OVMS3-idf/components/pthread/pthread.c
Michael (XIAO Xufeng) 562af8f65e global: move the soc component out of the common list
This MR removes the common dependency from every IDF components to the SOC component.

Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components.
But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components.

In CMAKE, we have two kinds of header visibilities (set by include path visibility):

(Assume component A --(depends on)--> B, B is the current component)

1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B)
2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only)

and we have two kinds of depending ways:

(Assume component A --(depends on)--> B --(depends on)--> C, B is the current component)

1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B)
2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B)

1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default.
2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it.
3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers
4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link)

This is a breaking change. Previous code may depends on the long include chain.
You may need to include the following headers for some files after this commit:

- soc/soc.h
- soc/soc_memory_layout.h
- driver/gpio.h
- esp_sleep.h

The major broken include chain includes:

1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h.
2. ets_sys.h no longer includes soc/soc.h
3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h

some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h

BREAKING CHANGE
2019-04-16 13:21:15 +08:00

822 lines
23 KiB
C

// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// This module implements pthread API on top of FreeRTOS. API is implemented to the level allowing
// libstdcxx threading framework to operate correctly. So not all original pthread routines are supported.
//
#include <time.h>
#include <errno.h>
#include <pthread.h>
#include <string.h>
#include "esp_err.h"
#include "esp_attr.h"
#include "sys/queue.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "soc/soc_memory_layout.h"
#include "pthread_internal.h"
#include "esp_pthread.h"
#define LOG_LOCAL_LEVEL CONFIG_LOG_DEFAULT_LEVEL
#include "esp_log.h"
const static char *TAG = "pthread";
/** task state */
enum esp_pthread_task_state {
PTHREAD_TASK_STATE_RUN,
PTHREAD_TASK_STATE_EXIT
};
/** pthread thread FreeRTOS wrapper */
typedef struct esp_pthread_entry {
SLIST_ENTRY(esp_pthread_entry) list_node; ///< Tasks list node struct.
TaskHandle_t handle; ///< FreeRTOS task handle
TaskHandle_t join_task; ///< Handle of the task waiting to join
enum esp_pthread_task_state state; ///< pthread task state
bool detached; ///< True if pthread is detached
void *retval; ///< Value supplied to calling thread during join
void *task_arg; ///< Task arguments
} esp_pthread_t;
/** pthread wrapper task arg */
typedef struct {
void *(*func)(void *); ///< user task entry
void *arg; ///< user task argument
esp_pthread_cfg_t cfg; ///< pthread configuration
} esp_pthread_task_arg_t;
/** pthread mutex FreeRTOS wrapper */
typedef struct {
SemaphoreHandle_t sem; ///< Handle of the task waiting to join
int type; ///< Mutex type. Currently supported PTHREAD_MUTEX_NORMAL and PTHREAD_MUTEX_RECURSIVE
