OVMS3-idf/components/driver/include/driver/spi_common_internal.h
michael fdf983e0c4 spi: fix config break and reduce overhead of the bus lock on SPI1
The SPI bus lock on SPI1 introduces two side effects:

1. The device lock for the main flash requires the
`CONFIG_FREERTOS_SUPPORT_STATIC_ALLOCATION` to be selected, however this
option is disabled by default in earlier IDF versions. Some developers
may find their project cannot be built by their old sdkconfig files.

2. Usually we don't need the lock on the SPI1 bus, due to it's
restrictions. However the overhead still exists in this case, the IRAM
cost for static version of semaphore functions, and the time cost when
getting and releasing the lock.

This commit:

1. Add a CONFIG_SPI_FLASH_BYPASS_MAIN_LOCK option, which will forbid the
space cost, as well as the initialization of the main bus lock.

2. When the option is not selected, the bus lock is used, the
`CONFIG_FREERTOS_SUPPORT_STATIC_ALLOCATION` will be selected explicitly.

3. Revert default value of `CONFIG_FREERTOS_SUPPORT_STATIC_ALLOCATION`
to `n`.

introduced in 49a48644e4.

Closes https://github.com/espressif/esp-idf/issues/5046
2020-04-22 16:06:13 +08:00

795 lines
32 KiB
C

// Copyright 2010-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Internal header, don't use it in the user code
#pragma once
#include <esp_intr_alloc.h>
#include "driver/spi_common.h"
#include "freertos/FreeRTOS.h"
#include "hal/spi_types.h"
#include "esp_pm.h"
#ifdef __cplusplus
extern "C"
{
#endif
#ifdef CONFIG_SPI_MASTER_ISR_IN_IRAM
#define SPI_MASTER_ISR_ATTR IRAM_ATTR
#else
#define SPI_MASTER_ISR_ATTR
#endif
#ifdef CONFIG_SPI_MASTER_IN_IRAM
#define SPI_MASTER_ATTR IRAM_ATTR
#else
#define SPI_MASTER_ATTR
#endif
#define BUS_LOCK_DEBUG 0
#if BUS_LOCK_DEBUG
#define BUS_LOCK_DEBUG_EXECUTE_CHECK(x) assert(x)
#else
#define BUS_LOCK_DEBUG_EXECUTE_CHECK(x)
#endif
struct spi_bus_lock_t;
struct spi_bus_lock_dev_t;
/// Handle to the lock of an SPI bus
typedef struct spi_bus_lock_t* spi_bus_lock_handle_t;
/// Handle to lock of one of the device on an SPI bus
typedef struct spi_bus_lock_dev_t* spi_bus_lock_dev_handle_t;
/// Background operation control function
typedef void (*bg_ctrl_func_t)(void*);
/// Attributes of an SPI bus
typedef struct {
spi_bus_config_t bus_cfg; ///< Config used to initialize the bus
uint32_t flags; ///< Flags (attributes) of the bus
int max_transfer_sz; ///< Maximum length of bytes available to send
int dma_chan; ///< DMA channel used
int dma_desc_num; ///< DMA descriptor number of dmadesc_tx or dmadesc_rx.
lldesc_t *dmadesc_tx; ///< DMA descriptor array for TX
lldesc_t *dmadesc_rx; ///< DMA descriptor array for RX
spi_bus_lock_handle_t lock;
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_handle_t pm_lock; ///< Power management lock
#endif
} spi_bus_attr_t;
/// Destructor called when a bus is deinitialized.
typedef esp_err_t (*spi_destroy_func_t)(void*);
/**
* @brief Try to claim a SPI peripheral
*
* Call this if your driver wants to manage a SPI peripheral.
*
* @param host Peripheral to claim
* @param source The caller indentification string.
*
* @note This public API is deprecated.
*
* @return True if peripheral is claimed successfully; false if peripheral already is claimed.
*/
bool spicommon_periph_claim(spi_host_device_t host, const char* source);
/**
* @brief Check whether the spi periph is in use.
