406 lines
13 KiB
Text
406 lines
13 KiB
Text
menu "ESP32-specific config"
|
|
|
|
choice ESP32_DEFAULT_CPU_FREQ_MHZ
|
|
prompt "CPU frequency"
|
|
default ESP32_DEFAULT_CPU_FREQ_240
|
|
help
|
|
CPU frequency to be set on application startup.
|
|
|
|
config ESP32_DEFAULT_CPU_FREQ_80
|
|
bool "80 MHz"
|
|
config ESP32_DEFAULT_CPU_FREQ_160
|
|
bool "160 MHz"
|
|
config ESP32_DEFAULT_CPU_FREQ_240
|
|
bool "240 MHz"
|
|
endchoice
|
|
|
|
config ESP32_DEFAULT_CPU_FREQ_MHZ
|
|
int
|
|
default 80 if ESP32_DEFAULT_CPU_FREQ_80
|
|
default 160 if ESP32_DEFAULT_CPU_FREQ_160
|
|
default 240 if ESP32_DEFAULT_CPU_FREQ_240
|
|
|
|
choice ESP32_WIFI_OR_BT
|
|
prompt "Select stack to enable (WiFi or BT)"
|
|
default ESP32_ENABLE_WIFI
|
|
help
|
|
Temporarily, WiFi and BT stacks can not be used at the same time.
|
|
Select which stack to enable.
|
|
|
|
config ESP32_ENABLE_STACK_WIFI
|
|
bool "WiFi"
|
|
select WIFI_ENABLED if ESP32_ENABLE_STACK_WIFI
|
|
config ESP32_ENABLE_STACK_BT
|
|
bool "BT"
|
|
select MEMMAP_BT if ESP32_ENABLE_STACK_BT
|
|
select BT_ENABLED if ESP32_ENABLE_STACK_BT
|
|
config ESP32_ENABLE_STACK_NONE
|
|
bool "None"
|
|
endchoice
|
|
|
|
config MEMMAP_BT
|
|
bool
|
|
depends on ESP32_ENABLE_STACK_BT
|
|
help
|
|
The Bluetooth stack uses memory that cannot be used as generic memory anymore. This
|
|
reserves the space for that within the memory map of the compiled binary.
|
|
This option is required to enable BT stack.
|
|
Temporarily, this option is not compatible with WiFi stack.
|
|
|
|
config MEMMAP_SMP
|
|
bool "Reserve memory for two cores"
|
|
default "y"
|
|
help
|
|
The ESP32 contains two cores. If you plan to only use one, you can disable this item
|
|
to save some memory. (ToDo: Make this automatically depend on unicore support)
|
|
|
|
config MEMMAP_TRACEMEM
|
|
bool "Use TRAX tracing feature"
|
|
default "n"
|
|
help
|
|
The ESP32 contains a feature which allows you to trace the execution path the processor
|
|
has taken through the program. This is stored in a chunk of 32K (16K for single-processor)
|
|
of memory that can't be used for general purposes anymore. Disable this if you do not know
|
|
what this is.
|
|
|
|
config MEMMAP_TRACEMEM_TWOBANKS
|
|
bool "Reserve memory for tracing both pro as well as app cpu execution"
|
|
default "n"
|
|
depends on MEMMAP_TRACEMEM && MEMMAP_SMP
|
|
help
|
|
The ESP32 contains a feature which allows you to trace the execution path the processor
|
|
has taken through the program. This is stored in a chunk of 32K (16K for single-processor)
|
|
of memory that can't be used for general purposes anymore. Disable this if you do not know
|
|
what this is.
|
|
|
|
|
|
# Memory to reverse for trace, used in linker script
|
|
config TRACEMEM_RESERVE_DRAM
|
|
hex
|
|
default 0x8000 if MEMMAP_TRACEMEM && MEMMAP_TRACEMEM_TWOBANKS
|
|
default 0x4000 if MEMMAP_TRACEMEM && !MEMMAP_TRACEMEM_TWOBANKS
|
|
default 0x0
|
|
|
|
# Not implemented and/or needs new silicon rev to work
|
|
config MEMMAP_SPISRAM
|
|
bool "Use external SPI SRAM chip as main memory"
|
|
depends on ESP32_NEEDS_NEW_SILICON_REV
|
|
default "n"
|
|
help
|
|
The ESP32 can control an external SPI SRAM chip, adding the memory it contains to the
|
|
main memory map. Enable this if you have this hardware and want to use it in the same
|
|
way as on-chip RAM.