} esp_pthread_mutex_t;
static SemaphoreHandle_t s_threads_mux = NULL;
static portMUX_TYPE s_mutex_init_lock = portMUX_INITIALIZER_UNLOCKED;
static SLIST_HEAD(esp_thread_list_head, esp_pthread_entry) s_threads_list
= SLIST_HEAD_INITIALIZER(s_threads_list);
static pthread_key_t s_pthread_cfg_key;
static int IRAM_ATTR pthread_mutex_lock_internal(esp_pthread_mutex_t *mux, TickType_t tmo);
static void esp_pthread_cfg_key_destructor(void *value)
{
free(value);
}
esp_err_t esp_pthread_init(void)
{
if (pthread_key_create(&s_pthread_cfg_key, esp_pthread_cfg_key_destructor) != 0) {
return ESP_ERR_NO_MEM;
}
s_threads_mux = xSemaphoreCreateMutex();
if (s_threads_mux == NULL) {
pthread_key_delete(s_pthread_cfg_key);
return ESP_ERR_NO_MEM;
}
return ESP_OK;
}
static void *pthread_list_find_item(void *(*item_check)(esp_pthread_t *, void *arg), void *check_arg)
{
esp_pthread_t *it;
SLIST_FOREACH(it, &s_threads_list, list_node) {
void *val = item_check(it, check_arg);
if (val) {
return val;
}
}
return NULL;
}
static void *pthread_get_handle_by_desc(esp_pthread_t *item, void *desc)
{
if (item == desc) {
return item->handle;
}
return NULL;
}
static void *pthread_get_desc_by_handle(esp_pthread_t *item, void *hnd)
{
if (hnd == item->handle) {
return item;
}
return NULL;
}
static inline TaskHandle_t pthread_find_handle(pthread_t thread)
{
return pthread_list_find_item(pthread_get_handle_by_desc, (void *)thread);
}
static esp_pthread_t *pthread_find(TaskHandle_t task_handle)
{
return pthread_list_find_item(pthread_get_desc_by_handle, task_handle);
}
static void pthread_delete(esp_pthread_t *pthread)
{
SLIST_REMOVE(&s_threads_list, pthread, esp_pthread_entry, list_node);
free(pthread);
}
/* Call this function to configure pthread stacks in Pthreads */
esp_err_t esp_pthread_set_cfg(const esp_pthread_cfg_t *cfg)
{
if (cfg->stack_size < PTHREAD_STACK_MIN) {
return ESP_ERR_INVALID_ARG;
}
/* If a value is already set, update that value */
esp_pthread_cfg_t *p = pthread_getspecific(s_pthread_cfg_key);
if (!p) {
p = malloc(sizeof(esp_pthread_cfg_t));
if (!p) {
return ESP_ERR_NO_MEM;
}
}
*p = *cfg;
pthread_setspecific(s_pthread_cfg_key, p);
return 0;
}
esp_err_t esp_pthread_get_cfg(esp_pthread_cfg_t *p)
{
esp_pthread_cfg_t *cfg = pthread_getspecific(s_pthread_cfg_key);
if (cfg) {
*p = *cfg;
return ESP_OK;
}
memset(p, 0, sizeof(*p));
return ESP_ERR_NOT_FOUND;
}
static int get_default_pthread_core()
{
return CONFIG_ESP32_PTHREAD_TASK_CORE_DEFAULT == -1 ? tskNO_AFFINITY : CONFIG_ESP32_PTHREAD_TASK_CORE_DEFAULT;
}
esp_pthread_cfg_t esp_pthread_get_default_config()
{
esp_pthread_cfg_t cfg = {
.stack_size = CONFIG_ESP32_PTHREAD_TASK_STACK_SIZE_DEFAULT,
.prio = CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT,
.inherit_cfg = false,
.thread_name = NULL,
.pin_to_core = get_default_pthread_core()
};
return cfg;
}
static void pthread_task_func(void *arg)
{
void *rval = NULL;
esp_pthread_task_arg_t *task_arg = (esp_pthread_task_arg_t *)arg;
ESP_LOGV(TAG, "%s ENTER %p", __FUNCTION__, task_arg->func);
// wait for start
xTaskNotifyWait(0, 0, NULL, portMAX_DELAY);
if (task_arg->cfg.inherit_cfg) {
/* If inherit option is set, then do a set_cfg() ourselves for future forks,
but first set thread_name to NULL to enable inheritance of the name too.
