagesWaiting(xBleMeshRelayQueue.queue)) {
xQueueReceive(xBleMeshRelayQueue.queue, &msg, K_NO_WAIT);
}
}
}
}
#else
handle = xQueueSelectFromSet(xBleMeshQueueSet, portMAX_DELAY);
if (handle) {
if (uxQueueMessagesWaiting(xBleMeshQueue.queue)) {
xQueueReceive(xBleMeshQueue.queue, &msg, K_NO_WAIT);
} else if (uxQueueMessagesWaiting(xBleMeshRelayQueue.queue)) {
xQueueReceive(xBleMeshRelayQueue.queue, &msg, K_NO_WAIT);
}
}
#endif /* (CONFIG_BLE_MESH_NODE && CONFIG_BLE_MESH_PB_GATT) || CONFIG_BLE_MESH_GATT_PROXY_SERVER */
#endif /* !defined(CONFIG_BLE_MESH_RELAY_ADV_BUF) */
if (*buf == NULL) {
continue;
}
/* busy == 0 means this was canceled */
if (BLE_MESH_ADV(*buf)->busy) {
BLE_MESH_ADV(*buf)->busy = 0U;
#if !defined(CONFIG_BLE_MESH_RELAY_ADV_BUF)
if (adv_send(*buf)) {
BT_WARN("%s, Failed to send adv packet", __func__);
}
#else /* !defined(CONFIG_BLE_MESH_RELAY_ADV_BUF) */
if (msg.relay && ignore_relay_packet(msg.timestamp)) {
/* If the interval between "current time - msg.timestamp" is bigger than
* BLE_MESH_RELAY_TIME_INTERVAL, this relay packet will not be sent.
*/
BT_INFO("%s, Ignore relay packet", __func__);
net_buf_unref(*buf);
} else {
if (adv_send(*buf)) {
BT_WARN("%s, Failed to send adv packet", __func__);
}
}
#endif
} else {
bt_mesh_adv_buf_ref_debug(__func__, *buf, 1U, BLE_MESH_BUF_REF_EQUAL);
net_buf_unref(*buf);
}
/* Give other threads a chance to run */
taskYIELD();
}
}
struct net_buf *bt_mesh_adv_create_from_pool(struct net_buf_pool *pool,
bt_mesh_adv_alloc_t get_id,
enum bt_mesh_adv_type type,
u8_t xmit, s32_t timeout)
{
struct bt_mesh_adv *adv = NULL;
struct net_buf *buf = NULL;
if (bt_mesh_atomic_test_bit(bt_mesh.flags, BLE_MESH_SUSPENDED)) {
BT_WARN("Refusing to allocate buffer while suspended");
return NULL;
}
buf = net_buf_alloc(pool, timeout);
if (!buf) {
return NULL;
}
BT_DBG("%s, pool = %p, buf_count = %d, uinit_count = %d", __func__,
buf->pool, pool->buf_count, pool->uninit_count);
adv = get_id(net_buf_id(buf));
BLE_MESH_ADV(buf) = adv;
(void)memset(adv, 0, sizeof(*adv));
adv->type = type;
adv->xmit = xmit;
return buf;
}
void bt_mesh_unref_buf_from_pool(struct net_buf_pool *pool)
{
int i;
if (pool == NULL) {
BT_ERR("%s, Invalid parameter", __func__);
return;
}
for (i = 0; i < pool->buf_count; i++) {
struct net_buf *buf = &pool->__bufs[i];
if (buf->ref > 1U) {
buf->ref = 1U;
net_buf_unref(buf);
}
}
}
struct net_buf *bt_mesh_adv_create(enum bt_mesh_adv_type type, u8_t xmit,
s32_t timeout)
{
return bt_mesh_adv_create_from_pool(&adv_buf_pool, adv_alloc, type,
xmit, timeout);
}
void bt_mesh_adv_buf_ref_debug(const char *func, struct net_buf *buf,
u8_t ref_cmp, bt_mesh_buf_ref_flag_t flag)
{