*
* @param host Peripheral to check.
*
* @note This public API is deprecated.
*
* @return True if in use, otherwise false.
*/
bool spicommon_periph_in_use(spi_host_device_t host);
/**
* @brief Return the SPI peripheral so another driver can claim it.
*
* @param host Peripheral to return
*
* @note This public API is deprecated.
*
* @return True if peripheral is returned successfully; false if peripheral was free to claim already.
*/
bool spicommon_periph_free(spi_host_device_t host);
/**
* @brief Try to claim a SPI DMA channel
*
* Call this if your driver wants to use SPI with a DMA channnel.
*
* @param dma_chan channel to claim
*
* @note This public API is deprecated.
*
* @return True if success; false otherwise.
*/
bool spicommon_dma_chan_claim(int dma_chan);
/**
* @brief Check whether the spi DMA channel is in use.
*
* @param dma_chan DMA channel to check.
*
* @note This public API is deprecated.
*
* @return True if in use, otherwise false.
*/
bool spicommon_dma_chan_in_use(int dma_chan);
/**
* @brief Return the SPI DMA channel so other driver can claim it, or just to power down DMA.
*
* @param dma_chan channel to return
*
* @note This public API is deprecated.
*
* @return True if success; false otherwise.
*/
bool spicommon_dma_chan_free(int dma_chan);
/**
* @brief Connect a SPI peripheral to GPIO pins
*
* This routine is used to connect a SPI peripheral to the IO-pads and DMA channel given in
* the arguments. Depending on the IO-pads requested, the routing is done either using the
* IO_mux or using the GPIO matrix.
*
* @note This public API is deprecated. Please call ``spi_bus_initialize`` for master
* bus initialization and ``spi_slave_initialize`` for slave initialization.
*
* @param host SPI peripheral to be routed
* @param bus_config Pointer to a spi_bus_config struct detailing the GPIO pins
* @param dma_chan DMA-channel (1 or 2) to use, or 0 for no DMA.
* @param flags Combination of SPICOMMON_BUSFLAG_* flags, set to ensure the pins set are capable with some functions:
* - ``SPICOMMON_BUSFLAG_MASTER``: Initialize I/O in master mode
* - ``SPICOMMON_BUSFLAG_SLAVE``: Initialize I/O in slave mode
* - ``SPICOMMON_BUSFLAG_IOMUX_PINS``: Pins set should match the iomux pins of the controller.
* - ``SPICOMMON_BUSFLAG_SCLK``, ``SPICOMMON_BUSFLAG_MISO``, ``SPICOMMON_BUSFLAG_MOSI``:
* Make sure SCLK/MISO/MOSI is/are set to a valid GPIO. Also check output capability according to the mode.
* - ``SPICOMMON_BUSFLAG_DUAL``: Make sure both MISO and MOSI are output capable so that DIO mode is capable.
* - ``SPICOMMON_BUSFLAG_WPHD`` Make sure WP and HD are set to valid output GPIOs.
* - ``SPICOMMON_BUSFLAG_QUAD``: Combination of ``SPICOMMON_BUSFLAG_DUAL`` and ``SPICOMMON_BUSFLAG_WPHD``.
* @param[out] flags_o A SPICOMMON_BUSFLAG_* flag combination of bus abilities will be written to this address.
* Leave to NULL if not needed.
* - ``SPICOMMON_BUSFLAG_IOMUX_PINS``: The bus is connected to iomux pins.
* - ``SPICOMMON_BUSFLAG_SCLK``, ``SPICOMMON_BUSFLAG_MISO``, ``SPICOMMON_BUSFLAG_MOSI``: The bus has
* CLK/MISO/MOSI connected.
* - ``SPICOMMON_BUSFLAG_DUAL``: The bus is capable with DIO mode.
* - ``SPICOMMON_BUSFLAG_WPHD`` The bus has WP and HD connected.
* - ``SPICOMMON_BUSFLAG_QUAD``: Combination of ``SPICOMMON_BUSFLAG_DUAL`` and ``SPICOMMON_BUSFLAG_WPHD``.