(This also to prevents dangling pointers to name of tasks that might
possibly have been deleted when we use the configuration).*/
esp_pthread_cfg_t *cfg = &task_arg->cfg;
cfg->thread_name = NULL;
esp_pthread_set_cfg(cfg);
}
ESP_LOGV(TAG, "%s START %p", __FUNCTION__, task_arg->func);
rval = task_arg->func(task_arg->arg);
ESP_LOGV(TAG, "%s END %p", __FUNCTION__, task_arg->func);
pthread_exit(rval);
ESP_LOGV(TAG, "%s EXIT", __FUNCTION__);
}
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg)
{
TaskHandle_t xHandle = NULL;
ESP_LOGV(TAG, "%s", __FUNCTION__);
esp_pthread_task_arg_t *task_arg = calloc(1, sizeof(esp_pthread_task_arg_t));
if (task_arg == NULL) {
ESP_LOGE(TAG, "Failed to allocate task args!");
return ENOMEM;
}
esp_pthread_t *pthread = calloc(1, sizeof(esp_pthread_t));
if (pthread == NULL) {
ESP_LOGE(TAG, "Failed to allocate pthread data!");
free(task_arg);
return ENOMEM;
}
uint32_t stack_size = CONFIG_ESP32_PTHREAD_TASK_STACK_SIZE_DEFAULT;
BaseType_t prio = CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT;
BaseType_t core_id = get_default_pthread_core();
const char *task_name = CONFIG_ESP32_PTHREAD_TASK_NAME_DEFAULT;
esp_pthread_cfg_t *pthread_cfg = pthread_getspecific(s_pthread_cfg_key);
if (pthread_cfg) {
if (pthread_cfg->stack_size) {
stack_size = pthread_cfg->stack_size;
}
if (pthread_cfg->prio && pthread_cfg->prio < configMAX_PRIORITIES) {
prio = pthread_cfg->prio;
}
if (pthread_cfg->inherit_cfg) {
if (pthread_cfg->thread_name == NULL) {
// Inherit task name from current task.
task_name = pcTaskGetTaskName(NULL);
} else {
// Inheriting, but new task name.
task_name = pthread_cfg->thread_name;
}
} else if (pthread_cfg->thread_name == NULL) {
task_name = CONFIG_ESP32_PTHREAD_TASK_NAME_DEFAULT;
} else {
task_name = pthread_cfg->thread_name;
}
if (pthread_cfg->pin_to_core >= 0 && pthread_cfg->pin_to_core < portNUM_PROCESSORS) {
core_id = pthread_cfg->pin_to_core;
}
task_arg->cfg = *pthread_cfg;
}
if (attr) {
/* Overwrite attributes */
stack_size = attr->stacksize;
switch (attr->detachstate) {
case PTHREAD_CREATE_DETACHED:
pthread->detached = true;
break;
case PTHREAD_CREATE_JOINABLE:
default:
pthread->detached = false;
}
}
task_arg->func = start_routine;
task_arg->arg = arg;
pthread->task_arg = task_arg;
BaseType_t res = xTaskCreatePinnedToCore(&pthread_task_func,
task_name,
// stack_size is in bytes. This transformation ensures that the units are
// transformed to the units used in FreeRTOS.
// Note: float division of ceil(m / n) ==
// integer division of (m + n - 1) / n
(stack_size + sizeof(StackType_t) - 1) / sizeof(StackType_t),
task_arg,
prio,
&xHandle,
core_id);
if (res != pdPASS) {
ESP_LOGE(TAG, "Failed to create task!");
free(pthread);
free(task_arg);
if (res == errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY) {
return ENOMEM;
} else {
return EAGAIN;
}
}
pthread->handle = xHandle;
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
SLIST_INSERT_HEAD(&s_threads_list, pthread, list_node);
xSemaphoreGive(s_threads_mux);
// start task
xTaskNotify(xHandle, 0, eNoAction);
*thread = (pthread_t)pthread; // pointer value fit into pthread_t (uint32_t)
ESP_LOGV(TAG, "Created task %x", (uint32_t)xHandle);
return 0;
}
int pthread_join(pthread_t thread, void **retval)
{
esp_pthread_t *pthread = (esp_pthread_t *)thread;
int ret = 0;
