OVMS3-idf/components/esp32/sleep_modes.c
Alex Lisitsyn 2d90da0817 esp32: Deactivate wakeup trigger after first wakeup
The timer wakeup function once activated cannot be disabled later using existing api. If user wants to use different wakeup sources after first sleep but it does not work. This change disables timer wakeup trigger in configuration that will be set into appropriate RTC registers in esp_light_sleep_start() function.

Added function esp_sleep_disable_wakeup_source() to deactivate wakeup trigger for selected source.
Updated documentation for this function in sleep_modes.rst file to pass make html.
Updated unit test to check this functionality for light sleep.
The test_sleep.c unit test is updated to add reliability for auto unit testing.

(TW#18952)
Closes https://github.com/espressif/esp-idf/issues/1677
2018-03-16 18:22:02 +05:00

562 lines
20 KiB
C

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <sys/lock.h>
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_sleep.h"
#include "esp_log.h"
#include "esp_clk.h"
#include "esp_newlib.h"
#include "esp_spi_flash.h"
#include "rom/cache.h"
#include "rom/rtc.h"
#include "rom/uart.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_io_reg.h"
#include "soc/spi_reg.h"
#include "soc/sens_reg.h"
#include "soc/dport_reg.h"
#include "driver/rtc_io.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "sdkconfig.h"
// If light sleep time is less than that, don't power down flash
#define FLASH_PD_MIN_SLEEP_TIME_US 2000
// Time from VDD_SDIO power up to first flash read in ROM code
#define VDD_SDIO_POWERUP_TO_FLASH_READ_US 700
/**
* Internal structure which holds all requested deep sleep parameters
*/
typedef struct {
esp_sleep_pd_option_t pd_options[ESP_PD_DOMAIN_MAX];
uint64_t sleep_duration;
uint32_t wakeup_triggers : 11;
uint32_t ext1_trigger_mode : 1;
uint32_t ext1_rtc_gpio_mask : 18;
uint32_t ext0_trigger_level : 1;
uint32_t ext0_rtc_gpio_num : 5;
} deep_sleep_config_t;
static deep_sleep_config_t s_config = {
.pd_options = { ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO, ESP_PD_OPTION_AUTO },
.wakeup_triggers = 0
};
/* Updating RTC_MEMORY_CRC_REG register via set_rtc_memory_crc()
is not thread-safe. */
static _lock_t lock_rtc_memory_crc;
static const char* TAG = "sleep";
static uint32_t get_power_down_flags();
static void ext0_wakeup_prepare();
static void ext1_wakeup_prepare();
static void timer_wakeup_prepare();
/* Wake from deep sleep stub
See esp_deepsleep.h esp_wake_deep_sleep() comments for details.
*/
esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void)
{
_lock_acquire(&lock_rtc_memory_crc);
uint32_t stored_crc = REG_READ(RTC_MEMORY_CRC_REG);
set_rtc_memory_crc();
uint32_t calc_crc = REG_READ(RTC_MEMORY_CRC_REG);
REG_WRITE(RTC_MEMORY_CRC_REG, stored_crc);
_lock_release(&lock_rtc_memory_crc);
if(stored_crc == calc_crc) {
return (esp_deep_sleep_wake_stub_fn_t)REG_READ(RTC_ENTRY_ADDR_REG);
} else {
return NULL;
}
}
void esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub)
{
_lock_acquire(&lock_rtc_memory_crc);
REG_WRITE(RTC_ENTRY_ADDR_REG, (uint32_t)new_stub);
set_rtc_memory_crc();
_lock_release(&lock_rtc_memory_crc);
}
void RTC_IRAM_ATTR esp_default_wake_deep_sleep(void) {
/* Clear MMU for CPU 0 */
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG,
_DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) | DPORT_PRO_CACHE_MMU_IA_CLR);
_DPORT_REG_WRITE(DPORT_PRO_CACHE_CTRL1_REG,
_DPORT_REG_READ(DPORT_PRO_CACHE_CTRL1_REG) & (~DPORT_PRO_CACHE_MMU_IA_CLR));
#if CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY > 0
// ROM code has not started yet, so we need to set delay factor
// used by ets_delay_us first.