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_OK on success
*/
esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, uint32_t flags, uint32_t *flags_o);
/**
* @brief Free the IO used by a SPI peripheral
*
* @note This public API is deprecated. Please call ``spi_bus_free`` for master
* bus deinitialization and ``spi_slave_free`` for slave deinitialization.
*
* @param bus_cfg Bus config struct which defines which pins to be used.
*
* @return
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_OK on success
*/
esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg);
/**
* @brief Initialize a Chip Select pin for a specific SPI peripheral
*
* @note This public API is deprecated. Please call corresponding device initialization
* functions.
*
* @param host SPI peripheral
* @param cs_io_num GPIO pin to route
* @param cs_num CS id to route
* @param force_gpio_matrix If true, CS will always be routed through the GPIO matrix. If false,
* if the GPIO number allows it, the routing will happen through the IO_mux.
*/
void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix);
/**
* @brief Free a chip select line
*
* @param cs_gpio_num CS gpio num to free
*
* @note This public API is deprecated.
*/
void spicommon_cs_free_io(int cs_gpio_num);
/**
* @brief Check whether all pins used by a host are through IOMUX.
*
* @param host SPI peripheral
*
* @note This public API is deprecated.
*
* @return false if any pins are through the GPIO matrix, otherwise true.
*/
bool spicommon_bus_using_iomux(spi_host_device_t host);
/**
* @brief Get the IRQ source for a specific SPI host
*
* @param host The SPI host
*
* @note This public API is deprecated.
*
* @return The hosts IRQ source
*/
int spicommon_irqsource_for_host(spi_host_device_t host);
/**
* @brief Get the IRQ source for a specific SPI DMA
*
* @param host The SPI host
*
* @note This public API is deprecated.
*
* @return The hosts IRQ source
*/
int spicommon_irqdma_source_for_host(spi_host_device_t host);
/**
* Callback, to be called when a DMA engine reset is completed
*/
typedef void(*dmaworkaround_cb_t)(void *arg);
/**
* @brief Request a reset for a certain DMA channel
*
* @note In some (well-defined) cases in the ESP32 (at least rev v.0 and v.1), a SPI DMA channel will get confused. This can be remedied
* by resetting the SPI DMA hardware in case this happens. Unfortunately, the reset knob used for thsi will reset _both_ DMA channels, and
* as such can only done safely when both DMA channels are idle. These functions coordinate this.
*
* Essentially, when a reset is needed, a driver can request this using spicommon_dmaworkaround_req_reset. This is supposed to be called
* with an user-supplied function as an argument. If both DMA channels are idle, this call will reset the DMA subsystem and return true.
* If the other DMA channel is still busy, it will return false; as soon as the other DMA channel is done, however, it will reset the
* DMA subsystem and call the callback. The callback is then supposed to be used to continue the SPI drivers activity.
*
* @param dmachan DMA channel associated with the SPI host that needs a reset
* @param cb Callback to call in case DMA channel cannot be reset immediately
* @param arg Argument to the callback
*
* @note This public API is deprecated.
*
* @return True when a DMA reset could be executed immediately. False when it could not; in this
* case the callback will be called with the specified argument when the logic can execute
* a reset, after that reset.
*/
bool spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg);
/**
* @brief Check if a DMA reset is requested but has not completed yet
*
* @note This public API is deprecated.
*
* @return True when a DMA reset is requested but hasn't completed yet. False otherwise.
*/
bool spicommon_dmaworkaround_reset_in_progress(void);
/**
* @brief Mark a DMA channel as idle.
*
* A call to this function tells the workaround logic that this channel will
* not be affected by a global SPI DMA reset.
*
* @note This public API is deprecated.
*/
void spicommon_dmaworkaround_idle(int dmachan);
/**
* @brief Mark a DMA channel as active.
*
* A call to this function tells the workaround logic that this channel will
* be affected by a global SPI DMA reset, and a reset like that should not be attempted.
*
* @note This public API is deprecated.