bool wait = false;
void *child_task_retval = 0;
ESP_LOGV(TAG, "%s %p", __FUNCTION__, pthread);
// find task
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
TaskHandle_t handle = pthread_find_handle(thread);
if (!handle) {
// not found
ret = ESRCH;
} else if (pthread->detached) {
// Thread is detached
ret = EDEADLK;
} else if (pthread->join_task) {
// already have waiting task to join
ret = EINVAL;
} else if (handle == xTaskGetCurrentTaskHandle()) {
// join to self not allowed
ret = EDEADLK;
} else {
esp_pthread_t *cur_pthread = pthread_find(xTaskGetCurrentTaskHandle());
if (cur_pthread && cur_pthread->join_task == handle) {
// join to each other not allowed
ret = EDEADLK;
} else {
if (pthread->state == PTHREAD_TASK_STATE_RUN) {
pthread->join_task = xTaskGetCurrentTaskHandle();
wait = true;
} else {
child_task_retval = pthread->retval;
pthread_delete(pthread);
}
}
}
xSemaphoreGive(s_threads_mux);
if (ret == 0) {
if (wait) {
xTaskNotifyWait(0, 0, NULL, portMAX_DELAY);
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
child_task_retval = pthread->retval;
pthread_delete(pthread);
xSemaphoreGive(s_threads_mux);
}
vTaskDelete(handle);
}
if (retval) {
*retval = child_task_retval;
}
ESP_LOGV(TAG, "%s %p EXIT %d", __FUNCTION__, pthread, ret);
return ret;
}
int pthread_detach(pthread_t thread)
{
esp_pthread_t *pthread = (esp_pthread_t *)thread;
int ret = 0;
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
TaskHandle_t handle = pthread_find_handle(thread);
if (!handle) {
ret = ESRCH;
} else if (pthread->detached) {
// already detached
ret = EINVAL;
} else if (pthread->join_task) {
// already have waiting task to join
ret = EINVAL;
} else if (pthread->state == PTHREAD_TASK_STATE_RUN) {
// pthread still running
pthread->detached = true;
} else {
// pthread already stopped
pthread_delete(pthread);
vTaskDelete(handle);
}
xSemaphoreGive(s_threads_mux);
ESP_LOGV(TAG, "%s %p EXIT %d", __FUNCTION__, pthread, ret);
return ret;
}
void pthread_exit(void *value_ptr)
{
bool detached = false;
/* preemptively clean up thread local storage, rather than
waiting for the idle task to clean up the thread */
pthread_internal_local_storage_destructor_callback();
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
esp_pthread_t *pthread = pthread_find(xTaskGetCurrentTaskHandle());
if (!pthread) {
assert(false && "Failed to find pthread for current task!");
}
if (pthread->task_arg) {
free(pthread->task_arg);
}
if (pthread->detached) {
// auto-free for detached threads
pthread_delete(pthread);
detached = true;
} else {
// Set return value
pthread->retval = value_ptr;
// Remove from list, it indicates that task has exited
if (pthread->join_task) {
// notify join
xTaskNotify(pthread->join_task, 0, eNoAction);
} else {
pthread->state = PTHREAD_TASK_STATE_EXIT;
}
}
xSemaphoreGive(s_threads_mux);
ESP_LOGD(TAG, "Task stk_wm = %d", uxTaskGetStackHighWaterMark(NULL));
if (detached) {
vTaskDelete(NULL);
} else {
vTaskSuspend(NULL);
}
// Should never be reached
abort();
}
int pthread_cancel(pthread_t thread)
{
ESP_LOGE(TAG, "%s: not supported!", __FUNCTION__);
return ENOSYS;
}
int sched_yield( void )
{
vTaskDelay(0);
return 0;
}
pthread_t pthread_self(void)
{
if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) {
assert(false && "Failed to lock threads list!");
}
