96f152341a
1. call esp_timer_get_time and ref_clock_get in the same order on start and in the loop 2. disable interrupts when calculating delta between ref_clock and esp_timer 3. ensure both functions are in cache before calculating the delta
593 lines
18 KiB
C
593 lines
18 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#include <sys/time.h>
|
|
#include <sys/param.h>
|
|
#include "unity.h"
|
|
#include "esp_timer.h"
|
|
#include "esp_heap_caps.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/semphr.h"
|
|
#include "test_utils.h"
|
|
#include "../esp_timer_impl.h"
|
|
|
|
#ifdef CONFIG_ESP_TIMER_PROFILING
|
|
#define WITH_PROFILING 1
|
|
#endif
|
|
|
|
extern uint32_t esp_timer_impl_get_overflow_val();
|
|
extern void esp_timer_impl_set_overflow_val(uint32_t overflow_val);
|
|
|
|
static uint32_t s_old_overflow_val;
|
|
|
|
static void setup_overflow()
|
|
{
|
|
s_old_overflow_val = esp_timer_impl_get_overflow_val();
|
|
esp_timer_impl_set_overflow_val(0x7fffff); /* overflow every ~0.1 sec */}
|
|
|
|
static void teardown_overflow()
|
|
{
|
|
esp_timer_impl_set_overflow_val(s_old_overflow_val);
|
|
}
|
|
|
|
TEST_CASE("esp_timer orders timers correctly", "[esp_timer]")
|
|
{
|
|
void dummy_cb(void* arg)
|
|
{
|
|
}
|
|
|
|
uint64_t timeouts[] = { 10000, 1000, 10000, 5000, 20000, 1000 };
|
|
size_t indices[] = { 3, 0, 4, 2, 5, 1 };
|
|
const size_t num_timers = sizeof(timeouts)/sizeof(timeouts[0]);
|
|
esp_timer_handle_t handles[num_timers];
|
|
char* names[num_timers];
|
|
setup_overflow();
|
|
for (size_t i = 0; i < num_timers; ++i) {
|
|
asprintf(&names[i], "timer%d", i);
|
|
esp_timer_create_args_t args = {
|
|
.callback = &dummy_cb,
|
|
.name = names[i]
|
|
};
|
|
TEST_ESP_OK(esp_timer_create(&args, &handles[i]));
|
|
TEST_ESP_OK(esp_timer_start_once(handles[i], timeouts[i] * 100));
|
|
}
|
|
teardown_overflow();
|
|
char* stream_str[1024];
|
|
FILE* stream = fmemopen(stream_str, sizeof(stream_str), "r+");
|
|
TEST_ESP_OK(esp_timer_dump(stream));
|
|
for (size_t i = 0; i < num_timers; ++i) {
|
|
TEST_ESP_OK(esp_timer_stop(handles[i]));
|
|
TEST_ESP_OK(esp_timer_delete(handles[i]));
|
|
free(names[i]);
|
|
}
|
|
fflush(stream);
|
|
fseek(stream, 0, SEEK_SET);
|
|
for (size_t i = 0; i < num_timers; ++i) {
|
|
char line[128];
|
|
TEST_ASSERT_NOT_NULL(fgets(line, sizeof(line), stream));
|
|
#if WITH_PROFILING
|
|
int timer_id;
|
|
sscanf(line, "timer%d", &timer_id);
|
|
TEST_ASSERT_EQUAL(indices[timer_id], i);
|
|
#else
|
|
intptr_t timer_ptr;
|
|
sscanf(line, "timer@0x%x", &timer_ptr);
|
|
for (size_t j = 0; j < num_timers; ++j) {
|
|
if (indices[j] == i) {
|
|
TEST_ASSERT_EQUAL_PTR(handles[j], timer_ptr);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}
|
|
fclose(stream);
|
|
}
|
|
|
|
TEST_CASE("esp_timer_impl_set_alarm stress test", "[esp_timer]")
|
|
{
|
|
const int test_time_sec = 10;
|
|
|
|
void set_alarm_task(void* arg)
|
|
{
|
|
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