|
|
|
|
config WIFI_ENABLED
|
|
bool
|
|
default "y"
|
|
depends on ESP32_ENABLE_STACK_WIFI
|
|
help
|
|
This compiles in the low-level WiFi stack.
|
|
|
|
Temporarily, this option is not compatible with BT stack.
|
|
|
|
config SYSTEM_EVENT_QUEUE_SIZE
|
|
int "System event queue size"
|
|
default 32
|
|
help
|
|
Config system event queue size in different application.
|
|
|
|
config SYSTEM_EVENT_TASK_STACK_SIZE
|
|
int "Event loop task stack size"
|
|
default 2048
|
|
help
|
|
Config system event task stack size in different application.
|
|
|
|
|
|
config MAIN_TASK_STACK_SIZE
|
|
int "Main task stack size"
|
|
default 4096
|
|
help
|
|
Config system event task stack size in different application.
|
|
|
|
|
|
config NEWLIB_STDOUT_ADDCR
|
|
bool "Standard-out output adds carriage return before newline"
|
|
default y
|
|
help
|
|
Most people are used to end their printf strings with a newline. If this
|
|
is sent as is to the serial port, most terminal programs will only move the
|
|
cursor one line down, not also move it to the beginning of the line. This
|
|
is usually done by an added CR character. Enabling this will make the
|
|
standard output code automatically add a CR character before a LF.
|
|
|
|
config ULP_COPROC_ENABLED
|
|
bool "Enable Ultra Low Power (ULP) Coprocessor"
|
|
default "n"
|
|
help
|
|
Set to 'y' if you plan to load a firmware for the coprocessor.
|
|
|
|
If this option is enabled, further coprocessor configuration will appear in the Components menu.
|
|
|
|
config ULP_COPROC_RESERVE_MEM
|
|
int "RTC slow memory reserved for coprocessor"
|
|
default 512
|
|
range 32 8192
|
|
depends on ULP_COPROC_ENABLED
|
|
help
|
|
Bytes of memory to reserve for ULP coprocessor firmware & data.
|
|
|
|
Data is reserved at the beginning of RTC slow memory.
|
|
|
|
# Set CONFIG_ULP_COPROC_RESERVE_MEM to 0 if ULP is disabled
|
|
config ULP_COPROC_RESERVE_MEM
|
|
int
|
|
default 0
|
|
depends on !ULP_COPROC_ENABLED
|
|
|
|
|
|
choice ESP32_PANIC
|
|
prompt "Panic handler behaviour"
|
|
default ESP32_PANIC_PRINT_REBOOT
|
|
help
|
|
If FreeRTOS detects unexpected behaviour or an unhandled exception, the panic handler is
|
|
invoked. Configure the panic handlers action here.
|
|
|
|
config ESP32_PANIC_PRINT_HALT
|
|
bool "Print registers and halt"
|
|
help
|
|
Outputs the relevant registers over the serial port and halt the
|
|
processor. Needs a manual reset to restart.
|
|
|
|
config ESP32_PANIC_PRINT_REBOOT
|
|
bool "Print registers and reboot"
|
|
help
|
|
Outputs the relevant registers over the serial port and immediately
|
|
reset the processor.
|
|
|
|
config ESP32_PANIC_SILENT_REBOOT
|
|
bool "Silent reboot"
|
|
help
|
|
Just resets the processor without outputting anything
|
|
|
|
config ESP32_PANIC_GDBSTUB
|
|
bool "Invoke GDBStub"
|
|
help
|
|
Invoke gdbstub on the serial port, allowing for gdb to attach to it to do a postmortem
|
|
of the crash.
|
|
endchoice
|
|
|
|
config ESP32_DEBUG_OCDAWARE
|
|
bool "Make exception and panic handlers JTAG/OCD aware"
|
|
default y
|
|
help
|
|
The FreeRTOS panic and unhandled exception handers can detect a JTAG OCD debugger and
|
|
instead of panicking, have the debugger stop on the offending instruction.
|
|
|
|
|
|
config INT_WDT
|
|
bool "Interrupt watchdog"
|
|
default y
|
|
help
|
|
This watchdog timer can detect if the FreeRTOS tick interrupt has not been called for a certain time,
|
|
either because a task turned off interrupts and did not turn them on for a long time, or because an
|
|
interrupt handler did not return. It will try to invoke the panic handler first and failing that
|
|
reset the SoC.