esp_pthread_t *pthread = pthread_find(xTaskGetCurrentTaskHandle());
if (!pthread) {
assert(false && "Failed to find current thread ID!");
}
xSemaphoreGive(s_threads_mux);
return (pthread_t)pthread;
}
int pthread_equal(pthread_t t1, pthread_t t2)
{
return t1 == t2 ? 1 : 0;
}
/***************** ONCE ******************/
int pthread_once(pthread_once_t *once_control, void (*init_routine)(void))
{
if (once_control == NULL || init_routine == NULL || !once_control->is_initialized) {
ESP_LOGE(TAG, "%s: Invalid args!", __FUNCTION__);
return EINVAL;
}
uint32_t res = 1;
#if defined(CONFIG_SPIRAM_SUPPORT)
if (esp_ptr_external_ram(once_control)) {
uxPortCompareSetExtram((uint32_t *) &once_control->init_executed, 0, &res);
} else {
#endif
uxPortCompareSet((uint32_t *) &once_control->init_executed, 0, &res);
#if defined(CONFIG_SPIRAM_SUPPORT)
}
#endif
// Check if compare and set was successful
if (res == 0) {
ESP_LOGV(TAG, "%s: call init_routine %p", __FUNCTION__, once_control);
init_routine();
}
return 0;
}
/***************** MUTEX ******************/
static int mutexattr_check(const pthread_mutexattr_t *attr)
{
if (attr->type != PTHREAD_MUTEX_NORMAL &&
attr->type != PTHREAD_MUTEX_RECURSIVE &&
attr->type != PTHREAD_MUTEX_ERRORCHECK) {
return EINVAL;
}
return 0;
}
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
{
int type = PTHREAD_MUTEX_NORMAL;
if (!mutex) {
return EINVAL;
}
if (attr) {
if (!attr->is_initialized) {
return EINVAL;
}
int res = mutexattr_check(attr);
if (res) {
return res;
}
type = attr->type;
}
esp_pthread_mutex_t *mux = (esp_pthread_mutex_t *)malloc(sizeof(esp_pthread_mutex_t));
if (!mux) {
return ENOMEM;
}
mux->type = type;
if (mux->type == PTHREAD_MUTEX_RECURSIVE) {
mux->sem = xSemaphoreCreateRecursiveMutex();
} else {
mux->sem = xSemaphoreCreateMutex();
}
if (!mux->sem) {
free(mux);
return EAGAIN;
}
*mutex = (pthread_mutex_t)mux; // pointer value fit into pthread_mutex_t (uint32_t)
return 0;
}
int pthread_mutex_destroy(pthread_mutex_t *mutex)
{
esp_pthread_mutex_t *mux;
ESP_LOGV(TAG, "%s %p", __FUNCTION__, mutex);
if (!mutex) {
return EINVAL;
}
mux = (esp_pthread_mutex_t *)*mutex;
if (!mux) {
return EINVAL;
}
// check if mux is busy
int res = pthread_mutex_lock_internal(mux, 0);
if (res == EBUSY) {
return EBUSY;
}
vSemaphoreDelete(mux->sem);
free(mux);
return 0;
}
static int IRAM_ATTR pthread_mutex_lock_internal(esp_pthread_mutex_t *mux, TickType_t tmo)
{
if (!mux) {
return EINVAL;
}
if ((mux->type == PTHREAD_MUTEX_ERRORCHECK) &&
(xSemaphoreGetMutexHolder(mux->sem) == xTaskGetCurrentTaskHandle())) {
return EDEADLK;
}
if (mux->type == PTHREAD_MUTEX_RECURSIVE) {
if (xSemaphoreTakeRecursive(mux->sem, tmo) != pdTRUE) {
return EBUSY;
}
} else {
if (xSemaphoreTake(mux->sem, tmo) != pdTRUE) {
return EBUSY;
}
}
return 0;
}
static int pthread_mutex_init_if_static(pthread_mutex_t *mutex)
{
int res = 0;
if ((intptr_t) *mutex == PTHREAD_MUTEX_INITIALIZER) {
portENTER_CRITICAL(&s_mutex_init_lock);
if ((intptr_t) *mutex == PTHREAD_MUTEX_INITIALIZER) {
res = pthread_mutex_init(mutex, NULL);
}
portEXIT_CRITICAL(&s_mutex_init_lock);
}
return res;
}
int IRAM_ATTR pthread_mutex_lock(pthread_mutex_t *mutex)
{
if (!mutex) {
return EINVAL;
}
int res = pthread_mutex_init_if_static(mutex);
if (res != 0) {
return res;
}
return pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, portMAX_DELAY);
}
int IRAM_ATTR pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *timeout)
{
if (!mutex) {
return EINVAL;
}
int res = pthread_mutex_init_if_static(mutex);
if (res != 0) {
return res;
}
struct timespec currtime;
clock_gettime(CLOCK_REALTIME, &currtime);
TickType_t tmo = ((timeout->tv_sec - currtime.tv_sec)*1000 +
(timeout->tv_nsec - currtime.tv_nsec)/1000000)/portTICK_PERIOD_MS;
res = pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, tmo);
if (res == EBUSY) {
return ETIMEDOUT;
}
return res;
}
int IRAM_ATTR pthread_mutex_trylock(pthread_mutex_t *mutex)
{
if (!mutex) {
return EINVAL;
}
int res = pthread_mutex_init_if_static(mutex);
if (res != 0) {
return res;
}
return pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, 0);
}
int IRAM_ATTR pthread_mutex_unlock(pthread_mutex_t *mutex)
{
esp_pthread_mutex_t *mux;
if (!mutex) {
return EINVAL;
}
mux = (esp_pthread_mutex_t *)*mutex;
if (!mux) {
return EINVAL;
}
if (((mux->type == PTHREAD_MUTEX_RECURSIVE) ||
(mux->type == PTHREAD_MUTEX_ERRORCHECK)) &&
(xSemaphoreGetMutexHolder(mux->sem) != xTaskGetCurrentTaskHandle())) {
return EPERM;
}
int ret;
if (mux->type == PTHREAD_MUTEX_RECURSIVE) {
ret = xSemaphoreGiveRecursive(mux->sem);
} else {
ret = xSemaphoreGive(mux->sem);
}
if (ret != pdTRUE) {
assert(false && "Failed to unlock mutex!");
}
return 0;
}
int pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
if (!attr) {
return EINVAL;
}
attr->type = PTHREAD_MUTEX_NORMAL;
attr->is_initialized = 1;
return 0;
}
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
if (!attr) {
return EINVAL;
}
attr->is_initialized = 0;
return 0;
}
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
{
if (!attr) {
return EINVAL;
}
*type = attr->type;
return 0;
}
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
if (!attr) {
return EINVAL;
}
pthread_mutexattr_t tmp_attr = {.type = type};
int res = mutexattr_check(&tmp_attr);
if (!res) {
attr->type = type;
}
return res;
}
/***************** ATTRIBUTES ******************/
int pthread_attr_init(pthread_attr_t *attr)
{
if (attr) {
/* Nothing to allocate. Set everything to default */
attr->stacksize = CONFIG_ESP32_PTHREAD_TASK_STACK_SIZE_DEFAULT;
attr->detachstate = PTHREAD_CREATE_JOINABLE;
return 0;
}
return EINVAL;
}
int pthread_attr_destroy(pthread_attr_t *attr)
{
if (attr) {
/* Nothing to deallocate. Reset everything to default */
attr->stacksize = CONFIG_ESP32_PTHREAD_TASK_STACK_SIZE_DEFAULT;
attr->detachstate = PTHREAD_CREATE_JOINABLE;
return 0;
}
return EINVAL;
}
int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize)
{
if (attr) {
*stacksize = attr->stacksize;
return 0;
}
return EINVAL;
}
int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize)
{
if (attr && !(stacksize < PTHREAD_STACK_MIN)) {
attr->stacksize = stacksize;
return 0;
}
return EINVAL;
}
int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate)
{
if (attr) {
*detachstate = attr->detachstate;
return 0;
}
return EINVAL;
}
int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)
{
if (attr) {
switch (detachstate) {
case PTHREAD_CREATE_DETACHED:
attr->detachstate = PTHREAD_CREATE_DETACHED;
break;
case PTHREAD_CREATE_JOINABLE:
attr->detachstate = PTHREAD_CREATE_JOINABLE;
break;
default:
return EINVAL;
}
return 0;
}
return EINVAL;
}