OVMS3-idf/components/soc/include/hal/spi_ll.h
Michael (XIAO Xufeng) 5c9dc44c49 spi: multichip support
move hardcoded numbers, etc. into soc files.
create headers for shared types which needs to be documented.

(MINOR CHANGE)
2019-06-20 10:38:52 +08:00

865 lines
26 KiB
C

// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The LL layer for ESP32 SPI register operations
#pragma once
#include "hal/hal_defs.h"
#include "soc/spi_periph.h"
#include "esp32/rom/lldesc.h"
#include <string.h>
#include <esp_types.h>
#include <stdlib.h> //for abs()
/// Registers to reset during initialization. Don't use in app.
#define SPI_LL_RST_MASK (SPI_OUT_RST | SPI_IN_RST | SPI_AHBM_RST | SPI_AHBM_FIFO_RST)
/// Interrupt not used. Don't use in app.
#define SPI_LL_UNUSED_INT_MASK (SPI_INT_EN | SPI_SLV_WR_STA_DONE | SPI_SLV_RD_STA_DONE | SPI_SLV_WR_BUF_DONE | SPI_SLV_RD_BUF_DONE)
/// Swap the bit order to its correct place to send
#define HAL_SPI_SWAP_DATA_TX(data, len) HAL_SWAP32((uint32_t)data<<(32-len))
/**
* The data structure holding calculated clock configuration. Since the
* calculation needs long time, it should be calculated during initialization and
* stored somewhere to be quickly used.
*/
typedef uint32_t spi_ll_clock_val_t;
/** IO modes supported by the master. */
typedef enum {
SPI_LL_IO_MODE_NORMAL = 0, ///< 1-bit mode for all phases
SPI_LL_IO_MODE_DIO, ///< 2-bit mode for address and data phases, 1-bit mode for command phase
SPI_LL_IO_MODE_DUAL, ///< 2-bit mode for data phases only, 1-bit mode for command and address phases
SPI_LL_IO_MODE_QIO, ///< 4-bit mode for address and data phases, 1-bit mode for command phase
SPI_LL_IO_MODE_QUAD, ///< 4-bit mode for data phases only, 1-bit mode for command and address phases
} spi_ll_io_mode_t;
/*------------------------------------------------------------------------------
* Control
*----------------------------------------------------------------------------*/
/**
* Initialize SPI peripheral (master).
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_master_init(spi_dev_t *hw)
{
//Reset DMA
hw->dma_conf.val |= SPI_LL_RST_MASK;
hw->dma_out_link.start = 0;
hw->dma_in_link.start = 0;
hw->dma_conf.val &= ~SPI_LL_RST_MASK;
//Reset timing
hw->ctrl2.val = 0;
//use all 64 bytes of the buffer
hw->user.usr_miso_highpart = 0;
hw->user.usr_mosi_highpart = 0;
//Disable unneeded ints
hw->slave.val &= ~SPI_LL_UNUSED_INT_MASK;
}
/**
* Initialize SPI peripheral (slave).
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_slave_init(spi_dev_t *hw)
{
//Configure slave
hw->clock.val = 0;
hw->user.val = 0;
hw->ctrl.val = 0;
hw->slave.wr_rd_buf_en = 1; //no sure if needed
hw->user.doutdin = 1; //we only support full duplex
hw->user.sio = 0;
hw->slave.slave_mode = 1;
hw->dma_conf.val |= SPI_LL_RST_MASK;
hw->dma_out_link.start = 0;
hw->dma_in_link.start = 0;
hw->dma_conf.val &= ~SPI_LL_RST_MASK;
hw->slave.sync_reset = 1;
hw->slave.sync_reset = 0;
//use all 64 bytes of the buffer
hw->user.usr_miso_highpart = 0;
hw->user.usr_mosi_highpart = 0;
//Disable unneeded ints
hw->slave.val &= ~SPI_LL_UNUSED_INT_MASK;
}
/**
* Reset TX and RX DMAs.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_reset_dma(spi_dev_t *hw)
{
//Reset DMA peripheral
hw->dma_conf.val |= SPI_LL_RST_MASK;
hw->dma_out_link.start = 0;
hw->dma_in_link.start = 0;
hw->dma_conf.val &= ~SPI_LL_RST_MASK;
hw->dma_conf.out_data_burst_en = 1;
hw->dma_conf.indscr_burst_en = 1;
hw->dma_conf.outdscr_burst_en = 1;
}
/**
* Start RX DMA.
