6091021e83
New unity component can be used for testing other applications. Upstream version of Unity is included as a submodule. Utilities specific to ESP-IDF unit tests (partitions, leak checking setup/teardown functions, etc) are kept only in unit-test-app. Kconfig options are added to allow disabling certain Unity features.
148 lines
4.6 KiB
C
148 lines
4.6 KiB
C
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#pragma once
|
|
|
|
// Utilities for esp-idf unit tests
|
|
|
|
#include <stdint.h>
|
|
#include <esp_partition.h>
|
|
#include "sdkconfig.h"
|
|
|
|
/* include performance pass standards header file */
|
|
#include "idf_performance.h"
|
|
|
|
/* For performance check with unity test on IDF */
|
|
/* These macros should only be used with ESP-IDF.
|
|
* To use performance check, we need to first define pass standard in idf_performance.h.
|
|
*/
|
|
#define TEST_PERFORMANCE_LESS_THAN(name, value_fmt, value) do { \
|
|
printf("[Performance]["#name"]: "value_fmt"\n", value); \
|
|
TEST_ASSERT(value < IDF_PERFORMANCE_MAX_##name); \
|
|
} while(0)
|
|
|
|
#define TEST_PERFORMANCE_GREATER_THAN(name, value_fmt, value) do { \
|
|
printf("[Performance]["#name"]: "value_fmt"\n", value); \
|
|
TEST_ASSERT(value > IDF_PERFORMANCE_MIN_##name); \
|
|
} while(0)
|
|
|
|
|
|
/* @brief macro to print IDF performance
|
|
* @param mode : performance item name. a string pointer.
|
|
* @param value_fmt: print format and unit of the value, for example: "%02fms", "%dKB"
|
|
* @param value : the performance value.
|
|
*/
|
|
#define IDF_LOG_PERFORMANCE(item, value_fmt, value) \
|
|
printf("[Performance][%s]: "value_fmt"\n", item, value)
|
|
|
|
|
|
/* Some definitions applicable to Unity running in FreeRTOS */
|
|
#define UNITY_FREERTOS_PRIORITY CONFIG_UNITY_FREERTOS_PRIORITY
|
|
#define UNITY_FREERTOS_CPU CONFIG_UNITY_FREERTOS_CPU
|
|
#define UNITY_FREERTOS_STACK_SIZE CONFIG_UNITY_FREERTOS_STACK_SIZE
|
|
|
|
/* Return the 'flash_test' custom data partition (type 0x55)
|
|
defined in the custom partition table.
|
|
*/
|
|
const esp_partition_t *get_test_data_partition();
|
|
|
|
/**
|
|
* @brief Initialize reference clock
|
|
*
|
|
* Reference clock provides timestamps at constant 1 MHz frequency, even when
|
|
* the APB frequency is changing.
|
|
*/
|
|
void ref_clock_init();
|
|
|
|
/**
|
|
* @brief Deinitialize reference clock
|
|
*/
|
|
void ref_clock_deinit();
|
|
|
|
|
|
/**
|
|
* @brief Get reference clock timestamp
|
|
* @return number of microseconds since the reference clock was initialized
|
|
*/
|
|
uint64_t ref_clock_get();
|
|
|
|
/**
|
|
* @brief Entry point of the test application
|
|
*
|
|
* Starts Unity test runner in a separate task and returns.
|
|
*/
|
|
void test_main();
|
|
|
|
/**
|
|
* @brief Reset automatic leak checking which happens in unit tests.
|
|
*
|
|
* Updates recorded "before" free memory values to the free memory values
|
|
* at time of calling. Resets leak checker if tracing is enabled in
|
|
* config.
|
|
*
|
|
* This can be called if a test case does something which allocates
|
|
* memory on first use, for example.
|
|
*
|
|
* @note Use with care as this can mask real memory leak problems.
|
|
*/
|
|
void unity_reset_leak_checks(void);
|
|
|
|
|
|
/**
|
|
* @brief Call this function from a test case which requires TCP/IP or
|
|
* LWIP functionality.
|
|
*
|
|
* @note This should be the first function the test case calls, as it will
|
|
* allocate memory on first use (and also reset the test case leak checker).
|
|
*/
|
|
void test_case_uses_tcpip(void);
|
|
|
|
|
|
/**
|
|
* @brief wait for signals.
|
|
*
|
|
* for multiple devices test cases, DUT might need to wait for other DUTs before continue testing.
|
|
* As all DUTs are independent, need user (or test script) interaction to make test synchronized.
|
|
*
|
|
* Here we provide signal functions for this.
|
|
* For example, we're testing GPIO, DUT1 has one pin connect to with DUT2.
|
|
* DUT2 will output high level and then DUT1 will read input.
|
|
* DUT1 should call `unity_wait_for_signal("output high level");` before it reads input.
|
|
* DUT2 should call `unity_send_signal("output high level");` after it finished setting output high level.
|
|
* According to the console logs:
|
|
*
|
|
* DUT1 console:
|
|
*
|
|
* ```
|
|
* Waiting for signal: [output high level]!
|
|
* Please press "Enter" key to once any board send this signal.
|
|
* ```
|
|
*
|
|
* DUT2 console:
|
|
*
|
|
* ```
|
|
* Send signal: [output high level]!
|
|
* ```
|
|
*
|
|
* Then we press Enter key on DUT1's console, DUT1 starts to read input and then test success.
|
|
*
|
|
* @param signal_name signal name which DUT expected to wait before proceed testing
|
|
*/
|
|
void unity_wait_for_signal(const char* signal_name);
|
|
|
|
/**
|
|
* @brief DUT send signal.
|
|
*
|
|
* @param signal_name signal name which DUT send once it finished preparing.
|
|
*/
|
|
void unity_send_signal(const char* signal_name);
|