ets_update_cpu_frequency_rom(ets_get_detected_xtal_freq() / 1000000);
// This delay is configured in menuconfig, it can be used to give
// the flash chip some time to become ready.
ets_delay_us(CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY);
#endif
}
void __attribute__((weak, alias("esp_default_wake_deep_sleep"))) esp_wake_deep_sleep(void);
void esp_deep_sleep(uint64_t time_in_us)
{
esp_sleep_enable_timer_wakeup(time_in_us);
esp_deep_sleep_start();
}
static uint32_t IRAM_ATTR esp_sleep_start(uint32_t pd_flags)
{
// Flush UARTs so that output is not lost due to APB frequency change
uart_tx_wait_idle(0);
uart_tx_wait_idle(1);
uart_tx_wait_idle(2);
// Configure pins for external wakeup
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
ext0_wakeup_prepare();
}
if (s_config.wakeup_triggers & RTC_EXT1_TRIG_EN) {
ext1_wakeup_prepare();
}
// Enable ULP wakeup
if (s_config.wakeup_triggers & RTC_ULP_TRIG_EN) {
SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_WAKEUP_FORCE_EN);
}
// Configure timer wakeup
if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) &&
s_config.sleep_duration > 0) {
timer_wakeup_prepare();
}
// Enter sleep
rtc_sleep_config_t config = RTC_SLEEP_CONFIG_DEFAULT(pd_flags);
rtc_sleep_init(config);
return rtc_sleep_start(s_config.wakeup_triggers, 0);
}
void IRAM_ATTR esp_deep_sleep_start()
{
// Configure wake stub
if (esp_get_deep_sleep_wake_stub() == NULL) {
esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep);
}
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
// Enter sleep
esp_sleep_start(RTC_SLEEP_PD_DIG | RTC_SLEEP_PD_VDDSDIO | pd_flags);
// Because RTC is in a slower clock domain than the CPU, it
// can take several CPU cycles for the sleep mode to start.
while (1) {
;
}
}
static void rtc_wdt_enable(int time_ms)
{
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
WRITE_PERI_REG(RTC_CNTL_WDTFEED_REG, 1);
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_SYS_RESET_LENGTH, 7);
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_CPU_RESET_LENGTH, 7);
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG0, RTC_WDT_STG_SEL_RESET_RTC);
WRITE_PERI_REG(RTC_CNTL_WDTCONFIG1_REG, rtc_clk_slow_freq_get_hz() * time_ms / 1000);
SET_PERI_REG_MASK(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN | RTC_CNTL_WDT_PAUSE_IN_SLP);
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, 0);
}
static void rtc_wdt_disable()
{
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
WRITE_PERI_REG(RTC_CNTL_WDTFEED_REG, 1);
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG0, RTC_WDT_STG_SEL_OFF);
REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN);
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, 0);
}
/**
* Helper function which handles entry to and exit from light sleep
* Placed into IRAM as flash may need some time to be powered on.
*/
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
rtc_cpu_freq_t cpu_freq, uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config) IRAM_ATTR __attribute__((noinline));
static esp_err_t esp_light_sleep_inner(uint32_t pd_flags,
rtc_cpu_freq_t cpu_freq, uint32_t flash_enable_time_us,
rtc_vddsdio_config_t vddsdio_config)
{
// Enter sleep
esp_err_t err = esp_sleep_start(pd_flags);
// If VDDSDIO regulator was controlled by RTC registers before sleep,
// restore the configuration.
if (vddsdio_config.force) {
rtc_vddsdio_set_config(vddsdio_config);
}
// Restore CPU frequency
rtc_clk_cpu_freq_set(cpu_freq);
// If SPI flash was powered down, wait for it to become ready
if (pd_flags & RTC_SLEEP_PD_VDDSDIO) {
// Wait for the flash chip to start up
ets_delay_us(flash_enable_time_us);
}
return err;
}
esp_err_t esp_light_sleep_start()
{
static portMUX_TYPE light_sleep_lock = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL(&light_sleep_lock);
int other_cpu = xPortGetCoreID() ? 0 : 1;
esp_cpu_stall(other_cpu);
// Other CPU is stalled, need to disable DPORT protection
esp_dport_access_int_pause();
// Decide which power domains can be powered down
uint32_t pd_flags = get_power_down_flags();
// Decide if VDD_SDIO needs to be powered down;
// If it needs to be powered down, adjust sleep time.
const uint32_t flash_enable_time_us = VDD_SDIO_POWERUP_TO_FLASH_READ_US
+ CONFIG_ESP32_DEEP_SLEEP_WAKEUP_DELAY;
// Don't power down VDD_SDIO if pSRAM is used.