|
|
|
|
uint64_t start = esp_timer_impl_get_time();
|
|
uint64_t now = start;
|
|
int count = 0;
|
|
const int delays[] = {50, 5000, 10000000};
|
|
const int delays_count = sizeof(delays)/sizeof(delays[0]);
|
|
while (now - start < test_time_sec * 1000000) {
|
|
now = esp_timer_impl_get_time();
|
|
esp_timer_impl_set_alarm(now + delays[count % delays_count]);
|
|
++count;
|
|
}
|
|
xSemaphoreGive(done);
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0);
|
|
setup_overflow();
|
|
xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_0", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 0);
|
|
#if portNUM_PROCESSORS == 2
|
|
xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_1", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 1);
|
|
#endif
|
|
|
|
TEST_ASSERT(xSemaphoreTake(done, test_time_sec * 2 * 1000 / portTICK_PERIOD_MS));
|
|
#if portNUM_PROCESSORS == 2
|
|
TEST_ASSERT(xSemaphoreTake(done, test_time_sec * 2 * 1000 / portTICK_PERIOD_MS));
|
|
#endif
|
|
teardown_overflow();
|
|
vSemaphoreDelete(done);
|
|
}
|
|
|
|
TEST_CASE("esp_timer produces correct delay", "[esp_timer]")
|
|
{
|
|
void timer_func(void* arg)
|
|
{
|
|
int64_t* p_end = (int64_t*) arg;
|
|
*p_end = ref_clock_get();
|
|
}
|
|
|
|
int64_t t_end;
|
|
esp_timer_handle_t timer1;
|
|
esp_timer_create_args_t args = {
|
|
.callback = &timer_func,
|
|
.arg = &t_end,
|
|
.name = "timer1"
|
|
};
|
|
TEST_ESP_OK(esp_timer_create(&args, &timer1));
|
|
|
|
const int delays_ms[] = {20, 100, 200, 250};
|
|
const size_t delays_count = sizeof(delays_ms)/sizeof(delays_ms[0]);
|
|
|
|
ref_clock_init();
|
|
setup_overflow();
|
|
for (size_t i = 0; i < delays_count; ++i) {
|
|
t_end = 0;
|
|
int64_t t_start = ref_clock_get();
|
|
|
|
TEST_ESP_OK(esp_timer_start_once(timer1, delays_ms[i] * 1000));
|
|
|
|
vTaskDelay(delays_ms[i] * 2 / portTICK_PERIOD_MS);
|
|
TEST_ASSERT(t_end != 0);
|
|
int32_t ms_diff = (t_end - t_start) / 1000;
|
|
printf("%d %d\n", delays_ms[i], ms_diff);
|
|
|
|
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, delays_ms[i], ms_diff);
|
|
}
|
|
teardown_overflow();
|
|
ref_clock_deinit();
|
|
|
|
TEST_ESP_OK( esp_timer_dump(stdout) );
|
|
|
|
esp_timer_delete(timer1);
|
|
}
|
|
|
|
TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]")
|
|
{
|
|
// no, we can't make this a const size_t (§6.7.5.2)
|
|
#define NUM_INTERVALS 16
|
|
|
|
typedef struct {
|
|
esp_timer_handle_t timer;
|
|
size_t cur_interval;
|
|
int intervals[NUM_INTERVALS];
|
|
int64_t t_start;
|
|
SemaphoreHandle_t done;
|
|
} test_args_t;
|
|
|
|
void timer_func(void* arg)
|
|
{
|
|
test_args_t* p_args = (test_args_t*) arg;
|
|
int64_t t_end = ref_clock_get();
|
|
int32_t ms_diff = (t_end - p_args->t_start) / 1000;
|
|
printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
|
|
p_args->intervals[p_args->cur_interval++] = ms_diff;
|
|
// Deliberately make timer handler run longer.
|
|
// We check that this doesn't affect the result.
