b80325604d
1. add bluedroid 1st version 2. alarm adapter 3. task semaphore lock 4. other bugs resolved
935 lines
32 KiB
C
Executable file
935 lines
32 KiB
C
Executable file
/*
|
|
---------------------------------------------------------------------------
|
|
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
|
|
|
LICENSE TERMS
|
|
|
|
The redistribution and use of this software (with or without changes)
|
|
is allowed without the payment of fees or royalties provided that:
|
|
|
|
1. source code distributions include the above copyright notice, this
|
|
list of conditions and the following disclaimer;
|
|
|
|
2. binary distributions include the above copyright notice, this list
|
|
of conditions and the following disclaimer in their documentation;
|
|
|
|
3. the name of the copyright holder is not used to endorse products
|
|
built using this software without specific written permission.
|
|
|
|
DISCLAIMER
|
|
|
|
This software is provided 'as is' with no explicit or implied warranties
|
|
in respect of its properties, including, but not limited to, correctness
|
|
and/or fitness for purpose.
|
|
---------------------------------------------------------------------------
|
|
Issue 09/09/2006
|
|
|
|
This is an AES implementation that uses only 8-bit byte operations on the
|
|
cipher state (there are options to use 32-bit types if available).
|
|
|
|
The combination of mix columns and byte substitution used here is based on
|
|
that developed by Karl Malbrain. His contribution is acknowledged.
|
|
*/
|
|
|
|
/* define if you have a fast memcpy function on your system */
|
|
#if 1
|
|
# define HAVE_MEMCPY
|
|
# include <string.h>
|
|
#if 0
|
|
# if defined( _MSC_VER )
|
|
# include <intrin.h>
|
|
# pragma intrinsic( memcpy )
|
|
# endif
|
|
#endif
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
|
|
/* add the target configuration to allow using internal data types and compilation options */
|
|
#include "bt_target.h"
|
|
|
|
/* define if you have fast 32-bit types on your system */
|
|
#if 1
|
|
# define HAVE_UINT_32T
|
|
#endif
|
|
|
|
/* define if you don't want any tables */
|
|
#if 1
|
|
# define USE_TABLES
|
|
#endif
|
|
|
|
/* On Intel Core 2 duo VERSION_1 is faster */
|
|
|
|
/* alternative versions (test for performance on your system) */
|
|
#if 1
|
|
# define VERSION_1
|
|
#endif
|
|
|
|
#include "aes.h"
|
|
|
|
#if defined( HAVE_UINT_32T )
|
|
typedef UINT32 uint_32t;
|
|
#endif
|
|
|
|
/* functions for finite field multiplication in the AES Galois field */
|
|
|
|
#define WPOLY 0x011b
|
|
#define BPOLY 0x1b
|
|
#define DPOLY 0x008d
|
|
|
|
#define f1(x) (x)
|
|
#define f2(x) ((x << 1) ^ (((x >> 7) & 1) * WPOLY))
|
|
#define f4(x) ((x << 2) ^ (((x >> 6) & 1) * WPOLY) ^ (((x >> 6) & 2) * WPOLY))
|
|
#define f8(x) ((x << 3) ^ (((x >> 5) & 1) * WPOLY) ^ (((x >> 5) & 2) * WPOLY) \
|
|
^ (((x >> 5) & 4) * WPOLY))
|
|
#define d2(x) (((x) >> 1) ^ ((x) & 1 ? DPOLY : 0))
|
|
|
|
#define f3(x) (f2(x) ^ x)
|
|
#define f9(x) (f8(x) ^ x)
|
|
#define fb(x) (f8(x) ^ f2(x) ^ x)
|
|
#define fd(x) (f8(x) ^ f4(x) ^ x)
|
|
#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
|
|
|
|
#if defined( USE_TABLES )
|
|
|
|
#define sb_data(w) { /* S Box data values */ \
|
|
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
|
|
w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
|
|
w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
|
|
w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
|
|
w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
|
|
w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
|
|
w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
|
|
w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
|
|
w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
|
|
w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
|
|
w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
|
|
w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
|
|
w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
|
|
w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
|
|
w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
|
|
w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
|
|
w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
