OVMS3-idf/components/esp32/deep_sleep.c

356 lines
13 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <sys/lock.h>
#include "esp_attr.h"
#include "esp_deep_sleep.h"
#include "esp_log.h"
#include "rom/cache.h"
#include "rom/rtc.h"
#include "rom/uart.h"
#include "soc/cpu.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/dport_reg.h"
#include "driver/rtc_io.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "rtc.h"
#include "sdkconfig.h"
/**
* Internal structure which holds all requested deep sleep parameters
*/
typedef struct {
esp_deep_sleep_pd_option_t pd_options[ESP_PD_DOMAIN_MAX];
uint64_t sleep_duration;
uint32_t wakeup_triggers : 11;
uint32_t ext1_trigger_mode : 1;
uint32_t ext1_rtc_gpio_mask : 18;
uint32_t ext0_trigger_level : 1;
uint32_t ext0_rtc_gpio_num : 5;
} deep_sleep_config_t;
static deep_sleep_config_t s_config = {
.pd_options = { ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO },
.wakeup_triggers = 0
};
/* Updating RTC_MEMORY_CRC_REG register via set_rtc_memory_crc()
is not thread-safe. */
static _lock_t lock_rtc_memory_crc;
static const char* TAG = "deepsleep";
static uint32_t get_power_down_flags();
static void ext0_wakeup_prepare();
static void ext1_wakeup_prepare();
/* Wake from deep sleep stub
See esp_deepsleep.h esp_wake_deep_sleep() comments for details.
*/
esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void)
{
_lock_acquire(&lock_rtc_memory_crc);
uint32_t stored_crc = REG_READ(RTC_MEMORY_CRC_REG);
set_rtc_memory_crc();
uint32_t calc_crc = REG_READ(RTC_MEMORY_CRC_REG);
REG_WRITE(RTC_MEMORY_CRC_REG, stored_crc);
_lock_release(&lock_rtc_memory_crc);
if(stored_crc == calc_crc) {
return (esp_deep_sleep_wake_stub_fn_t)REG_READ(RTC_ENTRY_ADDR_REG);
} else {
return NULL;
}
}
void esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub)
{
_lock_acquire(&lock_rtc_memory_crc);
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)new_stub);
set_rtc_memory_crc();
_lock_release(&lock_rtc_memory_crc);
}
void RTC_IRAM_ATTR esp_default_wake_deep_sleep(void) {
/* Clear MMU for CPU 0 */
REG_SET_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MMU_IA_CLR);
REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MMU_IA_CLR);
#if CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY > 0
// ROM code has not started yet, so we need to set delay factor
// used by ets_delay_us first.
ets_update_cpu_frequency_rom(ets_get_detected_xtal_freq() / 1000000);
// This delay is configured in menuconfig, it can be used to give
// the flash chip some time to become ready.
ets_delay_us(CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY);
#endif
}
void __attribute__((weak, alias("esp_default_wake_deep_sleep"))) esp_wake_deep_sleep(void);
void esp_deep_sleep(uint64_t time_in_us)
{
esp_deep_sleep_enable_timer_wakeup(time_in_us);
esp_deep_sleep_start();
}
void IRAM_ATTR esp_deep_sleep_start()
{
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
// Configure pins for external wakeup
if (s_config.wakeup_triggers & EXT_EVENT0_TRIG_EN) {
ext0_wakeup_prepare();
}
if (s_config.wakeup_triggers & EXT_EVENT1_TRIG_EN) {
ext1_wakeup_prepare();
}
// TODO: move timer wakeup configuration into a similar function
// once rtc_sleep is opensourced.
// Flush UARTs so that output is not lost due to APB frequency change
uart_tx_wait_idle(0);
uart_tx_wait_idle(1);
uart_tx_wait_idle(2);
if (esp_get_deep_sleep_wake_stub() == NULL) {
esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep);
}
rtc_set_cpu_freq(CPU_XTAL);
uint32_t cycle_h = 0;
uint32_t cycle_l = 0;
// For timer wakeup, calibrate clock source against main XTAL
// This is hardcoded to use 150kHz internal oscillator for now
if (s_config.sleep_duration > 0) {
uint32_t period = rtc_slowck_cali(CALI_RTC_MUX, 128);
rtc_usec2rtc(s_config.sleep_duration >> 32, s_config.sleep_duration & UINT32_MAX,
period, &cycle_h, &cycle_l);
}
// Enter deep sleep
rtc_slp_prep_lite(pd_flags, 0);
rtc_sleep(cycle_h, cycle_l, s_config.wakeup_triggers, 0);
// Because RTC is in a slower clock domain than the CPU, it
// can take several CPU cycles for the sleep mode to start.