|
|
ets_delay_us(10*1000);
|
|
if (p_args->cur_interval == NUM_INTERVALS) {
|
|
printf("done\n");
|
|
TEST_ESP_OK(esp_timer_stop(p_args->timer));
|
|
xSemaphoreGive(p_args->done);
|
|
}
|
|
}
|
|
|
|
const int delay_ms = 100;
|
|
test_args_t args = {0};
|
|
esp_timer_handle_t timer1;
|
|
esp_timer_create_args_t create_args = {
|
|
.callback = &timer_func,
|
|
.arg = &args,
|
|
.name = "timer1",
|
|
};
|
|
TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
|
|
ref_clock_init();
|
|
setup_overflow();
|
|
args.timer = timer1;
|
|
args.t_start = ref_clock_get();
|
|
args.done = xSemaphoreCreateBinary();
|
|
TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000));
|
|
|
|
TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * NUM_INTERVALS * 2));
|
|
|
|
TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval);
|
|
for (size_t i = 0; i < NUM_INTERVALS; ++i) {
|
|
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]);
|
|
}
|
|
teardown_overflow();
|
|
ref_clock_deinit();
|
|
TEST_ESP_OK( esp_timer_dump(stdout) );
|
|
|
|
TEST_ESP_OK( esp_timer_delete(timer1) );
|
|
vSemaphoreDelete(args.done);
|
|
#undef NUM_INTERVALS
|
|
}
|
|
|
|
TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
|
|
{
|
|
#define N 5
|
|
|
|
typedef struct {
|
|
const int order[N * 3];
|
|
size_t count;
|
|
} test_common_t;
|
|
|
|
typedef struct {
|
|
int timer_index;
|
|
const int intervals[N];
|
|
size_t intervals_count;
|
|
esp_timer_handle_t timer;
|
|
test_common_t* common;
|
|
bool pass;
|
|
SemaphoreHandle_t done;
|
|
int64_t t_start;
|
|
} test_args_t;
|
|
|
|
void timer_func(void* arg)
|
|
{
|
|
test_args_t* p_args = (test_args_t*) arg;
|
|
// check order
|
|
size_t count = p_args->common->count;
|
|
int expected_index = p_args->common->order[count];
|
|
int ms_since_start = (ref_clock_get() - p_args->t_start) / 1000;
|
|
printf("Time %dms, at count %d, expected timer %d, got timer %d\n",
|
|
ms_since_start, count, expected_index, p_args->timer_index);
|
|
if (expected_index != p_args->timer_index) {
|
|
p_args->pass = false;
|
|
esp_timer_stop(p_args->timer);
|
|
xSemaphoreGive(p_args->done);
|
|
return;
|
|
}
|
|
p_args->common->count++;
|
|
if (++p_args->intervals_count == N) {
|
|
esp_timer_stop(p_args->timer);
|
|
xSemaphoreGive(p_args->done);
|
|
return;
|
|
}
|
|
int next_interval = p_args->intervals[p_args->intervals_count];
|
|
printf("starting timer %d interval #%d, %d ms\n",
|
|
p_args->timer_index, p_args->intervals_count, next_interval);
|
|
esp_timer_start_once(p_args->timer, next_interval * 1000);
|
|
}
|
|
|
|
|
|
test_common_t common = {
|
|
.order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2},
|
|
.count = 0
|
|
};
|
|
|
|
SemaphoreHandle_t done = xSemaphoreCreateCounting(3, 0);
|
|
|
|
ref_clock_init();
|
|
int64_t now = ref_clock_get();
|
|
|
|
test_args_t args1 = {
|
|
.timer_index = 1,
|
|
.intervals = {10, 40, 20, 40, 30},
|
|
.common = &common,
|
|
.pass = true,
|
|
.done = done,
|
|
.t_start = now
|
|
};
|
|
|
|
test_args_t args2 = {