|
|
|
|
config INT_WDT_TIMEOUT_MS
|
|
int "Interrupt watchdog timeout (ms)"
|
|
depends on INT_WDT
|
|
default 300
|
|
range 10 10000
|
|
help
|
|
The timeout of the watchdog, in miliseconds. Make this higher than the FreeRTOS tick rate.
|
|
|
|
config INT_WDT_CHECK_CPU1
|
|
bool "Also watch CPU1 tick interrupt"
|
|
depends on INT_WDT && !FREERTOS_UNICORE
|
|
default y
|
|
help
|
|
Also detect if interrupts on CPU 1 are disabled for too long.
|
|
|
|
config TASK_WDT
|
|
bool "Task watchdog"
|
|
default y
|
|
help
|
|
This watchdog timer can be used to make sure individual tasks are still running.
|
|
|
|
config TASK_WDT_PANIC
|
|
bool "Invoke panic handler when Task Watchdog is triggered"
|
|
depends on TASK_WDT
|
|
default n
|
|
help
|
|
Normally, the Task Watchdog will only print out a warning if it detects it has not
|
|
been fed. If this is enabled, it will invoke the panic handler instead, which
|
|
can then halt or reboot the chip.
|
|
|
|
config TASK_WDT_TIMEOUT_S
|
|
int "Task watchdog timeout (seconds)"
|
|
depends on TASK_WDT
|
|
range 1 60
|
|
default 5
|
|
help
|
|
Timeout for the task WDT, in seconds.
|
|
|
|
config TASK_WDT_CHECK_IDLE_TASK
|
|
bool "Task watchdog watches CPU0 idle task"
|
|
depends on TASK_WDT
|
|
default y
|
|
help
|
|
With this turned on, the task WDT can detect if the idle task is not called within the task
|
|
watchdog timeout period. The idle task not being called usually is a symptom of another
|
|
task hoarding the CPU. It is also a bad thing because FreeRTOS household tasks depend on the
|
|
idle task getting some runtime every now and then. Take Care: With this disabled, this
|
|
watchdog will trigger if no tasks register themselves within the timeout value.
|
|
|
|
config TASK_WDT_CHECK_IDLE_TASK_CPU1
|
|
bool "Task watchdog also watches CPU1 idle task"
|
|
depends on TASK_WDT_CHECK_IDLE_TASK && !FREERTOS_UNICORE
|
|
default y
|
|
help
|
|
Also check the idle task that runs on CPU1.
|
|
|
|
#The brownout detector code is disabled (by making it depend on a nonexisting symbol) because the current revision of ESP32
|
|
#silicon has a bug in the brown-out detector, rendering it unusable for resetting the CPU.
|
|
config BROWNOUT_DET
|
|
bool "Hardware brownout detect & reset"
|
|
default y
|
|
depends on NEEDS_ESP32_NEW_SILICON_REV
|
|
help
|
|
The ESP32 has a built-in brownout detector which can detect if the voltage is lower than
|
|
a specific value. If this happens, it will reset the chip in order to prevent unintended
|
|
behaviour.
|
|
|
|
choice BROWNOUT_DET_LVL_SEL
|
|
prompt "Brownout voltage level"
|
|
depends on BROWNOUT_DET
|
|
default BROWNOUT_DET_LVL_SEL_25
|
|
help
|
|
The brownout detector will reset the chip when the supply voltage is below this level.
|
|
|
|
#The voltage levels here are estimates, more work needs to be done to figure out the exact voltages
|
|
#of the brownout threshold levels.
|
|
config BROWNOUT_DET_LVL_SEL_0
|
|
bool "2.1V"
|
|
config BROWNOUT_DET_LVL_SEL_1
|
|
bool "2.2V"
|
|
config BROWNOUT_DET_LVL_SEL_2
|
|
bool "2.3V"
|
|
config BROWNOUT_DET_LVL_SEL_3
|
|
bool "2.4V"
|
|
config BROWNOUT_DET_LVL_SEL_4
|
|
bool "2.5V"
|
|
config BROWNOUT_DET_LVL_SEL_5
|
|
bool "2.6V"
|
|
config BROWNOUT_DET_LVL_SEL_6
|
|
bool "2.7V"
|
|
config BROWNOUT_DET_LVL_SEL_7
|
|
bool "2.8V"
|
|
endchoice
|
|
|
|
config BROWNOUT_DET_LVL
|
|
int
|
|
default 0 if BROWNOUT_DET_LVL_SEL_0
|
|
default 1 if BROWNOUT_DET_LVL_SEL_1
|
|
default 2 if BROWNOUT_DET_LVL_SEL_2
|
|
default 3 if BROWNOUT_DET_LVL_SEL_3
|
|
default 4 if BROWNOUT_DET_LVL_SEL_4
|
|
default 5 if BROWNOUT_DET_LVL_SEL_5
|
|
default 6 if BROWNOUT_DET_LVL_SEL_6
|
|
default 7 if BROWNOUT_DET_LVL_SEL_7
|
|
|
|
|
|
config BROWNOUT_DET_RESETDELAY
|
|
int "Brownout reset delay (in uS)"
|
|
depends on BROWNOUT_DET
|
|
range 0 6820
|
|
default 1000
|
|
help
|
|
The brownout detector can reset the chip after a certain delay, in order to make sure e.g. a voltage dip has entirely passed
|
|
before trying to restart the chip. You can set the delay here.
