6091021e83
New unity component can be used for testing other applications. Upstream version of Unity is included as a submodule. Utilities specific to ESP-IDF unit tests (partitions, leak checking setup/teardown functions, etc) are kept only in unit-test-app. Kconfig options are added to allow disabling certain Unity features.
228 lines
6.8 KiB
C
228 lines
6.8 KiB
C
#include <stdio.h>
|
|
#include <freertos/FreeRTOS.h>
|
|
#include <freertos/task.h>
|
|
#include <freertos/semphr.h>
|
|
|
|
#include <unity.h>
|
|
#include <esp_spi_flash.h>
|
|
#include <esp_attr.h>
|
|
#include "driver/timer.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "test_utils.h"
|
|
|
|
struct flash_test_ctx {
|
|
uint32_t offset;
|
|
bool fail;
|
|
SemaphoreHandle_t done;
|
|
};
|
|
|
|
static void flash_test_task(void *arg)
|
|
{
|
|
struct flash_test_ctx *ctx = (struct flash_test_ctx *) arg;
|
|
vTaskDelay(100 / portTICK_PERIOD_MS);
|
|
const uint32_t sector = ctx->offset;
|
|
printf("t%d\n", sector);
|
|
printf("es%d\n", sector);
|
|
if (spi_flash_erase_sector(sector) != ESP_OK) {
|
|
ctx->fail = true;
|
|
printf("Erase failed\r\n");
|
|
xSemaphoreGive(ctx->done);
|
|
vTaskDelete(NULL);
|
|
}
|
|
printf("ed%d\n", sector);
|
|
|
|
vTaskDelay(0 / portTICK_PERIOD_MS);
|
|
|
|
uint32_t val = 0xabcd1234;
|
|
for (uint32_t offset = 0; offset < SPI_FLASH_SEC_SIZE; offset += 4) {
|
|
if (spi_flash_write(sector * SPI_FLASH_SEC_SIZE + offset, (const uint8_t *) &val, 4) != ESP_OK) {
|
|
printf("Write failed at offset=%d\r\n", offset);
|
|
ctx->fail = true;
|
|
break;
|
|
}
|
|
}
|
|
printf("wd%d\n", sector);
|
|
|
|
vTaskDelay(0 / portTICK_PERIOD_MS);
|
|
|
|
uint32_t val_read;
|
|
for (uint32_t offset = 0; offset < SPI_FLASH_SEC_SIZE; offset += 4) {
|
|
if (spi_flash_read(sector * SPI_FLASH_SEC_SIZE + offset, (uint8_t *) &val_read, 4) != ESP_OK) {
|
|
printf("Read failed at offset=%d\r\n", offset);
|
|
ctx->fail = true;
|
|
break;
|
|
}
|
|
if (val_read != val) {
|
|
printf("Read invalid value=%08x at offset=%d\r\n", val_read, offset);
|
|
ctx->fail = true;
|
|
break;
|
|
}
|
|
}
|
|
printf("td%d\n", sector);
|
|
xSemaphoreGive(ctx->done);
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
TEST_CASE("flash write and erase work both on PRO CPU and on APP CPU", "[spi_flash][ignore]")
|
|
{
|
|
SemaphoreHandle_t done = xSemaphoreCreateCounting(4, 0);
|
|
struct flash_test_ctx ctx[] = {
|
|
{ .offset = 0x100 + 6, .done = done },
|
|
{ .offset = 0x100 + 7, .done = done },
|
|
{ .offset = 0x100 + 8, .done = done },
|
|
#ifndef CONFIG_FREERTOS_UNICORE
|
|
{ .offset = 0x100 + 9, .done = done }
|
|
#endif
|
|
};
|
|
|