*/
void spicommon_dmaworkaround_transfer_active(int dmachan);
/*******************************************************************************
* Bus attributes
******************************************************************************/
/**
* @brief Set bus lock for the main bus, called by startup code.
*
* @param lock The lock to be used by the main SPI bus.
*/
void spi_bus_main_set_lock(spi_bus_lock_handle_t lock);
/**
* @brief Get the attributes of a specified SPI bus.
*
* @param host_id The specified host to get attribute
* @return (Const) Pointer to the attributes
*/
const spi_bus_attr_t* spi_bus_get_attr(spi_host_device_t host_id);
/**
* @brief Register a function to a initialized bus to make it called when deinitializing the bus.
*
* @param host_id The SPI bus to register the destructor.
* @param f Destructor to register
* @param arg The argument to call the destructor
* @return Always ESP_OK.
*/
esp_err_t spi_bus_register_destroy_func(spi_host_device_t host_id,
spi_destroy_func_t f, void *arg);
/*******************************************************************************
* SPI Bus Lock for arbitration among SPI master (intr, polling) trans, SPI flash operations and
* flash/psram cache access.
*
* NON-PUBLIC API. Don't use it directly in applications.
*
* There is the main lock corresponding to an SPI bus, of which several devices (holding child
* locks) attaching to it. Each of the device is STRONGLY RECOMMENDED to be used in only one task
* to avoid concurrency issues.
*
* Terms:
* - BG operations (BackGround operations) means some transaction that will not immediately /
* explicitly be sent in the task. It can be some cache access, or interrupt transactions.
*
* - Operation: usage of the bus, for example, do SPI transactions.
*
* - Acquiring processor: the task or the ISR that is allowed to use the bus. No operations will be
* performed if there is no acquiring processor. A processor becomes the acquiring processor if
* it ask for that when no acquiring processor exist, otherwise it has to wait for the acquiring
* processor to handle over the role to it. The acquiring processor will and will only assign one
* acquiring processor in the waiting list (if not empty) when it finishes its operation.
*
* - Acquiring device: the only device allowed to use the bus. Operations can be performed in
* either the BG or the task. When there's no acquiring device, only the ISR is allowed to be the
* acquiring processor and perform operations on the bus.
*
* When a device wants to perform operations, it either:
* 1. Acquire the bus, and operate in the task (e.g. polling transactions of SPI master, and SPI flash
* operations)
*
* 2. Request a BG operation. And the ISR will be enabled at proper time.
*
* For example if a task wants to send an interrupt transaction, it prepares the data in the task,
* call `spi_bus_lock_bg_request`, and handle sending in the ISR.
*
* 3. When a device has already acquired the bus, BG operations are also allowed. After the
* `spi_bus_lock_bg_request` is called, call `spi_bus_lock_wait_bg_done` before operations in task
* again to wait until BG operations are done.
*
* Any device may try to invoke the ISR (by `spi_bus_lock_bg_request`). The ISR will be invoked and
* become the acquiring processor immediately when the bus is not acquired by other processors. Any
* device may also try to acquire the bus (by `spi_bus_lock_acquire_start`). The device will become
* the acquiring processor immediately when the bus is not acquired and there is no request active.
*
* The acquiring processor must be aware of its acquiring role, and properly transfer the acquiring
* processor to other tasks or ISR when they have nothing else to do. Before picking a new
* acquiring processor, a new acquiring device must be picked first, if there are other devices,
* asking to be acquiring device. After that, the new acquiring processor is picked by the sequence
* below:
*
* 1. If there is an acquiring device:
* 1.1 The ISR, if acquiring device has active BG requests
* 1.2 The task of the device, if no active BG request for the device
* 2. The ISR, if there's no acquiring device, but any BG request is active
* 3. No one becomes the acquiring processor
*
* The API also helps on the arbitration of SPI cs lines. The bus is initialized with a cs_num
* argument. When attaching devices onto the bus with `spi_bus_lock_register_dev`, it will allocate
* devices with different device ID according to the flags given. If the ID is smaller than the
* cs_num given when bus is initialized, error will be returned.