|
|
w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
|
|
w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
|
|
w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
|
|
w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
|
|
w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
|
|
w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
|
|
w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
|
|
w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
|
|
w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
|
|
w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
|
|
w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
|
|
w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
|
|
w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
|
|
w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
|
|
w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }
|
|
|
|
#define isb_data(w) { /* inverse S Box data values */ \
|
|
w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
|
|
w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
|
|
w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
|
|
w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
|
|
w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
|
|
w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
|
|
w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
|
|
w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
|
|
w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
|
|
w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
|
|
w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
|
|
w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
|
|
w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
|
|
w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
|
|
w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
|
|
w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
|
|
w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
|
|
w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
|
|
w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
|
|
w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
|
|
w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
|
|
w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
|
|
w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
|
|
w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
|
|
w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
|
|
w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
|
|
w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
|
|
w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
|
|
w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
|
|
w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
|
|
w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
|
|
w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }
|
|
|
|
#define mm_data(w) { /* basic data for forming finite field tables */ \
|
|
w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
|
|
w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
|
|
w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
|
|
w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
|
|
w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
|
|
w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
|
|
w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
|
|
w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
|
|
w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
|
|
w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
|
|
w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
|
|
w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
|
|
w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
|
|
w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
|
|
w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
|
|
w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
|
|
w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
|
|
w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
|
|
w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
|
|
w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
|
|
w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
|
|