if (buf == NULL || func == NULL || flag >= BLE_MESH_BUF_REF_MAX) {
BT_ERR("%s, Invalid parameter", __func__);
return;
}
switch (flag) {
case BLE_MESH_BUF_REF_EQUAL:
if (buf->ref != ref_cmp) {
BT_ERR("Unexpected ref %d in %s, expect to equal to %d", buf->ref, func, ref_cmp);
}
break;
case BLE_MESH_BUF_REF_SMALL:
if (buf->ref >= ref_cmp) {
BT_ERR("Unexpected ref %d in %s, expect to smaller than %d", buf->ref, func, ref_cmp);
}
break;
default:
break;
}
}
static void bt_mesh_unref_buf(bt_mesh_msg_t *msg)
{
struct net_buf *buf = NULL;
if (msg->arg) {
buf = (struct net_buf *)msg->arg;
BLE_MESH_ADV(buf)->busy = 0U;
net_buf_unref(buf);
}
return;
}
static void bt_mesh_task_post(bt_mesh_msg_t *msg, uint32_t timeout)
{
BT_DBG("%s", __func__);
if (xBleMeshQueue.queue == NULL) {
BT_ERR("%s, Invalid queue", __func__);
return;
}
if (xQueueSend(xBleMeshQueue.queue, msg, timeout) != pdTRUE) {
BT_ERR("%s, Failed to send item to queue", __func__);
bt_mesh_unref_buf(msg);
}
}
void bt_mesh_adv_send(struct net_buf *buf, const struct bt_mesh_send_cb *cb,
void *cb_data)
{
bt_mesh_msg_t msg = {
.relay = false,
};
BT_DBG("type 0x%02x len %u: %s", BLE_MESH_ADV(buf)->type, buf->len,
bt_hex(buf->data, buf->len));
BLE_MESH_ADV(buf)->cb = cb;
BLE_MESH_ADV(buf)->cb_data = cb_data;
BLE_MESH_ADV(buf)->busy = 1U;
bt_mesh_adv_buf_ref_debug(__func__, buf, 3U, BLE_MESH_BUF_REF_SMALL);
msg.arg = (void *)net_buf_ref(buf);
bt_mesh_task_post(&msg, portMAX_DELAY);
}
void bt_mesh_adv_update(void)
{
bt_mesh_msg_t msg = {
.relay = false,
.arg = NULL,
};
BT_DBG("%s", __func__);
bt_mesh_task_post(&msg, K_NO_WAIT);
}
#if defined(CONFIG_BLE_MESH_RELAY_ADV_BUF)
static bool ignore_relay_packet(u32_t timestamp)
{
u32_t now = k_uptime_get_32();
u32_t interval = 0U;
if (now >= timestamp) {
interval = now - timestamp;
} else {
interval = BLE_MESH_MAX_TIME_INTERVAL - (timestamp - now) + 1;
}
return (interval >= BLE_MESH_RELAY_TIME_INTERVAL) ? true : false;
}
static struct bt_mesh_adv *relay_adv_alloc(int id)
{
return &relay_adv_pool[id];
}
struct net_buf *bt_mesh_relay_adv_create(enum bt_mesh_adv_type type, u8_t xmit,
s32_t timeout)
{
return bt_mesh_adv_create_from_pool(&relay_adv_buf_pool, relay_adv_alloc, type,
xmit, timeout);
}
static void ble_mesh_relay_task_post(bt_mesh_msg_t *msg, uint32_t timeout)
{
QueueSetMemberHandle_t handle = NULL;
bt_mesh_msg_t old_msg = {0};
BT_DBG("%s", __func__);
if (xBleMeshRelayQueue.queue == NULL) {
BT_ERR("%s, Invalid relay queue", __func__);
return;
}
if (xQueueSend(xBleMeshRelayQueue.queue, msg, timeout) == pdTRUE) {
return;
}
/**
* If failed to send packet to the relay queue(queue is full), we will
* remove the oldest packet in the queue and put the new one into it.