|
|
.timer_index = 2,
|
|
.intervals = {20, 20, 60, 30, 40},
|
|
.common = &common,
|
|
.pass = true,
|
|
.done = done,
|
|
.t_start = now
|
|
};
|
|
|
|
test_args_t args3 = {
|
|
.timer_index = 3,
|
|
.intervals = {30, 30, 60, 30, 10},
|
|
.common = &common,
|
|
.pass = true,
|
|
.done = done,
|
|
.t_start = now
|
|
};
|
|
|
|
|
|
esp_timer_create_args_t create_args = {
|
|
.callback = &timer_func,
|
|
.arg = &args1,
|
|
.name = "1"
|
|
};
|
|
TEST_ESP_OK(esp_timer_create(&create_args, &args1.timer));
|
|
|
|
create_args.name = "2";
|
|
create_args.arg = &args2;
|
|
TEST_ESP_OK(esp_timer_create(&create_args, &args2.timer));
|
|
|
|
create_args.name = "3";
|
|
create_args.arg = &args3;
|
|
TEST_ESP_OK(esp_timer_create(&create_args, &args3.timer));
|
|
|
|
esp_timer_start_once(args1.timer, args1.intervals[0] * 1000);
|
|
esp_timer_start_once(args2.timer, args2.intervals[0] * 1000);
|
|
esp_timer_start_once(args3.timer, args3.intervals[0] * 1000);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
int result = xSemaphoreTake(done, 1000 / portTICK_PERIOD_MS);
|
|
TEST_ASSERT_TRUE(result == pdPASS);
|
|
}
|
|
|
|
TEST_ASSERT_TRUE(args1.pass);
|
|
TEST_ASSERT_TRUE(args2.pass);
|
|
TEST_ASSERT_TRUE(args3.pass);
|
|
|
|
ref_clock_deinit();
|
|
|
|
TEST_ESP_OK( esp_timer_dump(stdout) );
|
|
|
|
TEST_ESP_OK( esp_timer_delete(args1.timer) );
|
|
TEST_ESP_OK( esp_timer_delete(args2.timer) );
|
|
TEST_ESP_OK( esp_timer_delete(args3.timer) );
|
|
|
|
#undef N
|
|
}
|
|
|
|
/* Create two timers, start them around the same time, and search through
|
|
* timeout delta values to reproduce the case when timeouts occur close to
|
|
* each other, testing the "multiple timers triggered" code path in timer_process_alarm.
|
|
*/
|
|
TEST_CASE("esp_timer for very short intervals", "[esp_timer]")
|
|
{
|
|
SemaphoreHandle_t semaphore = xSemaphoreCreateCounting(2, 0);
|
|
|
|
void timer_func(void* arg) {
|
|
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
|
|
xSemaphoreGive(done);
|
|
printf(".");
|
|
}
|
|
|
|
esp_timer_create_args_t timer_args = {
|
|
.callback = &timer_func,
|
|
.arg = (void*) semaphore,
|
|
.name = "foo"
|
|
};
|
|
|
|
esp_timer_handle_t timer1, timer2;
|
|
ESP_ERROR_CHECK( esp_timer_create(&timer_args, &timer1) );
|
|
ESP_ERROR_CHECK( esp_timer_create(&timer_args, &timer2) );
|
|
setup_overflow();
|
|
const int timeout_ms = 10;
|
|
for (int timeout_delta_us = -150; timeout_delta_us < 150; timeout_delta_us++) {
|
|
printf("delta=%d", timeout_delta_us);
|
|
ESP_ERROR_CHECK( esp_timer_start_once(timer1, timeout_ms * 1000) );
|
|
ESP_ERROR_CHECK( esp_timer_start_once(timer2, timeout_ms * 1000 + timeout_delta_us) );
|
|
TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2));
|
|
TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2));
|
|
printf("\n");
|
|
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer1));
|
|
TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer2));
|
|
}
|
|
|
|
teardown_overflow();
|
|
vSemaphoreDelete(semaphore);