w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
|
|
w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
|
|
w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
|
|
w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
|
|
w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
|
|
w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
|
|
w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
|
|
w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
|
|
w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
|
|
w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
|
|
w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }
|
|
|
|
static const uint_8t sbox[256] = sb_data(f1);
|
|
static const uint_8t isbox[256] = isb_data(f1);
|
|
|
|
static const uint_8t gfm2_sbox[256] = sb_data(f2);
|
|
static const uint_8t gfm3_sbox[256] = sb_data(f3);
|
|
|
|
static const uint_8t gfmul_9[256] = mm_data(f9);
|
|
static const uint_8t gfmul_b[256] = mm_data(fb);
|
|
static const uint_8t gfmul_d[256] = mm_data(fd);
|
|
static const uint_8t gfmul_e[256] = mm_data(fe);
|
|
|
|
#define s_box(x) sbox[(x)]
|
|
#define is_box(x) isbox[(x)]
|
|
#define gfm2_sb(x) gfm2_sbox[(x)]
|
|
#define gfm3_sb(x) gfm3_sbox[(x)]
|
|
#define gfm_9(x) gfmul_9[(x)]
|
|
#define gfm_b(x) gfmul_b[(x)]
|
|
#define gfm_d(x) gfmul_d[(x)]
|
|
#define gfm_e(x) gfmul_e[(x)]
|
|
|
|
#else
|
|
|
|
/* this is the high bit of x right shifted by 1 */
|
|
/* position. Since the starting polynomial has */
|
|
/* 9 bits (0x11b), this right shift keeps the */
|
|
/* values of all top bits within a byte */
|
|
|
|
static uint_8t hibit(const uint_8t x)
|
|
{ uint_8t r = (uint_8t)((x >> 1) | (x >> 2));
|
|
|
|
r |= (r >> 2);
|
|
r |= (r >> 4);
|
|
return (r + 1) >> 1;
|
|
}
|
|
|
|
/* return the inverse of the finite field element x */
|
|
|
|
static uint_8t gf_inv(const uint_8t x)
|
|
{ uint_8t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;
|
|
|
|
if(x < 2)
|
|
return x;
|
|
|
|
for( ; ; )
|
|
{
|
|
if(n1)
|
|
while(n2 >= n1) /* divide polynomial p2 by p1 */
|
|
{
|
|
n2 /= n1; /* shift smaller polynomial left */
|
|
p2 ^= (p1 * n2) & 0xff; /* and remove from larger one */
|
|
v2 ^= (v1 * n2); /* shift accumulated value and */
|
|
n2 = hibit(p2); /* add into result */
|
|
}
|
|
else
|
|
return v1;
|
|
|
|
if(n2) /* repeat with values swapped */
|
|
while(n1 >= n2)
|
|
{
|
|
n1 /= n2;
|
|
p1 ^= p2 * n1;
|
|
v1 ^= v2 * n1;
|
|
n1 = hibit(p1);
|
|
}
|
|
else
|
|
return v2;
|
|
}
|
|
}
|
|
|
|
/* The forward and inverse affine transformations used in the S-box */
|
|
uint_8t fwd_affine(const uint_8t x)
|
|
{
|
|
#if defined( HAVE_UINT_32T )
|
|
uint_32t w = x;
|
|
w ^= (w << 1) ^ (w << 2) ^ (w << 3) ^ (w << 4);
|
|
return 0x63 ^ ((w ^ (w >> 8)) & 0xff);
|
|
#else
|
|
return 0x63 ^ x ^ (x << 1) ^ (x << 2) ^ (x << 3) ^ (x << 4)
|
|
^ (x >> 7) ^ (x >> 6) ^ (x >> 5) ^ (x >> 4);
|
|
#endif
|
|
}
|
|
|
|
uint_8t inv_affine(const uint_8t x)
|
|
{
|
|
#if defined( HAVE_UINT_32T )
|
|
uint_32t w = x;
|
|
w = (w << 1) ^ (w << 3) ^ (w << 6);
|
|
return 0x05 ^ ((w ^ (w >> 8)) & 0xff);
|
|
#else
|
|
return 0x05 ^ (x << 1) ^ (x << 3) ^ (x << 6)
|
|
^ (x >> 7) ^ (x >> 5) ^ (x >> 2);
|
|
#endif
|
|
}
|
|
|
|
#define s_box(x) fwd_affine(gf_inv(x))
|
|
#define is_box(x) gf_inv(inv_affine(x))
|
|
#define gfm2_sb(x) f2(s_box(x))
|
|
#define gfm3_sb(x) f3(s_box(x))
|
|
#define gfm_9(x) f9(x)
|
|
#define gfm_b(x) fb(x)
|
|
#define gfm_d(x) fd(x)
|
|
#define gfm_e(x) fe(x)
|
|
|
|
#endif
|
|
|
|
#if defined( HAVE_MEMCPY )
|
|
# define block_copy_nn(d, s, l) memcpy(d, s, l)
|
|
# define block_copy(d, s) memcpy(d, s, N_BLOCK)
|
|
#else
|
|
# define block_copy_nn(d, s, l) copy_block_nn(d, s, l)
|
|
# define block_copy(d, s) copy_block(d, s)
|
|
#endif
|
|
|
|
#if !defined( HAVE_MEMCPY )
|
|
static void copy_block( void *d, const void *s )
|
|
{
|
|
#if defined( HAVE_UINT_32T )
|
|
((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0];
|
|
((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1];
|
|
((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2];
|
|
((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3];
|
|
#else
|
|
((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0];
|
|