*
* @param hw Beginning address of the peripheral registers.
* @param addr Address of the beginning DMA descriptor.
*/
static inline void spi_ll_rxdma_start(spi_dev_t *hw, lldesc_t *addr)
{
hw->dma_in_link.addr = (int) addr & 0xFFFFF;
hw->dma_in_link.start = 1;
}
/**
* Start TX DMA.
*
* @param hw Beginning address of the peripheral registers.
* @param addr Address of the beginning DMA descriptor.
*/
static inline void spi_ll_txdma_start(spi_dev_t *hw, lldesc_t *addr)
{
hw->dma_out_link.addr = (int) addr & 0xFFFFF;
hw->dma_out_link.start = 1;
}
/**
* Write to SPI buffer.
*
* @param hw Beginning address of the peripheral registers.
* @param buffer_to_send Data address to copy to the buffer.
* @param bitlen Length to copy, in bits.
*/
static inline void spi_ll_write_buffer(spi_dev_t *hw, const uint8_t *buffer_to_send, size_t bitlen)
{
for (int x = 0; x < bitlen; x += 32) {
//Use memcpy to get around alignment issues for txdata
uint32_t word;
memcpy(&word, &buffer_to_send[x / 8], 4);
hw->data_buf[(x / 32)] = word;
}
}
/**
* Read from SPI buffer.
*
* @param hw Beginning address of the peripheral registers.
* @param buffer_to_rcv Address to copy buffer data to.
* @param bitlen Length to copy, in bits.
*/
static inline void spi_ll_read_buffer(spi_dev_t *hw, uint8_t *buffer_to_rcv, size_t bitlen)
{
for (int x = 0; x < bitlen; x += 32) {
//Do a memcpy to get around possible alignment issues in rx_buffer
uint32_t word = hw->data_buf[x / 32];
int len = bitlen - x;
if (len > 32) {
len = 32;
}
memcpy(&buffer_to_rcv[x / 8], &word, (len + 7) / 8);
}
}
/**
* Check whether user-defined transaction is done.
*
* @param hw Beginning address of the peripheral registers.
*
* @return true if transaction is done, otherwise false.
*/
static inline bool spi_ll_usr_is_done(spi_dev_t *hw)
{
return hw->slave.trans_done;
}
/**
* Trigger start of user-defined transaction.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_user_start(spi_dev_t *hw)
{
hw->cmd.usr = 1;
}
/**
* Get current running command bit-mask. (Preview)
*
* @param hw Beginning address of the peripheral registers.
*
* @return Bitmask of running command, see ``SPI_CMD_REG``. 0 if no in-flight command.
*/
static inline uint32_t spi_ll_get_running_cmd(spi_dev_t *hw)
{
return hw->cmd.val;
}
/**
* Disable the trans_done interrupt.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_disable_int(spi_dev_t *hw)
{
hw->slave.trans_inten = 0;
}
/**
* Clear the trans_done interrupt.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_clear_int_stat(spi_dev_t *hw)
{
hw->slave.trans_done = 0;
}
/**
* Set the trans_done interrupt.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_set_int_stat(spi_dev_t *hw)
{
hw->slave.trans_done = 1;
}
/**
* Enable the trans_done interrupt.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_enable_int(spi_dev_t *hw)
{
hw->slave.trans_inten = 1;
}
/*------------------------------------------------------------------------------
* Configs: mode
*----------------------------------------------------------------------------*/
/**
* Enable/disable the postive-cs feature.