while (1) {
;
}
}
void system_deep_sleep(uint64_t) __attribute__((alias("esp_deep_sleep")));
esp_err_t esp_deep_sleep_enable_ulp_wakeup()
{
#ifdef CONFIG_ULP_COPROC_ENABLED
s_config.wakeup_triggers |= RTC_SAR_TRIG_EN;
return ESP_OK;
#else
return ESP_ERR_INVALID_STATE;
#endif
}
esp_err_t esp_deep_sleep_enable_timer_wakeup(uint64_t time_in_us)
{
s_config.wakeup_triggers |= RTC_TIMER_EXPIRE_EN;
s_config.sleep_duration = time_in_us;
return ESP_OK;
}
esp_err_t esp_deep_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level)
{
if (level < 0 || level > 1) {
return ESP_ERR_INVALID_ARG;
}
if (!RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
s_config.ext0_rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num;
s_config.ext0_trigger_level = level;
s_config.wakeup_triggers |= RTC_EXT_EVENT0_TRIG_EN;
return ESP_OK;
}
static void ext0_wakeup_prepare()
{
int rtc_gpio_num = s_config.ext0_rtc_gpio_num;
// Set GPIO to be used for wakeup
REG_SET_FIELD(RTC_IO_EXT_WAKEUP0_REG, RTC_IO_EXT_WAKEUP0_SEL, rtc_gpio_num);
// Set level which will trigger wakeup
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
s_config.ext0_trigger_level, RTC_CNTL_EXT_WAKEUP0_LV_S);
// Find GPIO descriptor in the rtc_gpio_desc table and configure the pad
for (size_t gpio_num = 0; gpio_num < GPIO_PIN_COUNT; ++gpio_num) {
const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio_num];
if (desc->rtc_num == rtc_gpio_num) {
REG_SET_BIT(desc->reg, desc->mux);
SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func);
REG_SET_BIT(desc->reg, desc->slpsel);
REG_SET_BIT(desc->reg, desc->slpie);
break;
}
}
}
esp_err_t esp_deep_sleep_enable_ext1_wakeup(uint64_t mask, esp_ext1_wakeup_mode_t mode)
{
if (mode > ESP_EXT1_WAKEUP_ANY_HIGH) {
return ESP_ERR_INVALID_ARG;
}
// Translate bit map of GPIO numbers into the bit map of RTC IO numbers
uint32_t rtc_gpio_mask = 0;
for (int gpio = 0; mask; ++gpio, mask >>= 1) {
if ((mask & 1) == 0) {
continue;
}
if (!RTC_GPIO_IS_VALID_GPIO(gpio)) {
ESP_LOGE(TAG, "Not an RTC IO: GPIO%d", gpio);
return ESP_ERR_INVALID_ARG;
}
rtc_gpio_mask |= BIT(rtc_gpio_desc[gpio].rtc_num);
}
s_config.ext1_rtc_gpio_mask = rtc_gpio_mask;
s_config.ext1_trigger_mode = mode;
s_config.wakeup_triggers |= RTC_EXT_EVENT1_TRIG_EN;
return ESP_OK;
}
static void ext1_wakeup_prepare()
{
// Configure all RTC IOs selected as ext1 wakeup inputs
uint32_t rtc_gpio_mask = s_config.ext1_rtc_gpio_mask;
for (int gpio = 0; gpio < GPIO_PIN_COUNT && rtc_gpio_mask != 0; ++gpio) {
int rtc_pin = rtc_gpio_desc[gpio].rtc_num;
if ((rtc_gpio_mask & BIT(rtc_pin)) == 0) {
continue;
}
const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio];
// Route pad to RTC
REG_SET_BIT(desc->reg, desc->mux);
SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func);
// Pad configuration depends on RTC_PERIPH state in sleep mode
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_ON) {
// set input enable in sleep mode
REG_SET_BIT(desc->reg, desc->slpie);
// allow sleep status signal to control IE/SLPIE mux
REG_SET_BIT(desc->reg, desc->slpsel);
} else {
// RTC_PERIPH will be disabled, so need to enable input and
// lock pad configuration. Pullups/pulldowns also need to be disabled.