((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1];
|
|
((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2];
|
|
((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3];
|
|
((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4];
|
|
((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5];
|
|
((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6];
|
|
((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7];
|
|
((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8];
|
|
((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9];
|
|
((uint_8t*)d)[10] = ((uint_8t*)s)[10];
|
|
((uint_8t*)d)[11] = ((uint_8t*)s)[11];
|
|
((uint_8t*)d)[12] = ((uint_8t*)s)[12];
|
|
((uint_8t*)d)[13] = ((uint_8t*)s)[13];
|
|
((uint_8t*)d)[14] = ((uint_8t*)s)[14];
|
|
((uint_8t*)d)[15] = ((uint_8t*)s)[15];
|
|
#endif
|
|
}
|
|
|
|
static void copy_block_nn( void * d, const void *s, uint_8t nn )
|
|
{
|
|
while( nn-- )
|
|
*((uint_8t*)d)++ = *((uint_8t*)s)++;
|
|
}
|
|
#endif
|
|
|
|
static void xor_block( void *d, const void *s )
|
|
{
|
|
#if defined( HAVE_UINT_32T )
|
|
((uint_32t*)d)[ 0] ^= ((uint_32t*)s)[ 0];
|
|
((uint_32t*)d)[ 1] ^= ((uint_32t*)s)[ 1];
|
|
((uint_32t*)d)[ 2] ^= ((uint_32t*)s)[ 2];
|
|
((uint_32t*)d)[ 3] ^= ((uint_32t*)s)[ 3];
|
|
#else
|
|
((uint_8t*)d)[ 0] ^= ((uint_8t*)s)[ 0];
|
|
((uint_8t*)d)[ 1] ^= ((uint_8t*)s)[ 1];
|
|
((uint_8t*)d)[ 2] ^= ((uint_8t*)s)[ 2];
|
|
((uint_8t*)d)[ 3] ^= ((uint_8t*)s)[ 3];
|
|
((uint_8t*)d)[ 4] ^= ((uint_8t*)s)[ 4];
|
|
((uint_8t*)d)[ 5] ^= ((uint_8t*)s)[ 5];
|
|
((uint_8t*)d)[ 6] ^= ((uint_8t*)s)[ 6];
|
|
((uint_8t*)d)[ 7] ^= ((uint_8t*)s)[ 7];
|
|
((uint_8t*)d)[ 8] ^= ((uint_8t*)s)[ 8];
|
|
((uint_8t*)d)[ 9] ^= ((uint_8t*)s)[ 9];
|
|
((uint_8t*)d)[10] ^= ((uint_8t*)s)[10];
|
|
((uint_8t*)d)[11] ^= ((uint_8t*)s)[11];
|
|
((uint_8t*)d)[12] ^= ((uint_8t*)s)[12];
|
|
((uint_8t*)d)[13] ^= ((uint_8t*)s)[13];
|
|
((uint_8t*)d)[14] ^= ((uint_8t*)s)[14];
|
|
((uint_8t*)d)[15] ^= ((uint_8t*)s)[15];
|
|
#endif
|
|
}
|
|
|
|
static void copy_and_key( void *d, const void *s, const void *k )
|
|
{
|
|
#if defined( HAVE_UINT_32T )
|
|
((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0] ^ ((uint_32t*)k)[ 0];
|
|
((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1] ^ ((uint_32t*)k)[ 1];
|
|
((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2] ^ ((uint_32t*)k)[ 2];
|
|
((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3] ^ ((uint_32t*)k)[ 3];
|
|
#elif 1
|
|
((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0] ^ ((uint_8t*)k)[ 0];
|
|
((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1] ^ ((uint_8t*)k)[ 1];
|
|
((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2] ^ ((uint_8t*)k)[ 2];
|
|
((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3] ^ ((uint_8t*)k)[ 3];
|
|
((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4] ^ ((uint_8t*)k)[ 4];
|
|
((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5] ^ ((uint_8t*)k)[ 5];
|
|
((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6] ^ ((uint_8t*)k)[ 6];
|
|
((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7] ^ ((uint_8t*)k)[ 7];
|
|
((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8] ^ ((uint_8t*)k)[ 8];
|
|
((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9] ^ ((uint_8t*)k)[ 9];
|
|
((uint_8t*)d)[10] = ((uint_8t*)s)[10] ^ ((uint_8t*)k)[10];
|
|
((uint_8t*)d)[11] = ((uint_8t*)s)[11] ^ ((uint_8t*)k)[11];
|
|
((uint_8t*)d)[12] = ((uint_8t*)s)[12] ^ ((uint_8t*)k)[12];
|
|
((uint_8t*)d)[13] = ((uint_8t*)s)[13] ^ ((uint_8t*)k)[13];
|
|
((uint_8t*)d)[14] = ((uint_8t*)s)[14] ^ ((uint_8t*)k)[14];
|
|
((uint_8t*)d)[15] = ((uint_8t*)s)[15] ^ ((uint_8t*)k)[15];
|
|
#else
|
|
block_copy(d, s);
|
|
xor_block(d, k);
|
|
#endif
|
|
}
|
|
|
|
static void add_round_key( uint_8t d[N_BLOCK], const uint_8t k[N_BLOCK] )
|
|
{
|
|
xor_block(d, k);
|
|
}
|
|
|
|
static void shift_sub_rows( uint_8t st[N_BLOCK] )
|
|
{ uint_8t tt;
|
|
|
|
st[ 0] = s_box(st[ 0]); st[ 4] = s_box(st[ 4]);
|
|
st[ 8] = s_box(st[ 8]); st[12] = s_box(st[12]);
|
|
|
|
tt = st[1]; st[ 1] = s_box(st[ 5]); st[ 5] = s_box(st[ 9]);
|
|
st[ 9] = s_box(st[13]); st[13] = s_box( tt );
|
|
|
|
tt = st[2]; st[ 2] = s_box(st[10]); st[10] = s_box( tt );