|
|
}
|
|
|
|
|
|
TEST_CASE("esp_timer_get_time call takes less than 1us", "[esp_timer]")
|
|
{
|
|
int64_t begin = esp_timer_get_time();
|
|
volatile int64_t end;
|
|
const int iter_count = 10000;
|
|
for (int i = 0; i < iter_count; ++i) {
|
|
end = esp_timer_get_time();
|
|
}
|
|
int ns_per_call = (int) ((end - begin) * 1000 / iter_count);
|
|
TEST_PERFORMANCE_LESS_THAN(ESP_TIMER_GET_TIME_PER_CALL, "%dns", ns_per_call);
|
|
}
|
|
|
|
TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer]")
|
|
{
|
|
typedef struct {
|
|
SemaphoreHandle_t done;
|
|
bool pass;
|
|
int test_cnt;
|
|
int error_cnt;
|
|
int64_t total_sq_error;
|
|
int64_t max_error;
|
|
int64_t avg_diff;
|
|
int64_t dummy;
|
|
} test_state_t;
|
|
|
|
void timer_test_task(void* arg) {
|
|
test_state_t* state = (test_state_t*) arg;
|
|
state->pass = true;
|
|
|
|
/* make sure both functions are in cache */
|
|
state->dummy = esp_timer_get_time();
|
|
state->dummy += ref_clock_get();
|
|
|
|
/* calculate the difference between the two clocks */
|
|
portDISABLE_INTERRUPTS();
|
|
int64_t hs_start_time = esp_timer_get_time();
|
|
int64_t start_time = ref_clock_get();
|
|
portENABLE_INTERRUPTS();
|
|
int64_t delta = hs_start_time - start_time;
|
|
|
|
int64_t now = start_time;
|
|
int error_repeat_cnt = 0;
|
|
while (now - start_time < 10000000) { /* 10 seconds */
|
|
/* Get values of both clocks again, and check that they are close to 'delta'.
|
|
* We don't disable interrupts here, because esp_timer_get_time doesn't lock
|
|
* interrupts internally, so we check if it can get "broken" by a well placed
|
|
* interrupt.
|
|
*/
|
|
int64_t hs_now = esp_timer_get_time();
|
|
now = ref_clock_get();
|
|
int64_t diff = hs_now - (now + delta);
|
|
/* Allow some difference due to rtos tick interrupting task between
|
|
* getting 'hs_now' and 'now'.
|
|
*/
|
|
if (abs(diff) > 100) {
|
|
error_repeat_cnt++;
|
|
state->error_cnt++;
|
|
} else {
|
|
error_repeat_cnt = 0;
|
|
}
|
|
if (error_repeat_cnt > 2) {
|
|
printf("diff=%lld\n", diff);
|
|
state->pass = false;
|
|
}
|
|
state->avg_diff += diff;
|
|
state->max_error = MAX(state->max_error, abs(diff));
|
|
state->test_cnt++;
|
|
state->total_sq_error += diff * diff;
|
|
}
|
|
state->avg_diff /= state->test_cnt;
|
|
xSemaphoreGive(state->done);
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
ref_clock_init();
|
|
setup_overflow();
|
|
|
|
test_state_t states[portNUM_PROCESSORS] = {0};
|
|
SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0);
|
|
for (int i = 0; i < portNUM_PROCESSORS; ++i) {
|
|
states[i].done = done;
|
|
xTaskCreatePinnedToCore(&timer_test_task, "test", 4096, &states[i], 6, NULL, i);
|
|
}
|
|
|
|
for (int i = 0; i < portNUM_PROCESSORS; ++i) {
|
|
TEST_ASSERT_TRUE( xSemaphoreTake(done, portMAX_DELAY) );
|
|
printf("CPU%d: %s test_cnt=%d error_cnt=%d std_error=%d avg_diff=%d |max_error|=%d\n",
|
|
i, states[i].pass ? "PASS" : "FAIL",
|
|
states[i].test_cnt, states[i].error_cnt,
|
|
(int) sqrt(states[i].total_sq_error / states[i].test_cnt),