*/
handle = xQueueSelectFromSet(xBleMeshQueueSet, K_NO_WAIT);
if (handle && uxQueueMessagesWaiting(xBleMeshRelayQueue.queue)) {
BT_INFO("%s, Full queue, remove the oldest relay packet", __func__);
/* Remove the oldest relay packet from queue */
if (xQueueReceive(xBleMeshRelayQueue.queue, &old_msg, K_NO_WAIT) != pdTRUE) {
BT_ERR("%s, Failed to remove item from queue", __func__);
bt_mesh_unref_buf(msg);
return;
}
/* Unref buf used for the oldest relay packet */
bt_mesh_unref_buf(&old_msg);
/* Send the latest relay packet to queue */
if (xQueueSend(xBleMeshRelayQueue.queue, msg, K_NO_WAIT) != pdTRUE) {
BT_ERR("%s, Failed to send item to relay queue", __func__);
bt_mesh_unref_buf(msg);
return;
}
} else {
BT_WARN("%s, Empty queue, but failed to send the relay packet", __func__);
bt_mesh_unref_buf(msg);
}
}
void bt_mesh_relay_adv_send(struct net_buf *buf, const struct bt_mesh_send_cb *cb,
void *cb_data, u16_t src, u16_t dst)
{
bt_mesh_msg_t msg = {
.relay = true,
};
BT_DBG("type 0x%02x len %u: %s", BLE_MESH_ADV(buf)->type, buf->len,
bt_hex(buf->data, buf->len));
BLE_MESH_ADV(buf)->cb = cb;
BLE_MESH_ADV(buf)->cb_data = cb_data;
BLE_MESH_ADV(buf)->busy = 1U;
msg.arg = (void *)net_buf_ref(buf);
msg.src = src;
msg.dst = dst;
msg.timestamp = k_uptime_get_32();
/* Use K_NO_WAIT here, if xBleMeshRelayQueue is full return immediately */
ble_mesh_relay_task_post(&msg, K_NO_WAIT);
}
u16_t bt_mesh_get_stored_relay_count(void)
{
return (u16_t)uxQueueMessagesWaiting(xBleMeshRelayQueue.queue);
}
#endif /* #if defined(CONFIG_BLE_MESH_RELAY_ADV_BUF) */
const bt_mesh_addr_t *bt_mesh_pba_get_addr(void)
{
return dev_addr;
}
#if (CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH_PB_GATT) || \
CONFIG_BLE_MESH_GATT_PROXY_CLIENT
static bool bt_mesh_is_adv_flags_valid(struct net_buf_simple *buf)
{
u8_t flags = 0U;
if (buf->len != 1U) {
BT_DBG("%s, Unexpected flags length", __func__);
return false;
}
flags = net_buf_simple_pull_u8(buf);
BT_DBG("Received adv pkt with flags: 0x%02x", flags);
/* Flags context will not be checked curently */
((void) flags);
return true;
}
static bool bt_mesh_is_adv_srv_uuid_valid(struct net_buf_simple *buf, u16_t *uuid)
{
if (buf->len != 2U) {
BT_DBG("Length not match mesh service uuid");
return false;
}
*uuid = net_buf_simple_pull_le16(buf);
BT_DBG("Received adv pkt with service UUID: %d", *uuid);
if (*uuid != BLE_MESH_UUID_MESH_PROV_VAL &&
*uuid != BLE_MESH_UUID_MESH_PROXY_VAL) {
return false;
}
if (*uuid == BLE_MESH_UUID_MESH_PROV_VAL &&
bt_mesh_is_provisioner_en() == false) {
return false;
}
if (*uuid == BLE_MESH_UUID_MESH_PROXY_VAL &&
!IS_ENABLED(CONFIG_BLE_MESH_GATT_PROXY_CLIENT)) {
return false;
}
return true;
}
#define BLE_MESH_PROV_SRV_DATA_LEN 0x12
#define BLE_MESH_PROXY_SRV_DATA_LEN1 0x09
#define BLE_MESH_PROXY_SRV_DATA_LEN2 0x11