REG_SET_BIT(desc->reg, desc->ie);
REG_CLR_BIT(desc->reg, desc->pulldown);
REG_CLR_BIT(desc->reg, desc->pullup);
REG_SET_BIT(RTC_CNTL_HOLD_FORCE_REG, desc->hold);
}
// Keep track of pins which are processed to bail out early
rtc_gpio_mask &= ~BIT(rtc_pin);
}
// Clear state from previous wakeup
REG_SET_BIT(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_STATUS_CLR);
// Set pins to be used for wakeup
REG_SET_FIELD(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_SEL, s_config.ext1_rtc_gpio_mask);
// Set logic function (any low, all high)
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
s_config.ext1_trigger_mode, RTC_CNTL_EXT_WAKEUP1_LV_S);
}
uint64_t esp_deep_sleep_get_ext1_wakeup_status()
{
int wakeup_reason = REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE);
if (wakeup_reason != RTC_EXT_EVENT1_TRIG) {
return 0;
}
uint32_t status = REG_GET_FIELD(RTC_CNTL_EXT_WAKEUP1_STATUS_REG, RTC_CNTL_EXT_WAKEUP1_STATUS);
// Translate bit map of RTC IO numbers into the bit map of GPIO numbers
uint64_t gpio_mask = 0;
for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) {
if (!RTC_GPIO_IS_VALID_GPIO(gpio)) {
continue;
}
int rtc_pin = rtc_gpio_desc[gpio].rtc_num;
if ((status & BIT(rtc_pin)) == 0) {
continue;
}
gpio_mask |= BIT(gpio);
}
return gpio_mask;
}
esp_err_t esp_deep_sleep_pd_config(esp_deep_sleep_pd_domain_t domain,
esp_deep_sleep_pd_option_t option)
{
if (domain >= ESP_PD_DOMAIN_MAX || option > ESP_PD_OPTION_AUTO) {
return ESP_ERR_INVALID_ARG;
}
s_config.pd_options[domain] = option;
return ESP_OK;
}
static uint32_t get_power_down_flags()
{
// Where needed, convert AUTO options to ON. Later interpret AUTO as OFF.
// RTC_SLOW_MEM is needed for the ULP, so keep RTC_SLOW_MEM powered up if ULP
// is used and RTC_SLOW_MEM is Auto.
// If there is any data placed into .rtc.data or .rtc.bss segments, and
// RTC_SLOW_MEM is Auto, keep it powered up as well.
// These labels are defined in the linker script:
extern int _rtc_data_start, _rtc_data_end, _rtc_bss_start, _rtc_bss_end;
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] == ESP_PD_OPTION_AUTO ||
&_rtc_data_end > &_rtc_data_start ||
&_rtc_bss_end > &_rtc_bss_start) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] = ESP_PD_OPTION_ON;
}
// RTC_FAST_MEM is needed for deep sleep stub.
// If RTC_FAST_MEM is Auto, keep it powered on, so that deep sleep stub
// can run.
// In the new chip revision, deep sleep stub will be optional,
// and this can be changed.
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] == ESP_PD_OPTION_AUTO) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON;
}
// RTC_PERIPH is needed for EXT0 wakeup and for ULP.
// If RTC_PERIPH is auto, and both EXT0 and ULP aren't enabled,
// power down RTC_PERIPH.
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_AUTO) {
if (s_config.wakeup_triggers &
(RTC_SAR_TRIG_EN | RTC_EXT_EVENT0_TRIG_EN)) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON;
}
}
const char* option_str[] = {"OFF", "ON", "AUTO(OFF)" /* Auto works as OFF */};
ESP_LOGD(TAG, "RTC_PERIPH: %s, RTC_SLOW_MEM: %s, RTC_FAST_MEM: %s",
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH]],
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM]],
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM]]);
// Prepare flags based on the selected options
uint32_t pd_flags = DEEP_SLEEP_PD_NORMAL;
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= DEEP_SLEEP_PD_RTC_FAST_MEM;
}
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= DEEP_SLEEP_PD_RTC_SLOW_MEM;
}
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
pd_flags |= DEEP_SLEEP_PD_RTC_PERIPH;
}
return pd_flags;
}