|
|
tt = st[6]; st[ 6] = s_box(st[14]); st[14] = s_box( tt );
|
|
|
|
tt = st[15]; st[15] = s_box(st[11]); st[11] = s_box(st[ 7]);
|
|
st[ 7] = s_box(st[ 3]); st[ 3] = s_box( tt );
|
|
}
|
|
|
|
static void inv_shift_sub_rows( uint_8t st[N_BLOCK] )
|
|
{ uint_8t tt;
|
|
|
|
st[ 0] = is_box(st[ 0]); st[ 4] = is_box(st[ 4]);
|
|
st[ 8] = is_box(st[ 8]); st[12] = is_box(st[12]);
|
|
|
|
tt = st[13]; st[13] = is_box(st[9]); st[ 9] = is_box(st[5]);
|
|
st[ 5] = is_box(st[1]); st[ 1] = is_box( tt );
|
|
|
|
tt = st[2]; st[ 2] = is_box(st[10]); st[10] = is_box( tt );
|
|
tt = st[6]; st[ 6] = is_box(st[14]); st[14] = is_box( tt );
|
|
|
|
tt = st[3]; st[ 3] = is_box(st[ 7]); st[ 7] = is_box(st[11]);
|
|
st[11] = is_box(st[15]); st[15] = is_box( tt );
|
|
}
|
|
|
|
#if defined( VERSION_1 )
|
|
static void mix_sub_columns( uint_8t dt[N_BLOCK] )
|
|
{ uint_8t st[N_BLOCK];
|
|
block_copy(st, dt);
|
|
#else
|
|
static void mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] )
|
|
{
|
|
#endif
|
|
dt[ 0] = gfm2_sb(st[0]) ^ gfm3_sb(st[5]) ^ s_box(st[10]) ^ s_box(st[15]);
|
|
dt[ 1] = s_box(st[0]) ^ gfm2_sb(st[5]) ^ gfm3_sb(st[10]) ^ s_box(st[15]);
|
|
dt[ 2] = s_box(st[0]) ^ s_box(st[5]) ^ gfm2_sb(st[10]) ^ gfm3_sb(st[15]);
|
|
dt[ 3] = gfm3_sb(st[0]) ^ s_box(st[5]) ^ s_box(st[10]) ^ gfm2_sb(st[15]);
|
|
|
|
dt[ 4] = gfm2_sb(st[4]) ^ gfm3_sb(st[9]) ^ s_box(st[14]) ^ s_box(st[3]);
|
|
dt[ 5] = s_box(st[4]) ^ gfm2_sb(st[9]) ^ gfm3_sb(st[14]) ^ s_box(st[3]);
|
|
dt[ 6] = s_box(st[4]) ^ s_box(st[9]) ^ gfm2_sb(st[14]) ^ gfm3_sb(st[3]);
|
|
dt[ 7] = gfm3_sb(st[4]) ^ s_box(st[9]) ^ s_box(st[14]) ^ gfm2_sb(st[3]);
|
|
|
|
dt[ 8] = gfm2_sb(st[8]) ^ gfm3_sb(st[13]) ^ s_box(st[2]) ^ s_box(st[7]);
|
|
dt[ 9] = s_box(st[8]) ^ gfm2_sb(st[13]) ^ gfm3_sb(st[2]) ^ s_box(st[7]);
|
|
dt[10] = s_box(st[8]) ^ s_box(st[13]) ^ gfm2_sb(st[2]) ^ gfm3_sb(st[7]);
|
|
dt[11] = gfm3_sb(st[8]) ^ s_box(st[13]) ^ s_box(st[2]) ^ gfm2_sb(st[7]);
|
|
|
|
dt[12] = gfm2_sb(st[12]) ^ gfm3_sb(st[1]) ^ s_box(st[6]) ^ s_box(st[11]);
|
|
dt[13] = s_box(st[12]) ^ gfm2_sb(st[1]) ^ gfm3_sb(st[6]) ^ s_box(st[11]);
|
|
dt[14] = s_box(st[12]) ^ s_box(st[1]) ^ gfm2_sb(st[6]) ^ gfm3_sb(st[11]);
|
|
dt[15] = gfm3_sb(st[12]) ^ s_box(st[1]) ^ s_box(st[6]) ^ gfm2_sb(st[11]);
|
|
}
|
|
|
|
#if defined( VERSION_1 )
|
|
static void inv_mix_sub_columns( uint_8t dt[N_BLOCK] )
|
|
{ uint_8t st[N_BLOCK];
|
|
block_copy(st, dt);
|
|
#else
|
|
static void inv_mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] )
|
|
{
|
|
#endif
|
|
dt[ 0] = is_box(gfm_e(st[ 0]) ^ gfm_b(st[ 1]) ^ gfm_d(st[ 2]) ^ gfm_9(st[ 3]));
|
|
dt[ 5] = is_box(gfm_9(st[ 0]) ^ gfm_e(st[ 1]) ^ gfm_b(st[ 2]) ^ gfm_d(st[ 3]));
|
|
dt[10] = is_box(gfm_d(st[ 0]) ^ gfm_9(st[ 1]) ^ gfm_e(st[ 2]) ^ gfm_b(st[ 3]));
|
|
dt[15] = is_box(gfm_b(st[ 0]) ^ gfm_d(st[ 1]) ^ gfm_9(st[ 2]) ^ gfm_e(st[ 3]));
|
|
|
|
dt[ 4] = is_box(gfm_e(st[ 4]) ^ gfm_b(st[ 5]) ^ gfm_d(st[ 6]) ^ gfm_9(st[ 7]));
|
|
dt[ 9] = is_box(gfm_9(st[ 4]) ^ gfm_e(st[ 5]) ^ gfm_b(st[ 6]) ^ gfm_d(st[ 7]));
|
|
dt[14] = is_box(gfm_d(st[ 4]) ^ gfm_9(st[ 5]) ^ gfm_e(st[ 6]) ^ gfm_b(st[ 7]));
|
|
dt[ 3] = is_box(gfm_b(st[ 4]) ^ gfm_d(st[ 5]) ^ gfm_9(st[ 6]) ^ gfm_e(st[ 7]));
|
|
|
|
dt[ 8] = is_box(gfm_e(st[ 8]) ^ gfm_b(st[ 9]) ^ gfm_d(st[10]) ^ gfm_9(st[11]));
|
|
dt[13] = is_box(gfm_9(st[ 8]) ^ gfm_e(st[ 9]) ^ gfm_b(st[10]) ^ gfm_d(st[11]));
|
|
dt[ 2] = is_box(gfm_d(st[ 8]) ^ gfm_9(st[ 9]) ^ gfm_e(st[10]) ^ gfm_b(st[11]));
|
|
dt[ 7] = is_box(gfm_b(st[ 8]) ^ gfm_d(st[ 9]) ^ gfm_9(st[10]) ^ gfm_e(st[11]));
|
|
|
|
dt[12] = is_box(gfm_e(st[12]) ^ gfm_b(st[13]) ^ gfm_d(st[14]) ^ gfm_9(st[15]));
|
|
dt[ 1] = is_box(gfm_9(st[12]) ^ gfm_e(st[13]) ^ gfm_b(st[14]) ^ gfm_d(st[15]));
|
|
dt[ 6] = is_box(gfm_d(st[12]) ^ gfm_9(st[13]) ^ gfm_e(st[14]) ^ gfm_b(st[15]));
|
|
dt[11] = is_box(gfm_b(st[12]) ^ gfm_d(st[13]) ^ gfm_9(st[14]) ^ gfm_e(st[15]));
|
|
}
|
|
|
|
#if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED )
|
|
|
|
/* Set the cipher key for the pre-keyed version */
|
|
/* NOTE: If the length_type used for the key length is an
|
|
unsigned 8-bit character, a key length of 256 bits must
|
|
be entered as a length in bytes (valid inputs are hence
|
|
128, 192, 16, 24 and 32).