|
|
|
|
|
|
choice ESP32_TIME_SYSCALL
|
|
prompt "Timers used for gettimeofday function"
|
|
default ESP32_TIME_SYSCALL_USE_RTC_FRC1
|
|
help
|
|
This setting defines which hardware timers are used to
|
|
implement 'gettimeofday' and 'time' functions in C library.
|
|
|
|
- If only FRC1 timer is used, gettimeofday will provide time at
|
|
microsecond resolution. Time will not be preserved when going
|
|
into deep sleep mode.
|
|
- If both FRC1 and RTC timers are used, timekeeping will
|
|
continue in deep sleep. Time will be reported at 1 microsecond
|
|
resolution.
|
|
- If only RTC timer is used, timekeeping will continue in
|
|
deep sleep, but time will be measured at 6.(6) microsecond
|
|
resolution. Also the gettimeofday function itself may take
|
|
longer to run.
|
|
- If no timers are used, gettimeofday and time functions
|
|
return -1 and set errno to ENOSYS.
|
|
|
|
config ESP32_TIME_SYSCALL_USE_RTC
|
|
bool "RTC"
|
|
config ESP32_TIME_SYSCALL_USE_RTC_FRC1
|
|
bool "RTC and FRC1"
|
|
config ESP32_TIME_SYSCALL_USE_FRC1
|
|
bool "FRC1"
|
|
config ESP32_TIME_SYSCALL_USE_NONE
|
|
bool "None"
|
|
endchoice
|
|
|
|
choice ESP32_RTC_CLOCK_SOURCE
|
|
prompt "RTC clock source"
|
|
default ESP32_RTC_CLOCK_SOURCE_INTERNAL_RC
|
|
help
|
|
Choose which clock is used as RTC clock source.
|
|
The only available option for now is to use internal
|
|
150kHz RC oscillator.
|
|
|
|
config ESP32_RTC_CLOCK_SOURCE_INTERNAL_RC
|
|
bool "Internal RC"
|
|
config ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
|
|
bool "External 32kHz crystal"
|
|
depends on DOCUMENTATION_FOR_RTC_CNTL
|
|
endchoice
|
|
|
|
|
|
config ESP32_PHY_AUTO_INIT
|
|
bool "Initialize PHY in startup code"
|
|
default y
|
|
help
|
|
If enabled, PHY will be initialized in startup code, before
|
|
app_main function runs.
|
|
If this is undesired, disable this option and call esp_phy_init
|
|
from the application before enabling WiFi or BT.
|
|
|
|
If this option is enabled, startup code will also initialize
|
|
NVS prior to initializing PHY.
|
|
|
|
If unsure, choose 'y'.
|
|
|
|
config ESP32_PHY_INIT_DATA_IN_PARTITION
|
|
bool "Use a partition to store PHY init data"
|
|
default n
|
|
help
|
|
If enabled, PHY init data will be loaded from a partition.
|
|
When using a custom partition table, make sure that PHY data
|
|
partition is included (type: 'data', subtype: 'phy').
|
|
With default partition tables, this is done automatically.
|
|
If PHY init data is stored in a partition, it has to be flashed there,
|
|
otherwise runtime error will occur.
|
|
|
|
If this option is not enabled, PHY init data will be embedded
|
|
into the application binary.
|
|
|
|
If unsure, choose 'n'.
|
|
|
|
config ESP32_PHY_MAX_TX_POWER
|
|
int "Max TX power (dBm)"
|
|
range 0 20
|
|
default 20
|
|
help
|
|
Set maximum transmit power. Actual transmit power for high
|
|
data rates may be lower than this setting.
|
|
|
|
endmenu
|