#ifndef CONFIG_SPIRAM_SUPPORT
if (s_config.sleep_duration > FLASH_PD_MIN_SLEEP_TIME_US &&
s_config.sleep_duration > flash_enable_time_us) {
pd_flags |= RTC_SLEEP_PD_VDDSDIO;
s_config.sleep_duration -= flash_enable_time_us;
}
#endif //CONFIG_SPIRAM_SUPPORT
rtc_vddsdio_config_t vddsdio_config = rtc_vddsdio_get_config();
// Safety net: enable WDT in case exit from light sleep fails
rtc_wdt_enable(1000);
// Save current CPU frequency, light sleep will switch to XTAL
rtc_cpu_freq_t cpu_freq = rtc_clk_cpu_freq_get();
// Enter sleep, then wait for flash to be ready on wakeup
esp_err_t err = esp_light_sleep_inner(pd_flags, cpu_freq,
flash_enable_time_us, vddsdio_config);
// At this point, if FRC1 is used for timekeeping, time will be lagging behind.
// This will update the microsecond count based on RTC timer.
esp_set_time_from_rtc();
// However, we do not advance RTOS ticks here; doing so would be rather messy,
// as ticks can only be advanced on CPU0.
// If this is needed by the application, automatic light sleep (tickless idle)
// will handle that better.
esp_cpu_unstall(other_cpu);
esp_dport_access_int_resume();
rtc_wdt_disable();
portEXIT_CRITICAL(&light_sleep_lock);
return err;
}
void system_deep_sleep(uint64_t) __attribute__((alias("esp_deep_sleep")));
esp_err_t esp_sleep_enable_ulp_wakeup()
{
#ifdef CONFIG_ULP_COPROC_ENABLED
if(s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_ULP_TRIG_EN;
return ESP_OK;
#else
return ESP_ERR_INVALID_STATE;
#endif
}
esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us)
{
s_config.wakeup_triggers |= RTC_TIMER_TRIG_EN;
s_config.sleep_duration = time_in_us;
return ESP_OK;
}
esp_err_t esp_sleep_disable_timer_wakeup()
{
if (s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) {
// The only timer wakeup trigger should be disabled, setup will
// be performed in rtc_sleep_start() which updates wakeup options
// in RTC peripheral registers
s_config.wakeup_triggers &= ~RTC_TIMER_TRIG_EN;
s_config.sleep_duration = 0;
}
else {
ESP_LOGE(TAG, "The timer wake-up trigger is not set.");
return ESP_ERR_INVALID_STATE;
}
return ESP_OK;
}
static void timer_wakeup_prepare()
{
uint32_t period = esp_clk_slowclk_cal_get();
uint64_t rtc_count_delta = rtc_time_us_to_slowclk(s_config.sleep_duration, period);
uint64_t cur_rtc_count = rtc_time_get();
rtc_sleep_set_wakeup_time(cur_rtc_count + rtc_count_delta);
}
esp_err_t esp_sleep_enable_touchpad_wakeup()
{
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_TOUCH_TRIG_EN;
return ESP_OK;
}
touch_pad_t esp_sleep_get_touchpad_wakeup_status()
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_TOUCHPAD) {
return TOUCH_PAD_MAX;
}
uint32_t touch_mask = REG_GET_FIELD(SENS_SAR_TOUCH_CTRL2_REG, SENS_TOUCH_MEAS_EN);
assert(touch_mask != 0 && "wakeup reason is RTC_TOUCH_TRIG_EN but SENS_TOUCH_MEAS_EN is zero");