|
|
*/
|
|
|
|
return_type aes_set_key( const unsigned char key[], length_type keylen, aes_context ctx[1] )
|
|
{
|
|
uint_8t cc, rc, hi;
|
|
|
|
switch( keylen )
|
|
{
|
|
case 16:
|
|
case 128: /* length in bits (128 = 8*16) */
|
|
keylen = 16;
|
|
break;
|
|
case 24:
|
|
case 192: /* length in bits (192 = 8*24) */
|
|
keylen = 24;
|
|
break;
|
|
case 32:
|
|
/* case 256: length in bits (256 = 8*32) */
|
|
keylen = 32;
|
|
break;
|
|
default:
|
|
ctx->rnd = 0;
|
|
return (return_type)-1;
|
|
}
|
|
block_copy_nn(ctx->ksch, key, keylen);
|
|
hi = (keylen + 28) << 2;
|
|
ctx->rnd = (hi >> 4) - 1;
|
|
for( cc = keylen, rc = 1; cc < hi; cc += 4 )
|
|
{ uint_8t tt, t0, t1, t2, t3;
|
|
|
|
t0 = ctx->ksch[cc - 4];
|
|
t1 = ctx->ksch[cc - 3];
|
|
t2 = ctx->ksch[cc - 2];
|
|
t3 = ctx->ksch[cc - 1];
|
|
if( cc % keylen == 0 )
|
|
{
|
|
tt = t0;
|
|
t0 = s_box(t1) ^ rc;
|
|
t1 = s_box(t2);
|
|
t2 = s_box(t3);
|
|
t3 = s_box(tt);
|
|
rc = f2(rc);
|
|
}
|
|
else if( keylen > 24 && cc % keylen == 16 )
|
|
{
|
|
t0 = s_box(t0);
|
|
t1 = s_box(t1);
|
|
t2 = s_box(t2);
|
|
t3 = s_box(t3);
|
|
}
|
|
tt = cc - keylen;
|
|
ctx->ksch[cc + 0] = ctx->ksch[tt + 0] ^ t0;
|
|
ctx->ksch[cc + 1] = ctx->ksch[tt + 1] ^ t1;
|
|
ctx->ksch[cc + 2] = ctx->ksch[tt + 2] ^ t2;
|
|
ctx->ksch[cc + 3] = ctx->ksch[tt + 3] ^ t3;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined( AES_ENC_PREKEYED )
|
|
|
|
/* Encrypt a single block of 16 bytes */
|
|
|
|
/* @breif change the name by snake for avoid the conflict with libcrypto */
|
|
return_type bluedroid_aes_encrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] )
|
|
{
|
|
if( ctx->rnd )
|
|
{
|
|
uint_8t s1[N_BLOCK], r;
|
|
copy_and_key( s1, in, ctx->ksch );
|
|
|
|
for( r = 1 ; r < ctx->rnd ; ++r )
|
|
#if defined( VERSION_1 )
|
|
{
|
|
mix_sub_columns( s1 );
|
|
add_round_key( s1, ctx->ksch + r * N_BLOCK);
|
|
}
|
|
#else
|
|
{ uint_8t s2[N_BLOCK];
|
|
mix_sub_columns( s2, s1 );
|
|
copy_and_key( s1, s2, ctx->ksch + r * N_BLOCK);
|
|
}
|
|
#endif
|
|
shift_sub_rows( s1 );
|
|
copy_and_key( out, s1, ctx->ksch + r * N_BLOCK );
|
|
}
|
|
else
|
|
return (return_type)-1;
|
|
return 0;
|
|
}
|
|
|
|
/* CBC encrypt a number of blocks (input and return an IV) */
|
|
|
|
return_type aes_cbc_encrypt( const unsigned char *in, unsigned char *out,
|
|
int n_block, unsigned char iv[N_BLOCK], const aes_context ctx[1] )
|
|
{
|
|
|
|
while(n_block--)
|
|
{
|
|
xor_block(iv, in);
|
|
if(bluedroid_aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
memcpy(out, iv, N_BLOCK);
|
|
in += N_BLOCK;
|
|
out += N_BLOCK;
|
|
}
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined( AES_DEC_PREKEYED )
|
|
|
|
/* Decrypt a single block of 16 bytes */
|
|
|
|
return_type bluedroid_aes_decrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] )
|
|
{
|
|
if( ctx->rnd )
|
|
{
|
|
uint_8t s1[N_BLOCK], r;
|
|
copy_and_key( s1, in, ctx->ksch + ctx->rnd * N_BLOCK );
|
|
inv_shift_sub_rows( s1 );
|
|
|
|
for( r = ctx->rnd ; --r ; )
|
|
#if defined( VERSION_1 )
|
|
{
|
|
add_round_key( s1, ctx->ksch + r * N_BLOCK );
|
|
inv_mix_sub_columns( s1 );
|
|
}
|
|
#else
|
|
{ uint_8t s2[N_BLOCK];
|
|
copy_and_key( s2, s1, ctx->ksch + r * N_BLOCK );
|
|
inv_mix_sub_columns( s1, s2 );
|
|
}
|
|
#endif
|
|
copy_and_key( out, s1, ctx->ksch );
|
|
}
|
|
else
|
|
return (return_type)-1;
|
|
return 0;
|
|
}
|
|
|
|
/* CBC decrypt a number of blocks (input and return an IV) */
|
|
|
|