*
* Usage:
* * Initialization:
* 1. Call `spi_bus_init_lock` to register a lock for a bus.
* 2. Call `spi_bus_lock_set_bg_control` to prepare BG enable/disable functions for
* the lock.
* 3. Call `spi_bus_lock_register_dev` for each devices that may make use of the
* bus, properly store the returned handle, representing those devices.
*
* * Acquiring:
* 1. Call `spi_bus_lock_acquire_start` when a device wants to use the bus
* 2. Call `spi_bus_lock_touch` to mark the bus as touched by this device. Also check if the bus
* has been touched by other devices.
* 3. (optional) Do something on the bus...
* 4. (optional) Call `spi_bus_lock_bg_request` to inform and invoke the BG. See ISR below about
* ISR operations.
* 5. (optional) If `spi_bus_lock_bg_request` is done, you have to call `spi_bus_lock_wait_bg_done`
* before touching the bus again, or do the following steps.
* 6. Call `spi_bus_lock_acquire_end` to release the bus to other devices.
*
* * ISR:
* 1. Call `spi_bus_lock_bg_entry` when entering the ISR, run or skip the closure for the previous
* operation according to the return value.
* 2. Call `spi_bus_lock_get_acquiring_dev` to get the acquiring device. If there is no acquiring
* device, call `spi_bus_lock_bg_check_dev_acq` to check and update a new acquiring device.
* 3. Call `spi_bus_lock_bg_check_dev_req` to check for request of the desired device. If the
* desired device is not requested, go to step 5.
* 4. Check, start operation for the desired device and go to step 6; otherwise if no operations
* can be performed, call `spi_bus_lock_bg_clear_req` to clear the request for this device. If
* `spi_bus_lock_bg_clear_req` is called and there is no BG requests active, goto step 6.
* 5. (optional) If the device is the acquiring device, go to step 6, otherwise
* find another desired device, and go back to step 3.
* 6. Call `spi_bus_lock_bg_exit` to try quitting the ISR. If failed, go back to step 2 to look for
* a new request again. Otherwise, quit the ISR.
*
* * Deinitialization (optional):
* 1. Call `spi_bus_lock_unregister_dev` for each device when they are no longer needed.
* 2. Call `spi_bus_deinit_lock` to release the resources occupied by the lock.
*
* Some technical details:
*
* The child-lock of each device will have its own Binary Semaphore, which allows the task serving
* this device (task A) being blocked when it fail to become the acquiring processor while it's
* calling `spi_bus_lock_acquire_start` or `spi_bus_lock_wait_bg_done`. If it is blocked, there
* must be an acquiring processor (either the ISR or another task (task B)), is doing transaction
* on the bus. After that, task A will get unblocked and become the acquiring processor when the
* ISR call `spi_bus_lock_bg_resume_acquired_dev`, or task B call `spi_bus_lock_acquire_end`.
*
* When the device wants to send ISR transaction, it should call `spi_bus_lock_bg_request` after
* the data is prepared. This function sets a request bit in the critical resource. The ISR will be
* invoked and become the new acquiring processor, when:
*
* 1. A task calls `spi_bus_lock_bg_request` while there is no acquiring processor;
* 2. A tasks calls `spi_bus_lock_bg_request` while the task is the acquiring processor. Then the
* acquiring processor is handled over to the ISR;
* 3. A tasks who is the acquiring processor release the bus by calling `spi_bus_lock_acquire_end`,
* and the ISR happens to be the next acquiring processor.
*
* The ISR will check (by `spi_bus_lock_bg_check_dev_req`) and clear a request bit (by
* `spi_bus_lock_bg_clear_req`) after it confirm that all the requests of the corresponding device
* are served. The request bit supports being written to recursively, which means, the task don't
* need to wait for `spi_bus_lock_bg_clear_req` before call another `spi_bus_lock_bg_request`. The
* API will handle the concurrency conflicts properly.