return (touch_pad_t) (__builtin_ffs(touch_mask) - 1);
}
esp_err_t esp_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level)
{
if (level < 0 || level > 1) {
return ESP_ERR_INVALID_ARG;
}
if (!RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
return ESP_ERR_INVALID_STATE;
}
s_config.ext0_rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num;
s_config.ext0_trigger_level = level;
s_config.wakeup_triggers |= RTC_EXT0_TRIG_EN;
return ESP_OK;
}
static void ext0_wakeup_prepare()
{
int rtc_gpio_num = s_config.ext0_rtc_gpio_num;
// Set GPIO to be used for wakeup
REG_SET_FIELD(RTC_IO_EXT_WAKEUP0_REG, RTC_IO_EXT_WAKEUP0_SEL, rtc_gpio_num);
// Set level which will trigger wakeup
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
s_config.ext0_trigger_level, RTC_CNTL_EXT_WAKEUP0_LV_S);
// Find GPIO descriptor in the rtc_gpio_desc table and configure the pad
for (size_t gpio_num = 0; gpio_num < GPIO_PIN_COUNT; ++gpio_num) {
const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio_num];
if (desc->rtc_num == rtc_gpio_num) {
REG_SET_BIT(desc->reg, desc->mux);
SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func);
REG_SET_BIT(desc->reg, desc->slpsel);
REG_SET_BIT(desc->reg, desc->slpie);
break;
}
}
}
esp_err_t esp_sleep_enable_ext1_wakeup(uint64_t mask, esp_sleep_ext1_wakeup_mode_t mode)
{
if (mode > ESP_EXT1_WAKEUP_ANY_HIGH) {
return ESP_ERR_INVALID_ARG;
}
// Translate bit map of GPIO numbers into the bit map of RTC IO numbers
uint32_t rtc_gpio_mask = 0;
for (int gpio = 0; mask; ++gpio, mask >>= 1) {
if ((mask & 1) == 0) {
continue;
}
if (!RTC_GPIO_IS_VALID_GPIO(gpio)) {
ESP_LOGE(TAG, "Not an RTC IO: GPIO%d", gpio);
return ESP_ERR_INVALID_ARG;
}
rtc_gpio_mask |= BIT(rtc_gpio_desc[gpio].rtc_num);
}
s_config.ext1_rtc_gpio_mask = rtc_gpio_mask;
s_config.ext1_trigger_mode = mode;
s_config.wakeup_triggers |= RTC_EXT1_TRIG_EN;
return ESP_OK;
}
static void ext1_wakeup_prepare()
{
// Configure all RTC IOs selected as ext1 wakeup inputs
uint32_t rtc_gpio_mask = s_config.ext1_rtc_gpio_mask;
for (int gpio = 0; gpio < GPIO_PIN_COUNT && rtc_gpio_mask != 0; ++gpio) {
int rtc_pin = rtc_gpio_desc[gpio].rtc_num;
if ((rtc_gpio_mask & BIT(rtc_pin)) == 0) {
continue;
}
const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio];
// Route pad to RTC
REG_SET_BIT(desc->reg, desc->mux);
SET_PERI_REG_BITS(desc->reg, 0x3, 0, desc->func);
// Pad configuration depends on RTC_PERIPH state in sleep mode
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_ON) {
// set input enable in sleep mode
REG_SET_BIT(desc->reg, desc->slpie);
// allow sleep status signal to control IE/SLPIE mux
REG_SET_BIT(desc->reg, desc->slpsel);
} else {
// RTC_PERIPH will be disabled, so need to enable input and
// lock pad configuration. Pullups/pulldowns also need to be disabled.