|
|
(int) states[i].avg_diff, (int) states[i].max_error);
|
|
}
|
|
|
|
vSemaphoreDelete(done);
|
|
teardown_overflow();
|
|
ref_clock_deinit();
|
|
|
|
for (int i = 0; i < portNUM_PROCESSORS; ++i) {
|
|
TEST_ASSERT(states[i].pass);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Can dump esp_timer stats", "[esp_timer]")
|
|
{
|
|
esp_timer_dump(stdout);
|
|
}
|
|
|
|
TEST_CASE("Can delete timer from callback", "[esp_timer]")
|
|
{
|
|
typedef struct {
|
|
SemaphoreHandle_t notify_from_timer_cb;
|
|
esp_timer_handle_t timer;
|
|
} test_arg_t;
|
|
|
|
void timer_func(void* varg)
|
|
{
|
|
test_arg_t arg = *(test_arg_t*) varg;
|
|
esp_timer_delete(arg.timer);
|
|
printf("Timer %p is deleted\n", arg.timer);
|
|
xSemaphoreGive(arg.notify_from_timer_cb);
|
|
}
|
|
|
|
test_arg_t args = {
|
|
.notify_from_timer_cb = xSemaphoreCreateBinary(),
|
|
};
|
|
|
|
esp_timer_create_args_t timer_args = {
|
|
.callback = &timer_func,
|
|
.arg = &args,
|
|
.name = "self_deleter"
|
|
};
|
|
esp_timer_create(&timer_args, &args.timer);
|
|
esp_timer_start_once(args.timer, 10000);
|
|
|
|
TEST_ASSERT_TRUE(xSemaphoreTake(args.notify_from_timer_cb, 1000 / portTICK_PERIOD_MS));
|
|
printf("Checking heap at %p\n", args.timer);
|
|
TEST_ASSERT_TRUE(heap_caps_check_integrity_addr((intptr_t) args.timer, true));
|
|
|
|
vSemaphoreDelete(args.notify_from_timer_cb);
|
|
}
|
|
|
|
TEST_CASE("esp_timer_impl_advance moves time base correctly", "[esp_timer]")
|
|
{
|
|
ref_clock_init();
|
|
int64_t t0 = esp_timer_get_time();
|
|
const int64_t diff_us = 1000000;
|
|
esp_timer_impl_advance(diff_us);
|
|
int64_t t1 = esp_timer_get_time();
|
|
int64_t t_delta = t1 - t0;
|
|
printf("diff_us=%lld t1-t0=%lld\n", diff_us, t_delta);
|
|
TEST_ASSERT_INT_WITHIN(1000, diff_us, (int) t_delta);
|
|
ref_clock_deinit();
|
|
}
|
|
|
|
|
|
TEST_CASE("after esp_timer_impl_advance, timers run when expected", "[esp_timer]")
|
|
{
|
|
typedef struct {
|
|
int64_t cb_time;
|
|
} test_state_t;
|
|
|
|
void timer_func(void* varg) {
|
|
test_state_t* arg = (test_state_t*) varg;
|
|
arg->cb_time = ref_clock_get();
|
|
}
|
|
|
|
ref_clock_init();
|
|
|
|
test_state_t state = { 0 };
|
|
|
|
esp_timer_create_args_t timer_args = {
|
|
.callback = &timer_func,
|
|
.arg = &state
|
|
};
|
|
esp_timer_handle_t timer;
|
|
TEST_ESP_OK(esp_timer_create(&timer_args, &timer));
|
|
|
|
const int64_t interval = 10000;
|
|
const int64_t advance = 2000;
|
|
|
|
printf("test 1\n");
|
|
int64_t t_start = ref_clock_get();
|
|
esp_timer_start_once(timer, interval);
|
|
esp_timer_impl_advance(advance);
|
|
vTaskDelay(2 * interval / 1000 / portTICK_PERIOD_MS);
|
|
|
|
TEST_ASSERT_INT_WITHIN(portTICK_PERIOD_MS * 1000, interval - advance, state.cb_time - t_start);
|
|
|
|
printf("test 2\n");
|
|
state.cb_time = 0;
|
|
t_start = ref_clock_get();
|
|
esp_timer_start_once(timer, interval);
|
|
esp_timer_impl_advance(interval);
|
|
vTaskDelay(1);
|
|
|
|
TEST_ASSERT(state.cb_time > t_start);
|
|
|
|
ref_clock_deinit();
|
|
}
|