static void bt_mesh_adv_srv_data_recv(struct net_buf_simple *buf, const bt_mesh_addr_t *addr, u16_t uuid, s8_t rssi)
{
u16_t type = 0U;
if (!buf || !addr) {
BT_ERR("%s, Invalid parameter", __func__);
return;
}
type = net_buf_simple_pull_le16(buf);
if (type != uuid) {
BT_DBG("%s, Invalid Mesh Service Data UUID 0x%04x", __func__, type);
return;
}
switch (type) {
#if CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH_PB_GATT
case BLE_MESH_UUID_MESH_PROV_VAL:
if (bt_mesh_is_provisioner_en()) {
if (buf->len != BLE_MESH_PROV_SRV_DATA_LEN) {
BT_WARN("%s, Invalid Mesh Prov Service Data length %d", __func__, buf->len);
return;
}
BT_DBG("Start to handle Mesh Prov Service Data");
bt_mesh_provisioner_prov_adv_ind_recv(buf, addr, rssi);
}
break;
#endif
#if CONFIG_BLE_MESH_GATT_PROXY_CLIENT
case BLE_MESH_UUID_MESH_PROXY_VAL:
if (buf->len != BLE_MESH_PROXY_SRV_DATA_LEN1 &&
buf->len != BLE_MESH_PROXY_SRV_DATA_LEN2) {
BT_WARN("%s, Invalid Mesh Proxy Service Data length %d", __func__, buf->len);
return;
}
BT_DBG("Start to handle Mesh Proxy Service Data");
bt_mesh_proxy_client_adv_ind_recv(buf, addr, rssi);
break;
#endif
default:
break;
}
}
#endif
static void bt_mesh_scan_cb(const bt_mesh_addr_t *addr, s8_t rssi,
u8_t adv_type, struct net_buf_simple *buf)
{
#if (CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH_PB_GATT) || \
CONFIG_BLE_MESH_GATT_PROXY_CLIENT
u16_t uuid = 0U;
#endif
if (adv_type != BLE_MESH_ADV_NONCONN_IND && adv_type != BLE_MESH_ADV_IND) {
return;
}
BT_DBG("%s, len %u: %s", __func__, buf->len, bt_hex(buf->data, buf->len));
dev_addr = addr;
while (buf->len > 1) {
struct net_buf_simple_state state;
u8_t len, type;
len = net_buf_simple_pull_u8(buf);
/* Check for early termination */
if (len == 0U) {
return;
}
if (len > buf->len) {
BT_WARN("AD malformed");
return;
}
net_buf_simple_save(buf, &state);
type = net_buf_simple_pull_u8(buf);
buf->len = len - 1;
#if 0
/* TODO: Check with BLE Mesh BQB test cases */
if ((type == BLE_MESH_DATA_MESH_PROV || type == BLE_MESH_DATA_MESH_MESSAGE ||
type == BLE_MESH_DATA_MESH_BEACON) && (adv_type != BLE_MESH_ADV_NONCONN_IND)) {
BT_DBG("%s, ignore BLE Mesh packet (type 0x%02x) with adv_type 0x%02x",
__func__, type, adv_type);
return;
}
#endif
switch (type) {
case BLE_MESH_DATA_MESH_MESSAGE:
bt_mesh_net_recv(buf, rssi, BLE_MESH_NET_IF_ADV);
break;
#if CONFIG_BLE_MESH_PB_ADV
case BLE_MESH_DATA_MESH_PROV:
if (IS_ENABLED(CONFIG_BLE_MESH_NODE) && bt_mesh_is_node()) {
bt_mesh_pb_adv_recv(buf);
}
if (IS_ENABLED(CONFIG_BLE_MESH_PROVISIONER) && bt_mesh_is_provisioner_en()) {
bt_mesh_provisioner_pb_adv_recv(buf);
}
break;
#endif /* CONFIG_BLE_MESH_PB_ADV */
case BLE_MESH_DATA_MESH_BEACON:
bt_mesh_beacon_recv(buf, rssi);
break;
#if (CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH_PB_GATT) || \
CONFIG_BLE_MESH_GATT_PROXY_CLIENT
case BLE_MESH_DATA_FLAGS:
if (!bt_mesh_is_adv_flags_valid(buf)) {