return_type aes_cbc_decrypt( const unsigned char *in, unsigned char *out,
|
|
int n_block, unsigned char iv[N_BLOCK], const aes_context ctx[1] )
|
|
{
|
|
while(n_block--)
|
|
{ uint_8t tmp[N_BLOCK];
|
|
|
|
memcpy(tmp, in, N_BLOCK);
|
|
if(bluedroid_aes_decrypt(in, out, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
xor_block(out, iv);
|
|
memcpy(iv, tmp, N_BLOCK);
|
|
in += N_BLOCK;
|
|
out += N_BLOCK;
|
|
}
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined( AES_ENC_128_OTFK )
|
|
|
|
/* The 'on the fly' encryption key update for for 128 bit keys */
|
|
|
|
static void update_encrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc )
|
|
{ uint_8t cc;
|
|
|
|
k[0] ^= s_box(k[13]) ^ *rc;
|
|
k[1] ^= s_box(k[14]);
|
|
k[2] ^= s_box(k[15]);
|
|
k[3] ^= s_box(k[12]);
|
|
*rc = f2( *rc );
|
|
|
|
for(cc = 4; cc < 16; cc += 4 )
|
|
{
|
|
k[cc + 0] ^= k[cc - 4];
|
|
k[cc + 1] ^= k[cc - 3];
|
|
k[cc + 2] ^= k[cc - 2];
|
|
k[cc + 3] ^= k[cc - 1];
|
|
}
|
|
}
|
|
|
|
/* Encrypt a single block of 16 bytes with 'on the fly' 128 bit keying */
|
|
|
|
void bluedroid_aes_encrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
|
|
const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] )
|
|
{ uint_8t s1[N_BLOCK], r, rc = 1;
|
|
|
|
if(o_key != key)
|
|
block_copy( o_key, key );
|
|
copy_and_key( s1, in, o_key );
|
|
|
|
for( r = 1 ; r < 10 ; ++r )
|
|
#if defined( VERSION_1 )
|
|
{
|
|
mix_sub_columns( s1 );
|
|
update_encrypt_key_128( o_key, &rc );
|
|
add_round_key( s1, o_key );
|
|
}
|
|
#else
|
|
{ uint_8t s2[N_BLOCK];
|
|
mix_sub_columns( s2, s1 );
|
|
update_encrypt_key_128( o_key, &rc );
|
|
copy_and_key( s1, s2, o_key );
|
|
}
|
|
#endif
|
|
|
|
shift_sub_rows( s1 );
|
|
update_encrypt_key_128( o_key, &rc );
|
|
copy_and_key( out, s1, o_key );
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined( AES_DEC_128_OTFK )
|
|
|
|
/* The 'on the fly' decryption key update for for 128 bit keys */
|
|
|
|
static void update_decrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc )
|
|
{ uint_8t cc;
|
|
|
|
for( cc = 12; cc > 0; cc -= 4 )
|
|
{
|
|
k[cc + 0] ^= k[cc - 4];
|
|
k[cc + 1] ^= k[cc - 3];
|
|
k[cc + 2] ^= k[cc - 2];
|
|
k[cc + 3] ^= k[cc - 1];
|
|
}
|
|
*rc = d2(*rc);
|
|
k[0] ^= s_box(k[13]) ^ *rc;
|
|
k[1] ^= s_box(k[14]);
|
|
k[2] ^= s_box(k[15]);
|
|
k[3] ^= s_box(k[12]);
|
|
}
|
|
|
|
/* Decrypt a single block of 16 bytes with 'on the fly' 128 bit keying */
|
|
|
|
void bluedroid_aes_decrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
|
|
const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] )
|
|
{
|
|
uint_8t s1[N_BLOCK], r, rc = 0x6c;
|
|
if(o_key != key)
|
|
block_copy( o_key, key );
|
|
|
|
copy_and_key( s1, in, o_key );
|
|
inv_shift_sub_rows( s1 );
|
|
|
|
for( r = 10 ; --r ; )
|
|
#if defined( VERSION_1 )
|
|
{
|
|
update_decrypt_key_128( o_key, &rc );
|
|
add_round_key( s1, o_key );
|
|
inv_mix_sub_columns( s1 );
|
|
}
|
|
#else
|
|
{ uint_8t s2[N_BLOCK];
|
|
update_decrypt_key_128( o_key, &rc );
|
|
copy_and_key( s2, s1, o_key );
|
|
inv_mix_sub_columns( s1, s2 );
|
|
}
|
|
#endif
|
|
update_decrypt_key_128( o_key, &rc );
|
|
copy_and_key( out, s1, o_key );
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined( AES_ENC_256_OTFK )
|
|
|
|
/* The 'on the fly' encryption key update for for 256 bit keys */
|
|
|
|
static void update_encrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc )
|
|
{ uint_8t cc;
|
|
|
|
k[0] ^= s_box(k[29]) ^ *rc;