REG_SET_BIT(desc->reg, desc->ie);
REG_CLR_BIT(desc->reg, desc->pulldown);
REG_CLR_BIT(desc->reg, desc->pullup);
REG_SET_BIT(RTC_CNTL_HOLD_FORCE_REG, desc->hold_force);
}
// Keep track of pins which are processed to bail out early
rtc_gpio_mask &= ~BIT(rtc_pin);
}
// Clear state from previous wakeup
REG_SET_BIT(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_STATUS_CLR);
// Set pins to be used for wakeup
REG_SET_FIELD(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_SEL, s_config.ext1_rtc_gpio_mask);
// Set logic function (any low, all high)
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
s_config.ext1_trigger_mode, RTC_CNTL_EXT_WAKEUP1_LV_S);
}
uint64_t esp_sleep_get_ext1_wakeup_status()
{
if (esp_sleep_get_wakeup_cause() != ESP_SLEEP_WAKEUP_EXT1) {
return 0;
}
uint32_t status = REG_GET_FIELD(RTC_CNTL_EXT_WAKEUP1_STATUS_REG, RTC_CNTL_EXT_WAKEUP1_STATUS);
// Translate bit map of RTC IO numbers into the bit map of GPIO numbers
uint64_t gpio_mask = 0;
for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) {
if (!RTC_GPIO_IS_VALID_GPIO(gpio)) {
continue;
}
int rtc_pin = rtc_gpio_desc[gpio].rtc_num;
if ((status & BIT(rtc_pin)) == 0) {
continue;
}
gpio_mask |= 1ULL << gpio;
}
return gpio_mask;
}
esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause()
{
if (rtc_get_reset_reason(0) != DEEPSLEEP_RESET) {
return ESP_SLEEP_WAKEUP_UNDEFINED;
}
uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE);
if (wakeup_cause & RTC_EXT0_TRIG_EN) {
return ESP_SLEEP_WAKEUP_EXT0;
} else if (wakeup_cause & RTC_EXT1_TRIG_EN) {
return ESP_SLEEP_WAKEUP_EXT1;
} else if (wakeup_cause & RTC_TIMER_TRIG_EN) {
return ESP_SLEEP_WAKEUP_TIMER;
} else if (wakeup_cause & RTC_TOUCH_TRIG_EN) {
return ESP_SLEEP_WAKEUP_TOUCHPAD;
} else if (wakeup_cause & RTC_ULP_TRIG_EN) {
return ESP_SLEEP_WAKEUP_ULP;
} else {
return ESP_SLEEP_WAKEUP_UNDEFINED;
}
}
esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain,
esp_sleep_pd_option_t option)
{
if (domain >= ESP_PD_DOMAIN_MAX || option > ESP_PD_OPTION_AUTO) {
return ESP_ERR_INVALID_ARG;
}
s_config.pd_options[domain] = option;
return ESP_OK;
}
static uint32_t get_power_down_flags()
{
// Where needed, convert AUTO options to ON. Later interpret AUTO as OFF.
// RTC_SLOW_MEM is needed for the ULP, so keep RTC_SLOW_MEM powered up if ULP
// is used and RTC_SLOW_MEM is Auto.
// If there is any data placed into .rtc.data or .rtc.bss segments, and
// RTC_SLOW_MEM is Auto, keep it powered up as well.
// These labels are defined in the linker script:
extern int _rtc_data_start, _rtc_data_end, _rtc_bss_start, _rtc_bss_end;
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] == ESP_PD_OPTION_AUTO ||
&_rtc_data_end > &_rtc_data_start ||
&_rtc_bss_end > &_rtc_bss_start) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] = ESP_PD_OPTION_ON;
}
// RTC_FAST_MEM is needed for deep sleep stub.
// If RTC_FAST_MEM is Auto, keep it powered on, so that deep sleep stub
// can run.
// In the new chip revision, deep sleep stub will be optional,
// and this can be changed.
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] == ESP_PD_OPTION_AUTO) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] = ESP_PD_OPTION_ON;
}
// RTC_PERIPH is needed for EXT0 wakeup.
// If RTC_PERIPH is auto, and EXT0 isn't enabled, power down RTC_PERIPH.
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_AUTO) {
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON;
} else if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
// In both rev. 0 and rev. 1 of ESP32, forcing power up of RTC_PERIPH
// prevents ULP timer and touch FSMs from working correctly.
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF;
}
}
const char* option_str[] = {"OFF", "ON", "AUTO(OFF)" /* Auto works as OFF */};
ESP_LOGD(TAG, "RTC_PERIPH: %s, RTC_SLOW_MEM: %s, RTC_FAST_MEM: %s",
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH]],
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM]],
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM]]);
// Prepare flags based on the selected options
uint32_t pd_flags = 0;
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_FAST_MEM;
}
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_SLOW_MEM;
}
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
pd_flags |= RTC_SLEEP_PD_RTC_PERIPH;
}
return pd_flags;
}