*
* @param hw Beginning address of the peripheral registers.
* @param cs One of the CS (0-2) to enable/disable the feature.
* @param pos_cs true to enable the feature, otherwise disable (default).
*/
static inline void spi_ll_master_set_pos_cs(spi_dev_t *hw, int cs, uint32_t pos_cs)
{
if (pos_cs) {
hw->pin.master_cs_pol |= (1 << cs);
} else {
hw->pin.master_cs_pol &= (1 << cs);
}
}
/**
* Enable/disable the LSBFIRST feature for TX data.
*
* @param hw Beginning address of the peripheral registers.
* @param lsbfirst true if LSB of TX data to be sent first, otherwise MSB is sent first (default).
*/
static inline void spi_ll_set_tx_lsbfirst(spi_dev_t *hw, bool lsbfirst)
{
hw->ctrl.wr_bit_order = lsbfirst;
}
/**
* Enable/disable the LSBFIRST feature for RX data.
*
* @param hw Beginning address of the peripheral registers.
* @param lsbfirst true if first bit received as LSB, otherwise as MSB (default).
*/
static inline void spi_ll_set_rx_lsbfirst(spi_dev_t *hw, bool lsbfirst)
{
hw->ctrl.rd_bit_order = lsbfirst;
}
/**
* Set SPI mode for the peripheral as master.
*
* @param hw Beginning address of the peripheral registers.
* @param mode SPI mode to work at, 0-3.
*/
static inline void spi_ll_master_set_mode(spi_dev_t *hw, uint8_t mode)
{
//Configure polarity
if (mode == 0) {
hw->pin.ck_idle_edge = 0;
hw->user.ck_out_edge = 0;
} else if (mode == 1) {
hw->pin.ck_idle_edge = 0;
hw->user.ck_out_edge = 1;
} else if (mode == 2) {
hw->pin.ck_idle_edge = 1;
hw->user.ck_out_edge = 1;
} else if (mode == 3) {
hw->pin.ck_idle_edge = 1;
hw->user.ck_out_edge = 0;
}
}
/**
* Set SPI mode for the peripheral as slave.
*
* @param hw Beginning address of the peripheral registers.
* @param mode SPI mode to work at, 0-3.
*/
static inline void spi_ll_slave_set_mode(spi_dev_t *hw, const int mode, bool dma_used)
{
if (mode == 0) {
//The timing needs to be fixed to meet the requirements of DMA
hw->pin.ck_idle_edge = 1;
hw->user.ck_i_edge = 0;
hw->ctrl2.miso_delay_mode = 0;
hw->ctrl2.miso_delay_num = 0;
hw->ctrl2.mosi_delay_mode = 2;
hw->ctrl2.mosi_delay_num = 2;
} else if (mode == 1) {
hw->pin.ck_idle_edge = 1;
hw->user.ck_i_edge = 1;
hw->ctrl2.miso_delay_mode = 2;
hw->ctrl2.miso_delay_num = 0;
hw->ctrl2.mosi_delay_mode = 0;
hw->ctrl2.mosi_delay_num = 0;
} else if (mode == 2) {
//The timing needs to be fixed to meet the requirements of DMA
hw->pin.ck_idle_edge = 0;
hw->user.ck_i_edge = 1;
hw->ctrl2.miso_delay_mode = 0;
hw->ctrl2.miso_delay_num = 0;
hw->ctrl2.mosi_delay_mode = 1;
hw->ctrl2.mosi_delay_num = 2;
} else if (mode == 3) {
hw->pin.ck_idle_edge = 0;
hw->user.ck_i_edge = 0;
hw->ctrl2.miso_delay_mode = 1;
hw->ctrl2.miso_delay_num = 0;
hw->ctrl2.mosi_delay_mode = 0;
hw->ctrl2.mosi_delay_num = 0;
}
/* Silicon issues exists in mode 0 and 2 with DMA, change clock phase to
* avoid dma issue. This will cause slave output to appear at most half a
* spi clock before
*/
if (dma_used) {
if (mode == 0) {
hw->pin.ck_idle_edge = 0;
hw->user.ck_i_edge = 1;
hw->ctrl2.miso_delay_mode = 0;
hw->ctrl2.miso_delay_num = 2;
hw->ctrl2.mosi_delay_mode = 0;
hw->ctrl2.mosi_delay_num = 3;
} else if (mode == 2) {
hw->pin.ck_idle_edge = 1;
hw->user.ck_i_edge = 0;
hw->ctrl2.miso_delay_mode = 0;
hw->ctrl2.miso_delay_num = 2;
hw->ctrl2.mosi_delay_mode = 0;
hw->ctrl2.mosi_delay_num = 3;
}
}
}
/**
* Set SPI to work in full duplex or half duplex mode.