BT_DBG("Adv Flags mismatch, ignore this adv pkt");
return;
}
break;
case BLE_MESH_DATA_UUID16_ALL:
if (!bt_mesh_is_adv_srv_uuid_valid(buf, &uuid)) {
BT_DBG("Adv Service UUID mismatch, ignore this adv pkt");
return;
}
break;
case BLE_MESH_DATA_SVC_DATA16:
bt_mesh_adv_srv_data_recv(buf, addr, uuid, rssi);
break;
#endif
default:
break;
}
net_buf_simple_restore(buf, &state);
net_buf_simple_pull(buf, len);
}
return;
}
void bt_mesh_adv_init(void)
{
#if !CONFIG_SPIRAM_USE_MALLOC
xBleMeshQueue.queue = xQueueCreate(BLE_MESH_QUEUE_SIZE, sizeof(bt_mesh_msg_t));
__ASSERT(xBleMeshQueue.queue, "%s, Failed to create queue", __func__);
#else
xBleMeshQueue.buffer = heap_caps_calloc(1, sizeof(StaticQueue_t), MALLOC_CAP_DEFAULT|MALLOC_CAP_SPIRAM);
__ASSERT(xBleMeshQueue.buffer, "%s, Failed to create queue buffer", __func__);
xBleMeshQueue.storage = heap_caps_calloc(1, (BLE_MESH_QUEUE_SIZE * sizeof(bt_mesh_msg_t)), MALLOC_CAP_DEFAULT|MALLOC_CAP_SPIRAM);
__ASSERT(xBleMeshQueue.storage, "%s, Failed to create queue storage", __func__);
xBleMeshQueue.queue = xQueueCreateStatic(BLE_MESH_QUEUE_SIZE, sizeof(bt_mesh_msg_t), (uint8_t*)xBleMeshQueue.storage, xBleMeshQueue.buffer);
__ASSERT(xBleMeshQueue.queue, "%s, Failed to create static queue", __func__);
#endif
#if defined(CONFIG_BLE_MESH_RELAY_ADV_BUF)
#if !CONFIG_SPIRAM_USE_MALLOC
xBleMeshRelayQueue.queue = xQueueCreate(BLE_MESH_RELAY_QUEUE_SIZE, sizeof(bt_mesh_msg_t));
__ASSERT(xBleMeshRelayQueue.queue, "%s, Failed to create relay queue", __func__);
#else
xBleMeshRelayQueue.buffer = heap_caps_calloc(1, sizeof(StaticQueue_t), MALLOC_CAP_DEFAULT|MALLOC_CAP_SPIRAM);
__ASSERT(xBleMeshRelayQueue.buffer, "%s, Failed to create relay queue buffer", __func__);
xBleMeshRelayQueue.storage = heap_caps_calloc(1, (BLE_MESH_RELAY_QUEUE_SIZE * sizeof(bt_mesh_msg_t)), MALLOC_CAP_DEFAULT|MALLOC_CAP_SPIRAM);
__ASSERT(xBleMeshRelayQueue.storage, "%s, Failed to create relay queue storage", __func__);
xBleMeshRelayQueue.queue = xQueueCreateStatic(BLE_MESH_RELAY_QUEUE_SIZE, sizeof(bt_mesh_msg_t), (uint8_t*)xBleMeshRelayQueue.storage, xBleMeshRelayQueue.buffer);
__ASSERT(xBleMeshRelayQueue.queue, "%s, Failed to create static relay queue", __func__);
#endif
xBleMeshQueueSet = xQueueCreateSet(BLE_MESH_QUEUE_SET_SIZE);
__ASSERT(xBleMeshQueueSet, "%s, Failed to create queue set", __func__);
xQueueAddToSet(xBleMeshQueue.queue, xBleMeshQueueSet);
xQueueAddToSet(xBleMeshRelayQueue.queue, xBleMeshQueueSet);
#endif /* defined(CONFIG_BLE_MESH_RELAY_ADV_BUF) */
#if !CONFIG_SPIRAM_USE_MALLOC
int ret = xTaskCreatePinnedToCore(adv_thread, "BLE_Mesh_ADV_Task", BLE_MESH_ADV_TASK_STACK_SIZE, NULL,
configMAX_PRIORITIES - 5, &adv_task.handle, BLE_MESH_ADV_TASK_CORE);
__ASSERT(ret == pdTRUE, "%s, Failed to create adv thread", __func__);
#else
adv_task.task = heap_caps_calloc(1, sizeof(StaticTask_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