|
|
k[1] ^= s_box(k[30]);
|
|
k[2] ^= s_box(k[31]);
|
|
k[3] ^= s_box(k[28]);
|
|
*rc = f2( *rc );
|
|
|
|
for(cc = 4; cc < 16; cc += 4)
|
|
{
|
|
k[cc + 0] ^= k[cc - 4];
|
|
k[cc + 1] ^= k[cc - 3];
|
|
k[cc + 2] ^= k[cc - 2];
|
|
k[cc + 3] ^= k[cc - 1];
|
|
}
|
|
|
|
k[16] ^= s_box(k[12]);
|
|
k[17] ^= s_box(k[13]);
|
|
k[18] ^= s_box(k[14]);
|
|
k[19] ^= s_box(k[15]);
|
|
|
|
for( cc = 20; cc < 32; cc += 4 )
|
|
{
|
|
k[cc + 0] ^= k[cc - 4];
|
|
k[cc + 1] ^= k[cc - 3];
|
|
k[cc + 2] ^= k[cc - 2];
|
|
k[cc + 3] ^= k[cc - 1];
|
|
}
|
|
}
|
|
|
|
/* Encrypt a single block of 16 bytes with 'on the fly' 256 bit keying */
|
|
|
|
void bluedroid_aes_encrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
|
|
const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] )
|
|
{
|
|
uint_8t s1[N_BLOCK], r, rc = 1;
|
|
if(o_key != key)
|
|
{
|
|
block_copy( o_key, key );
|
|
block_copy( o_key + 16, key + 16 );
|
|
}
|
|
copy_and_key( s1, in, o_key );
|
|
|
|
for( r = 1 ; r < 14 ; ++r )
|
|
#if defined( VERSION_1 )
|
|
{
|
|
mix_sub_columns(s1);
|
|
if( r & 1 )
|
|
add_round_key( s1, o_key + 16 );
|
|
else
|
|
{
|
|
update_encrypt_key_256( o_key, &rc );
|
|
add_round_key( s1, o_key );
|
|
}
|
|
}
|
|
#else
|
|
{ uint_8t s2[N_BLOCK];
|
|
mix_sub_columns( s2, s1 );
|
|
if( r & 1 )
|
|
copy_and_key( s1, s2, o_key + 16 );
|
|
else
|
|
{
|
|
update_encrypt_key_256( o_key, &rc );
|
|
copy_and_key( s1, s2, o_key );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
shift_sub_rows( s1 );
|
|
update_encrypt_key_256( o_key, &rc );
|
|
copy_and_key( out, s1, o_key );
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined( AES_DEC_256_OTFK )
|
|
|
|
/* The 'on the fly' encryption key update for for 256 bit keys */
|
|
|
|
static void update_decrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc )
|
|
{ uint_8t cc;
|
|
|
|
for(cc = 28; cc > 16; cc -= 4)
|
|
{
|
|
k[cc + 0] ^= k[cc - 4];
|
|
k[cc + 1] ^= k[cc - 3];
|
|
k[cc + 2] ^= k[cc - 2];
|
|
k[cc + 3] ^= k[cc - 1];
|
|
}
|
|
|
|
k[16] ^= s_box(k[12]);
|
|
k[17] ^= s_box(k[13]);
|
|
k[18] ^= s_box(k[14]);
|
|
k[19] ^= s_box(k[15]);
|
|
|
|
for(cc = 12; cc > 0; cc -= 4)
|
|
{
|
|
k[cc + 0] ^= k[cc - 4];
|
|
k[cc + 1] ^= k[cc - 3];
|
|
k[cc + 2] ^= k[cc - 2];
|
|
k[cc + 3] ^= k[cc - 1];
|
|
}
|
|
|
|
*rc = d2(*rc);
|
|
k[0] ^= s_box(k[29]) ^ *rc;
|
|
k[1] ^= s_box(k[30]);
|
|
k[2] ^= s_box(k[31]);
|
|
k[3] ^= s_box(k[28]);
|
|
}
|
|
|
|
/* Decrypt a single block of 16 bytes with 'on the fly'
|
|
256 bit keying
|
|
*/
|
|
void bluedroid_aes_decrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
|
|
const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] )
|
|
{
|
|
uint_8t s1[N_BLOCK], r, rc = 0x80;
|
|
|
|
if(o_key != key)
|
|
{
|
|
block_copy( o_key, key );
|
|
block_copy( o_key + 16, key + 16 );
|
|
}
|
|
|
|
copy_and_key( s1, in, o_key );
|
|
inv_shift_sub_rows( s1 );
|
|
|
|
for( r = 14 ; --r ; )
|
|
#if defined( VERSION_1 )
|
|
{
|
|
if( ( r & 1 ) )
|
|
{
|
|
update_decrypt_key_256( o_key, &rc );
|
|
add_round_key( s1, o_key + 16 );
|
|
}
|
|
else
|
|
add_round_key( s1, o_key );
|
|
inv_mix_sub_columns( s1 );
|
|
}
|
|
#else
|
|
{ uint_8t s2[N_BLOCK];
|
|
if( ( r & 1 ) )
|
|
{
|
|
update_decrypt_key_256( o_key, &rc );
|
|
copy_and_key( s2, s1, o_key + 16 );
|
|
}
|
|
else
|
|
copy_and_key( s2, s1, o_key );
|
|
inv_mix_sub_columns( s1, s2 );
|
|
}
|
|
#endif
|
|
copy_and_key( out, s1, o_key );
|
|
}
|
|
|
|
#endif
|