*
* @param hw Beginning address of the peripheral registers.
* @param half_duplex true to work in half duplex mode, otherwise in full duplex mode.
*/
static inline void spi_ll_set_half_duplex(spi_dev_t *hw, bool half_duplex)
{
hw->user.doutdin = !half_duplex;
}
/**
* Set SPI to work in SIO mode or not.
*
* SIO is a mode which MOSI and MISO share a line. The device MUST work in half-duplexmode.
*
* @param hw Beginning address of the peripheral registers.
* @param sio_mode true to work in SIO mode, otherwise false.
*/
static inline void spi_ll_set_sio_mode(spi_dev_t *hw, int sio_mode)
{
hw->user.sio = sio_mode;
}
/**
* Configure the io mode for the master to work at.
*
* @param hw Beginning address of the peripheral registers.
* @param io_mode IO mode to work at, see ``spi_ll_io_mode_t``.
*/
static inline void spi_ll_master_set_io_mode(spi_dev_t *hw, spi_ll_io_mode_t io_mode)
{
hw->ctrl.val &= ~(SPI_FREAD_DUAL | SPI_FREAD_QUAD | SPI_FREAD_DIO | SPI_FREAD_QIO);
hw->user.val &= ~(SPI_FWRITE_DUAL | SPI_FWRITE_QUAD | SPI_FWRITE_DIO | SPI_FWRITE_QIO);
switch (io_mode) {
case SPI_LL_IO_MODE_DIO:
hw->ctrl.fread_dio = 1;
hw->user.fwrite_dio = 1;
break;
case SPI_LL_IO_MODE_DUAL:
hw->ctrl.fread_dual = 1;
hw->user.fwrite_dual = 1;
break;
case SPI_LL_IO_MODE_QIO:
hw->ctrl.fread_qio = 1;
hw->user.fwrite_qio = 1;
break;
case SPI_LL_IO_MODE_QUAD:
hw->ctrl.fread_quad = 1;
hw->user.fwrite_quad = 1;
break;
default:
break;
};
if (io_mode != SPI_LL_IO_MODE_NORMAL) {
hw->ctrl.fastrd_mode = 1;
}
}
/**
* Select one of the CS to use in current transaction.
*
* @param hw Beginning address of the peripheral registers.
* @param cs_id The cs to use, 0-2, otherwise none of them is used.
*/
static inline void spi_ll_master_select_cs(spi_dev_t *hw, int cs_id)
{
hw->pin.cs0_dis = (cs_id == 0) ? 0 : 1;
hw->pin.cs1_dis = (cs_id == 1) ? 0 : 1;
hw->pin.cs2_dis = (cs_id == 2) ? 0 : 1;
}
/*------------------------------------------------------------------------------
* Configs: parameters
*----------------------------------------------------------------------------*/
/**
* Set the clock for master by stored value.
*
* @param hw Beginning address of the peripheral registers.
* @param val stored clock configuration calculated before (by ``spi_ll_cal_clock``).