__ASSERT(adv_task.task, "%s, Failed to create adv thread task", __func__);
#if CONFIG_SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY
adv_task.stack = heap_caps_calloc(1, BLE_MESH_ADV_TASK_STACK_SIZE * sizeof(StackType_t), MALLOC_CAP_DEFAULT|MALLOC_CAP_SPIRAM);
#else
adv_task.stack = heap_caps_calloc(1, BLE_MESH_ADV_TASK_STACK_SIZE * sizeof(StackType_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
#endif
__ASSERT(adv_task.stack, "%s, Failed to create adv thread stack", __func__);
adv_task.handle = xTaskCreateStaticPinnedToCore(adv_thread, "BLE_Mesh_ADV_Task", BLE_MESH_ADV_TASK_STACK_SIZE, NULL,
configMAX_PRIORITIES - 5, adv_task.stack, adv_task.task, BLE_MESH_ADV_TASK_CORE);
__ASSERT(adv_task.stack, "%s, Failed to create static adv thread stack", __func__);
#endif
}
void bt_mesh_adv_deinit(void)
{
if (xBleMeshQueue.queue == NULL) {
return;
}
#if defined(CONFIG_BLE_MESH_RELAY_ADV_BUF)
xQueueRemoveFromSet(xBleMeshQueue.queue, xBleMeshQueueSet);
xQueueRemoveFromSet(xBleMeshRelayQueue.queue, xBleMeshQueueSet);
vQueueDelete(xBleMeshRelayQueue.queue);
xBleMeshRelayQueue.queue = NULL;
#if CONFIG_SPIRAM_USE_MALLOC
heap_caps_free(xBleMeshRelayQueue.buffer);
xBleMeshRelayQueue.buffer = NULL;
heap_caps_free(xBleMeshRelayQueue.storage);
xBleMeshRelayQueue.storage = NULL;
#endif
bt_mesh_unref_buf_from_pool(&relay_adv_buf_pool);
memset(relay_adv_pool, 0, sizeof(relay_adv_pool));
vQueueDelete(xBleMeshQueueSet);
xBleMeshQueueSet = NULL;
#endif /* defined(CONFIG_BLE_MESH_RELAY_ADV_BUF) */
vQueueDelete(xBleMeshQueue.queue);
xBleMeshQueue.queue = NULL;
#if CONFIG_SPIRAM_USE_MALLOC
heap_caps_free(xBleMeshQueue.buffer);
xBleMeshQueue.buffer = NULL;
heap_caps_free(xBleMeshQueue.storage);
xBleMeshQueue.storage = NULL;
#endif
bt_mesh_unref_buf_from_pool(&adv_buf_pool);
memset(adv_pool, 0, sizeof(adv_pool));
vTaskDelete(adv_task.handle);
adv_task.handle = NULL;
#if CONFIG_SPIRAM_USE_MALLOC
heap_caps_free(adv_task.stack);
adv_task.stack = NULL;
/* Delay certain period for free adv_task.task */
vTaskDelay(10 / portTICK_PERIOD_MS);
heap_caps_free(adv_task.task);
adv_task.task = NULL;
#endif
}
int bt_mesh_scan_enable(void)
{
int err = 0;
struct bt_mesh_scan_param scan_param = {
.type = BLE_MESH_SCAN_PASSIVE,
#if defined(CONFIG_BLE_MESH_USE_DUPLICATE_SCAN)
.filter_dup = BLE_MESH_SCAN_FILTER_DUP_ENABLE,
#else
.filter_dup = BLE_MESH_SCAN_FILTER_DUP_DISABLE,
#endif
.interval = MESH_SCAN_INTERVAL,
.window = MESH_SCAN_WINDOW
};
BT_DBG("%s", __func__);
err = bt_le_scan_start(&scan_param, bt_mesh_scan_cb);
if (err && err != -EALREADY) {
BT_ERR("starting scan failed (err %d)", err);
return err;
}
return 0;
}
int bt_mesh_scan_disable(void)
{
int err = 0;
BT_DBG("%s", __func__);
err = bt_le_scan_stop();
if (err && err != -EALREADY) {
BT_ERR("stopping scan failed (err %d)", err);
return err;
}
return 0;
}