*
* The `spi_bus_lock_bg_exit` (together with `spi_bus_lock_bg_entry` called before)` is responsible
* to ensure ONE and ONLY ONE of the following will happen when the ISR try to give up its
* acquiring processor rule:
*
* 1. ISR quit, no any task unblocked while the interrupt disabled, and none of the BG bits is
* active.
* 2. ISR quit, there is an acquiring device, and the acquiring processor is passed to the task
* serving the acquiring device by unblocking the task.
* 3. The ISR failed to quit and have to try again.
******************************************************************************/
#define DEV_NUM_MAX 6 ///< Number of devices supported by this lock
/// Lock configuration struct
typedef struct {
int host_id; ///< SPI host id
int cs_num; ///< Physical cs numbers of the host
} spi_bus_lock_config_t;
/// Child-lock configuration struct
typedef struct {
uint32_t flags; ///< flags for the lock, OR-ed of `SPI_BUS_LOCK_DEV_*` flags.
#define SPI_BUS_LOCK_DEV_FLAG_CS_REQUIRED BIT(0) ///< The device needs a physical CS pin.
} spi_bus_lock_dev_config_t;
/************* Common *********************/
/**
* Initialize a lock for an SPI bus.
*
* @param out_lock Output of the handle to the lock
* @return
* - ESP_ERR_NO_MEM: if memory exhausted
* - ESP_OK: if success
*/
esp_err_t spi_bus_init_lock(spi_bus_lock_handle_t *out_lock, const spi_bus_lock_config_t *config);
/**
* Free the resources used by an SPI bus lock.
*
* @note All attached devices should have been unregistered before calling this
* funciton.
*
* @param lock Handle to the lock to free.
*/
void spi_bus_deinit_lock(spi_bus_lock_handle_t lock);
/**
* @brief Get the corresponding lock according to bus id.
*
* @param host_id The bus id to get the lock
* @return The lock handle
*/
spi_bus_lock_handle_t spi_bus_lock_get_by_id(spi_host_device_t host_id);
/**
* @brief Configure how the SPI bus lock enable the background operation.
*
* @note The lock will not try to stop the background operations, but wait for
* The background operations finished indicated by `spi_bus_lock_bg_resume_acquired_dev`.
*
* @param lock Handle to the lock to set
* @param bg_enable The enabling function
* @param bg_disable The disabling function, set to NULL if not required
* @param arg Argument to pass to the enabling/disabling function.
*/
void spi_bus_lock_set_bg_control(spi_bus_lock_handle_t lock, bg_ctrl_func_t bg_enable,
bg_ctrl_func_t bg_disable, void *arg);
/**
* Attach a device onto an SPI bus lock. The returning handle is used to perform
* following requests for the attached device.
*
* @param lock SPI bus lock to attach
* @param out_dev_handle Output handle corresponding to the device
* @param flags requirement of the device, bitwise OR of SPI_BUS_LOCK_FLAG_* flags
*
* @return
* - ESP_ERR_NOT_SUPPORTED: if there's no hardware resources for new devices.
* - ESP_ERR_NO_MEM: if memory exhausted
* - ESP_OK: if success
*/
esp_err_t spi_bus_lock_register_dev(spi_bus_lock_handle_t lock,
spi_bus_lock_dev_config_t *config,
spi_bus_lock_dev_handle_t *out_dev_handle);
/**
* Detach a device from its bus and free the resources used
*
* @param dev_handle Handle to the device.
*/
void spi_bus_lock_unregister_dev(spi_bus_lock_dev_handle_t dev_handle);
/**
* @brief Get the parent bus lock of the device
*
* @param dev_handle Handle to the device to get bus lock
* @return The bus lock handle
*/
spi_bus_lock_handle_t spi_bus_lock_get_parent(spi_bus_lock_dev_handle_t dev_handle);
/**
* @brief Get the device ID of a lock.
*
* The callers should allocate CS pins according to this ID.
*
* @param dev_handle Handle to the device to get ID
* @return ID of the device
*/
int spi_bus_lock_get_dev_id(spi_bus_lock_dev_handle_t dev_handle);
/**
* @brief The device request to touch bus registers. Can only be called by the acquiring processor.