*/
static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, spi_ll_clock_val_t *val)
{
hw->clock.val = *(uint32_t *)val;
}
/**
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param n main divider.
*
* @return Frequency of given dividers.
*/
static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
{
return (fapb / (pre * n));
}
/**
* Calculate the nearest frequency avaliable for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
* @return Actual (nearest) frequency.
*/
static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_ll_clock_val_t *out_reg)
{
typeof(SPI1.clock) reg;
int eff_clk;
//In hw, n, h and l are 1-64, pre is 1-8K. Value written to register is one lower than used value.
if (hz > ((fapb / 4) * 3)) {
//Using Fapb directly will give us the best result here.
reg.clkcnt_l = 0;
reg.clkcnt_h = 0;
reg.clkcnt_n = 0;
reg.clkdiv_pre = 0;
reg.clk_equ_sysclk = 1;
eff_clk = fapb;
} else {
//For best duty cycle resolution, we want n to be as close to 32 as possible, but
//we also need a pre/n combo that gets us as close as possible to the intended freq.
//To do this, we bruteforce n and calculate the best pre to go along with that.
//If there's a choice between pre/n combos that give the same result, use the one
//with the higher n.
int pre, n, h, l;
int bestn = -1;
int bestpre = -1;
int besterr = 0;
int errval;
for (n = 2; n <= 64; n++) { //Start at 2: we need to be able to set h/l so we have at least one high and one low pulse.
//Effectively, this does pre=round((fapb/n)/hz).
pre = ((fapb / n) + (hz / 2)) / hz;
if (pre <= 0) {
pre = 1;
}
if (pre > 8192) {
pre = 8192;
}
errval = abs(spi_ll_freq_for_pre_n(fapb, pre, n) - hz);
if (bestn == -1 || errval <= besterr) {
besterr = errval;
bestn = n;
bestpre = pre;
}
}
n = bestn;
pre = bestpre;
l = n;
//This effectively does round((duty_cycle*n)/256)
h = (duty_cycle * n + 127) / 256;
if (h <= 0) {
h = 1;
}
reg.clk_equ_sysclk = 0;
reg.clkcnt_n = n - 1;
reg.clkdiv_pre = pre - 1;
reg.clkcnt_h = h - 1;
reg.clkcnt_l = l - 1;
eff_clk = spi_ll_freq_for_pre_n(fapb, pre, n);
}
if (out_reg != NULL) {
*(uint32_t *)out_reg = reg.val;
}
return eff_clk;
}
/**
* Calculate and set clock for SPI master according to desired parameters.
*
* This takes long, suggest to calculate the configuration during
* initialization by ``spi_ll_master_cal_clock`` and store the result, then
* configure the clock by stored value when used by
* ``spi_ll_msater_set_clock_by_reg``.
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.
*/
static inline int spi_ll_master_set_clock(spi_dev_t *hw, int fapb, int hz, int duty_cycle)
{
spi_ll_clock_val_t reg_val;
int freq = spi_ll_master_cal_clock(fapb, hz, duty_cycle, &reg_val);
spi_ll_master_set_clock_by_reg(hw, &reg_val);
return freq;
}
/**
* Enable/disable the CK sel feature for a CS pin.
*
* CK sel is a feature to toggle the CS line along with the clock.
*
* @param hw Beginning address of the peripheral registers.
* @param cs CS pin to enable/disable the feature, 0-2.
* @param cksel true to enable the feature, otherwise false.
*/
static inline void spi_ll_master_set_cksel(spi_dev_t *hw, int cs, uint32_t cksel)
{
if (cksel) {
hw->pin.master_ck_sel |= (1 << cs);
} else {
hw->pin.master_ck_sel &= (1 << cs);
}
}
/**
* Set the mosi delay after the output edge to the signal. (Preview)
*
* The delay mode/num is a Espressif conception, may change in the new chips.
*
* @param hw Beginning address of the peripheral registers.
* @param delay_mode Delay mode, see TRM.
* @param delay_num APB clocks to delay.
