OVMS3-idf/components/soc/include/hal/spi_flash_types.h
2020-02-11 14:30:42 +05:00

154 lines
6.2 KiB
C

// Copyright 2010-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <esp_types.h>
#include "esp_flash_err.h"
#ifdef __cplusplus
extern "C" {
#endif
/** Definition of a common transaction. Also holds the return value. */
typedef struct {
uint8_t command; ///< Command to send, always 8bits
uint8_t mosi_len; ///< Output data length, in bytes
uint8_t miso_len; ///< Input data length, in bytes
uint8_t address_bitlen; ///< Length of address in bits, set to 0 if command does not need an address
uint32_t address; ///< Address to perform operation on
const uint8_t *mosi_data; ///< Output data to salve
uint8_t *miso_data; ///< [out] Input data from slave, little endian
} spi_flash_trans_t;
/**
* @brief SPI flash clock speed values, always refer to them by the enum rather
* than the actual value (more speed may be appended into the list).
*
* A strategy to select the maximum allowed speed is to enumerate from the
* ``ESP_FLSH_SPEED_MAX-1`` or highest frequency supported by your flash, and
* decrease the speed until the probing success.
*/
typedef enum {
ESP_FLASH_5MHZ = 0, ///< The flash runs under 5MHz
ESP_FLASH_10MHZ, ///< The flash runs under 10MHz
ESP_FLASH_20MHZ, ///< The flash runs under 20MHz
ESP_FLASH_26MHZ, ///< The flash runs under 26MHz
ESP_FLASH_40MHZ, ///< The flash runs under 40MHz
ESP_FLASH_80MHZ, ///< The flash runs under 80MHz
ESP_FLASH_SPEED_MAX, ///< The maximum frequency supported by the host is ``ESP_FLASH_SPEED_MAX-1``.
} esp_flash_speed_t;
///Lowest speed supported by the driver, currently 5 MHz
#define ESP_FLASH_SPEED_MIN ESP_FLASH_5MHZ
/** @brief Mode used for reading from SPI flash */
typedef enum {
SPI_FLASH_SLOWRD = 0, ///< Data read using single I/O, some limits on speed
SPI_FLASH_FASTRD, ///< Data read using single I/O, no limit on speed
SPI_FLASH_DOUT, ///< Data read using dual I/O
SPI_FLASH_DIO, ///< Both address & data transferred using dual I/O
SPI_FLASH_QOUT, ///< Data read using quad I/O
SPI_FLASH_QIO, ///< Both address & data transferred using quad I/O
SPI_FLASH_READ_MODE_MAX, ///< The fastest io mode supported by the host is ``ESP_FLASH_READ_MODE_MAX-1``.
} esp_flash_io_mode_t;
///Slowest io mode supported by ESP32, currently SlowRd
#define SPI_FLASH_READ_MODE_MIN SPI_FLASH_SLOWRD
struct spi_flash_host_driver_t;
typedef struct spi_flash_host_driver_t spi_flash_host_driver_t;
/** Host driver configuration and context structure. */
struct spi_flash_host_driver_t {
/**
* Configuration and static data used by the specific host driver. The type
* is determined by the host driver.
*/
void *driver_data;
/**
* Configure the device-related register before transactions. This saves
* some time to re-configure those registers when we send continuously
*/
esp_err_t (*dev_config)(spi_flash_host_driver_t *driver);
/**
* Send an user-defined spi transaction to the device.
*/
esp_err_t (*common_command)(spi_flash_host_driver_t *driver, spi_flash_trans_t *t);
/**
* Read flash ID.
*/
esp_err_t (*read_id)(spi_flash_host_driver_t *driver, uint32_t *id);
/**
* Erase whole flash chip.
*/
void (*erase_chip)(spi_flash_host_driver_t *driver);
/**
* Erase a specific sector by its start address.
*/
void (*erase_sector)(spi_flash_host_driver_t *driver, uint32_t start_address);
/**
* Erase a specific block by its start address.
*/
void (*erase_block)(spi_flash_host_driver_t *driver, uint32_t start_address);
/**
* Read the status of the flash chip.
*/
esp_err_t (*read_status)(spi_flash_host_driver_t *driver, uint8_t *out_sr);
/**
* Disable write protection.
*/
esp_err_t (*set_write_protect)(spi_flash_host_driver_t *driver, bool wp);
/**
* Program a page of the flash. Check ``max_write_bytes`` for the maximum allowed writing length.
*/
void (*program_page)(spi_flash_host_driver_t *driver, const void *buffer, uint32_t address, uint32_t length);
/** Check whether need to allocate new buffer to write */
bool (*supports_direct_write)(spi_flash_host_driver_t *driver, const void *p);
/** Check whether need to allocate new buffer to read */
bool (*supports_direct_read)(spi_flash_host_driver_t *driver, const void *p);
/** maximum length of program_page */
int max_write_bytes;
/**
* Read data from the flash. Check ``max_read_bytes`` for the maximum allowed reading length.
*/
esp_err_t (*read)(spi_flash_host_driver_t *driver, void *buffer, uint32_t address, uint32_t read_len);
/** maximum length of read */
int max_read_bytes;
/**
* Check whether the host is idle to perform new operations.
*/
bool (*host_idle)(spi_flash_host_driver_t *driver);
/**
* Configure the host to work at different read mode. Responsible to compensate the timing and set IO mode.
*/
esp_err_t (*configure_host_io_mode)(spi_flash_host_driver_t *driver, uint32_t command,
uint32_t addr_bitlen, int dummy_bitlen_base,
esp_flash_io_mode_t io_mode);
/**
* Internal use, poll the HW until the last operation is done.
*/
void (*poll_cmd_done)(spi_flash_host_driver_t *driver);
/**
* For some host (SPI1), they are shared with a cache. When the data is
* modified, the cache needs to be flushed. Left NULL if not supported.
*/
esp_err_t (*flush_cache)(spi_flash_host_driver_t* driver, uint32_t addr, uint32_t size);
};
#ifdef __cplusplus
}
#endif