*
* Also check if the registers has been touched by other devices.
*
* @param dev_handle Handle to the device to operate the registers
* @return true if there has been other devices touching SPI registers.
* The caller may need to do a full-configuration. Otherwise return
* false.
*/
bool spi_bus_lock_touch(spi_bus_lock_dev_handle_t dev_handle);
/************* Acquiring service *********************/
/**
* Acquiring the SPI bus for exclusive use. Will also wait for the BG to finish all requests of
* this device before it returns.
*
* After successfully return, the caller becomes the acquiring processor.
*
* @note For the main flash bus, `bg_disable` will be called to disable the cache.
*
* @param dev_handle Handle to the device request for acquiring.
* @param wait Time to wait until timeout or succeed, must be `portMAX_DELAY` for now.
* @return
* - ESP_OK: on success
* - ESP_ERR_INVALID_ARG: timeout is not portMAX_DELAY
*/
esp_err_t spi_bus_lock_acquire_start(spi_bus_lock_dev_handle_t dev_handle, TickType_t wait);
/**
* Release the bus acquired. Will pass the acquiring processor to other blocked
* processors (tasks or ISR), and cause them to be unblocked or invoked.
*
* The acquiring device may also become NULL if no device is asking for acquiring.
* In this case, the BG may be invoked if there is any BG requests.
*
* If the new acquiring device has BG requests, the BG will be invoked before the
* task is resumed later after the BG finishes all requests of the new acquiring
* device. Otherwise the task of the new acquiring device will be resumed immediately.
*
* @param dev_handle Handle to the device releasing the bus.
* @return
* - ESP_OK: on success
* - ESP_ERR_INVALID_STATE: the device hasn't acquired the lock yet
*/
esp_err_t spi_bus_lock_acquire_end(spi_bus_lock_dev_handle_t dev_handle);
/**
* Get the device acquiring the bus.
*
* @note Return value is not stable as the acquiring processor may change
* when this function is called.
*
* @param lock Lock of SPI bus to get the acquiring device.
* @return The argument corresponding to the acquiring device, see
* `spi_bus_lock_register_dev`.
*/
spi_bus_lock_dev_handle_t spi_bus_lock_get_acquiring_dev(spi_bus_lock_handle_t lock);
/************* BG (Background, for ISR or cache) service *********************/
/**
* Call by a device to request a BG operation.
*
* Depending on the bus lock state, the BG operations may be resumed by this
* call, or pending until BG operations allowed.
*
* Cleared by `spi_bus_lock_bg_clear_req` in the BG.
*
* @param dev_handle The device requesting BG operations.
* @return always ESP_OK
*/
esp_err_t spi_bus_lock_bg_request(spi_bus_lock_dev_handle_t dev_handle);
/**
* Wait until the ISR has finished all the BG operations for the acquiring device.
* If any `spi_bus_lock_bg_request` for this device has been called after
* `spi_bus_lock_acquire_start`, this function must be called before any operation
* in the task.
*
* @note Can only be called when bus acquired by this device.
*
* @param dev_handle Handle to the device acquiring the bus.
* @param wait Time to wait until timeout or succeed, must be `portMAX_DELAY` for now.
* @return
* - ESP_OK: on success
* - ESP_ERR_INVALID_STATE: The device is not the acquiring bus.
* - ESP_ERR_INVALID_ARG: Timeout is not portMAX_DELAY.
*/
esp_err_t spi_bus_lock_wait_bg_done(spi_bus_lock_dev_handle_t dev_handle, TickType_t wait);
/**
* Handle interrupt and closure of last operation. Should be called at the beginning of the ISR,
* when the ISR is acting as the acquiring processor.
*
* @param lock The SPI bus lock
*
* @return false if the ISR has already touched the HW, should run closure of the
* last operation first; otherwise true if the ISR just start operating
* on the HW, closure should be skipped.
*/
bool spi_bus_lock_bg_entry(spi_bus_lock_handle_t lock);
/**
* Handle the scheduling of other acquiring devices, and control of HW operation
* status.