*/
static inline void spi_ll_set_mosi_delay(spi_dev_t *hw, int delay_mode, int delay_num)
{
hw->ctrl2.mosi_delay_mode = delay_mode;
hw->ctrl2.mosi_delay_num = delay_num;
}
/**
* Set the miso delay applied to the input signal before the internal peripheral. (Preview)
*
* The delay mode/num is a Espressif conception, may change in the new chips.
*
* @param hw Beginning address of the peripheral registers.
* @param delay_mode Delay mode, see TRM.
* @param delay_num APB clocks to delay.
*/
static inline void spi_ll_set_miso_delay(spi_dev_t *hw, int delay_mode, int delay_num)
{
hw->ctrl2.miso_delay_mode = delay_mode;
hw->ctrl2.miso_delay_num = delay_num;
}
/**
* Set dummy clocks to output before RX phase (master), or clocks to skip
* before the data phase and after the address phase (slave).
*
* Note this phase is also used to compensate RX timing in half duplex mode.
*
* @param hw Beginning address of the peripheral registers.
* @param dummy_n Dummy cycles used. 0 to disable the dummy phase.
*/
static inline void spi_ll_set_dummy(spi_dev_t *hw, int dummy_n)
{
hw->user.usr_dummy = dummy_n ? 1 : 0;
hw->user1.usr_dummy_cyclelen = dummy_n - 1;
}
/**
* Set the delay of SPI clocks before the CS inactive edge after the last SPI clock.
*
* @param hw Beginning address of the peripheral registers.
* @param hold Delay of SPI clocks after the last clock, 0 to disable the hold phase.
*/
static inline void spi_ll_master_set_cs_hold(spi_dev_t *hw, int hold)
{
hw->ctrl2.hold_time = hold;
hw->user.cs_hold = hold ? 1 : 0;
}
/**
* Set the delay of SPI clocks before the first SPI clock after the CS active edge.
*
* Note ESP32 doesn't support to use this feature when command/address phases
* are used in full duplex mode.
*
* @param hw Beginning address of the peripheral registers.
* @param setup Delay of SPI clocks after the CS active edge, 0 to disable the setup phase.
*/
static inline void spi_ll_master_set_cs_setup(spi_dev_t *hw, uint8_t setup)
{
hw->ctrl2.setup_time = setup - 1;
hw->user.cs_setup = setup ? 1 : 0;
}
/*------------------------------------------------------------------------------
* Configs: data
*----------------------------------------------------------------------------*/
/**
* Set the input length (master).
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen input length, in bits.
*/
static inline void spi_ll_set_miso_bitlen(spi_dev_t *hw, size_t bitlen)
{
hw->miso_dlen.usr_miso_dbitlen = bitlen - 1;
}
/**
* Set the output length (master).
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen output length, in bits.
*/
static inline void spi_ll_set_mosi_bitlen(spi_dev_t *hw, size_t bitlen)
{
hw->mosi_dlen.usr_mosi_dbitlen = bitlen - 1;
}
/**
* Set the maximum input length (slave).
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen input length, in bits.
*/
static inline void spi_ll_slave_set_rx_bitlen(spi_dev_t *hw, size_t bitlen)
{
hw->slv_wrbuf_dlen.bit_len = bitlen - 1;
}
/**
* Set the maximum output length (slave).
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen output length, in bits.
*/
static inline void spi_ll_slave_set_tx_bitlen(spi_dev_t *hw, size_t bitlen)
{
hw->slv_rdbuf_dlen.bit_len = bitlen - 1;
}
/**
* Set the length of command phase.
*
* When in 4-bit mode, the SPI cycles of the phase will be shorter. E.g. 16-bit
* command phases takes 4 cycles in 4-bit mode.
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen Length of command phase, in bits. 0 to disable the command phase.
*/
static inline void spi_ll_set_command_bitlen(spi_dev_t *hw, int bitlen)
{
hw->user2.usr_command_bitlen = bitlen - 1;
hw->user.usr_command = bitlen ? 1 : 0;
}
/**
* Set the length of address phase.
*
* When in 4-bit mode, the SPI cycles of the phase will be shorter. E.g. 16-bit
* address phases takes 4 cycles in 4-bit mode.
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen Length of address phase, in bits. 0 to disable the address phase.
*/
static inline void spi_ll_set_addr_bitlen(spi_dev_t *hw, int bitlen)
{
hw->user1.usr_addr_bitlen = bitlen - 1;
hw->user.usr_addr = bitlen ? 1 : 0;
}
/**
* Set the address value in an intuitive way.
*
* The length and lsbfirst is required to shift and swap the address to the right place.
*
* @param hw Beginning address of the peripheral registers.
* @param address Address to set
* @param addrlen Length of the address phase
* @param lsbfirst whether the LSB first feature is enabled.
*/
static inline void spi_ll_set_address(spi_dev_t *hw, uint64_t addr, int addrlen, uint32_t lsbfirst)
{
if (lsbfirst) {
/* The output address start from the LSB of the highest byte, i.e.
* addr[24] -> addr[31]
* ...
* addr[0] -> addr[7]
* slv_wr_status[24] -> slv_wr_status[31]
* ...
* slv_wr_status[0] -> slv_wr_status[7]
* So swap the byte order to let the LSB sent first.
*/
addr = HAL_SWAP64(addr);
hw->addr = addr >> 32;
hw->slv_wr_status = addr;
} else {
// shift the address to MSB of addr (and maybe slv_wr_status) register.
// output address will be sent from MSB to LSB of addr register, then comes the MSB to LSB of slv_wr_status register.
if (addrlen > 32) {
hw->addr = addr >> (addrlen - 32);
hw->slv_wr_status = addr << (64 - addrlen);
} else {
hw->addr = addr << (32 - addrlen);
}
}
}
/**
* Set the command value in an intuitive way.
*
* The length and lsbfirst is required to shift and swap the command to the right place.
*
* @param hw Beginning command of the peripheral registers.
* @param command Command to set
* @param addrlen Length of the command phase
* @param lsbfirst whether the LSB first feature is enabled.
*/
static inline void spi_ll_set_command(spi_dev_t *hw, uint16_t cmd, int cmdlen, bool lsbfirst)
{
if (lsbfirst) {
// The output command start from bit0 to bit 15, kept as is.
hw->user2.usr_command_value = cmd;
} else {
/* Output command will be sent from bit 7 to 0 of command_value, and
* then bit 15 to 8 of the same register field. Shift and swap to send
* more straightly.
*/
hw->user2.usr_command_value = HAL_SPI_SWAP_DATA_TX(cmd, cmdlen);
}
}
/**
* Enable/disable the RX data phase.
*
* @param hw Beginning address of the peripheral registers.
* @param enable true if RX phase exist, otherwise false.
*/
static inline void spi_ll_enable_miso(spi_dev_t *hw, int enable)
{
hw->user.usr_miso = enable;
}
/**
* Enable/disable the TX data phase.
*
* @param hw Beginning address of the peripheral registers.
* @param enable true if TX phase exist, otherwise false.
*/
static inline void spi_ll_enable_mosi(spi_dev_t *hw, int enable)
{
hw->user.usr_mosi = enable;
}
/**
* Reset the slave peripheral before next transaction.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_slave_reset(spi_dev_t *hw)
{
hw->slave.sync_reset = 1;
hw->slave.sync_reset = 0;
}
/**
* Get the received bit length of the slave.
*
* @param hw Beginning address of the peripheral registers.
*
* @return Received bits of the slave.
*/
static inline uint32_t spi_ll_slave_get_rcv_bitlen(spi_dev_t *hw)
{
return hw->slv_rd_bit.slv_rdata_bit;
}
#undef SPI_LL_RST_MASK
#undef SPI_LL_UNUSED_INT_MASK