*
* If no BG request is found, call with `wip=false`. This function will return false,
* indicating there is incoming BG requests for the current acquiring device (or
* for all devices if there is no acquiring device) and the ISR needs retry.
* Otherwise may schedule a new acquiring processor (unblock the task) if there
* is, and return true.
*
* Otherwise if a BG request is started in this ISR, call with `wip=true` and the
* function will enable the interrupt to make the ISR be called again when the
* request is done.
*
* This function is safe and should still be called when the ISR just lost its acquiring processor
* role, but hasn't quit.
*
* @note This function will not change acquiring device. The ISR call
* `spi_bus_lock_bg_update_acquiring` to check for new acquiring device,
* when acquiring devices need to be served before other devices.
*
* @param lock The SPI bus lock.
* @param wip Whether an operation is being executed when quitting the ISR.
* @param do_yield[out] Not touched when no yielding required, otherwise set
* to pdTRUE.
* @return false if retry is required, indicating that there is pending BG request.
* otherwise true and quit ISR is allowed.
*/
bool spi_bus_lock_bg_exit(spi_bus_lock_handle_t lock, bool wip, BaseType_t* do_yield);
/**
* Check whether there is device asking for the acquiring device, and the desired
* device for the next operation is also recommended.
*
* @note Must be called when the ISR is acting as the acquiring processor, and
* there is no acquiring device.
*
* @param lock The SPI bus lock.
* @param out_dev_lock The recommended device for hte next operation. It's the new
* acquiring device when found, otherwise a device that has active BG request.
*
* @return true if the ISR need to quit (new acquiring device has no active BG
* request, or no active BG requests for all devices when there is no
* acquiring device), otherwise false.
*/
bool spi_bus_lock_bg_check_dev_acq(spi_bus_lock_handle_t lock, spi_bus_lock_dev_handle_t *out_dev_lock);
/**
* Check if the device has BG requests. Must be called when the ISR is acting as
* the acquiring processor.
*
* @note This is not stable, may become true again when a task request for BG
* operation (by `spi_bus_lock_bg_request`).
*
* @param dev_lock The device to check.
* @return true if the device has BG requests, otherwise false.
*/
bool spi_bus_lock_bg_check_dev_req(spi_bus_lock_dev_handle_t dev_lock);
/**
* Clear the pending BG operation request of a device after served. Must be
* called when the ISR is acting as the acquiring processor.
*
* @note When the return value is true, the ISR will lost the acquiring processor role. Then
* `spi_bus_lock_bg_exit` must be called and checked before calling all other functions that
* require to be called when the ISR is the acquiring processor again.
*
* @param dev_handle The device whose request is served.
* @return True if no pending requests for the acquiring device, or for all devices
* if there is no acquiring device. Otherwise false. When the return value is
* true, the ISR is no longer the acquiring processor.
*/
bool spi_bus_lock_bg_clear_req(spi_bus_lock_dev_handle_t dev_lock);
/**
* Check if there is any active BG requests.
*
* @param lock The SPI bus lock.
* @return true if any device has active BG requst, otherwise false.
*/
bool spi_bus_lock_bg_req_exist(spi_bus_lock_handle_t lock);
/*******************************************************************************
* Variable and APIs for the OS to initialize the locks for the main chip
******************************************************************************/
/// The lock for the main bus
extern const spi_bus_lock_handle_t g_main_spi_bus_lock;
/**
* @brief Initialize the main SPI bus, called during chip startup.
*
* @return always ESP_OK
*/
esp_err_t spi_bus_lock_init_main_bus(void);
/// The lock for the main flash device
extern const spi_bus_lock_dev_handle_t g_spi_lock_main_flash_dev;
/**
* @brief Initialize the main flash device, called during chip startup.
*
* @return
* - ESP_OK: if success
* - ESP_ERR_NO_MEM: memory exhausted
*/
esp_err_t spi_bus_lock_init_main_dev(void);
#ifdef __cplusplus
}
#endif