|
xTaskCreatePinnedToCore(flash_test_task, "t0", 2048, &ctx[0], 3, NULL, 0);
|
|
xTaskCreatePinnedToCore(flash_test_task, "t1", 2048, &ctx[1], 3, NULL, tskNO_AFFINITY);
|
|
xTaskCreatePinnedToCore(flash_test_task, "t2", 2048, &ctx[2], 3, NULL, tskNO_AFFINITY);
|
|
#ifndef CONFIG_FREERTOS_UNICORE
|
|
xTaskCreatePinnedToCore(flash_test_task, "t3", 2048, &ctx[3], 3, NULL, 1);
|
|
#endif
|
|
|
|
const size_t task_count = sizeof(ctx)/sizeof(ctx[0]);
|
|
for (int i = 0; i < task_count; ++i) {
|
|
xSemaphoreTake(done, portMAX_DELAY);
|
|
TEST_ASSERT_FALSE(ctx[i].fail);
|
|
}
|
|
vSemaphoreDelete(done);
|
|
}
|
|
|
|
|
|
|
|
typedef struct {
|
|
size_t buf_size;
|
|
uint8_t* buf;
|
|
size_t flash_addr;
|
|
size_t repeat_count;
|
|
SemaphoreHandle_t done;
|
|
} read_task_arg_t;
|
|
|
|
|
|
typedef struct {
|
|
size_t delay_time_us;
|
|
size_t repeat_count;
|
|
} block_task_arg_t;
|
|
|
|
static void IRAM_ATTR timer_isr(void* varg) {
|
|
block_task_arg_t* arg = (block_task_arg_t*) varg;
|
|
TIMERG0.int_clr_timers.t0 = 1;
|
|
TIMERG0.hw_timer[0].config.alarm_en = 1;
|
|
ets_delay_us(arg->delay_time_us);
|
|
arg->repeat_count++;
|
|
}
|
|
|
|
static void read_task(void* varg) {
|
|
read_task_arg_t* arg = (read_task_arg_t*) varg;
|
|
for (size_t i = 0; i < arg->repeat_count; ++i) {
|
|
ESP_ERROR_CHECK( spi_flash_read(arg->flash_addr, arg->buf, arg->buf_size) );
|
|
}
|
|
xSemaphoreGive(arg->done);
|
|
vTaskDelay(1);
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
TEST_CASE("spi flash functions can run along with IRAM interrupts", "[spi_flash]")
|
|
{
|
|
const size_t size = 128;
|
|
read_task_arg_t read_arg = {
|
|
.buf_size = size,
|
|
.buf = (uint8_t*) malloc(size),
|
|
.flash_addr = 0,
|
|
.repeat_count = 1000,
|
|
.done = xSemaphoreCreateBinary()
|
|
};
|
|
|
|
timer_config_t config = {
|
|
.alarm_en = true,
|
|
.counter_en = false,
|
|
.intr_type = TIMER_INTR_LEVEL,
|
|
.counter_dir = TIMER_COUNT_UP,
|
|
.auto_reload = true,
|
|
.divider = 80
|
|
};
|
|
|
|
block_task_arg_t block_arg = {
|
|
.repeat_count = 0,
|
|
.delay_time_us = 100
|
|
};
|
|
|
|
ESP_ERROR_CHECK( timer_init(TIMER_GROUP_0, TIMER_0, &config) );
|
|
timer_pause(TIMER_GROUP_0, TIMER_0);
|
|
ESP_ERROR_CHECK( timer_set_alarm_value(TIMER_GROUP_0, TIMER_0, 120) );
|
|
intr_handle_t handle;
|
|
ESP_ERROR_CHECK( timer_isr_register(TIMER_GROUP_0, TIMER_0, &timer_isr, &block_arg, ESP_INTR_FLAG_IRAM, &handle) );
|
|
timer_set_counter_value(TIMER_GROUP_0, TIMER_0, 0);
|
|
timer_enable_intr(TIMER_GROUP_0, TIMER_0);
|
|
timer_start(TIMER_GROUP_0, TIMER_0);
|
|
|
|
xTaskCreatePinnedToCore(read_task, "r", 2048, &read_arg, 3, NULL, portNUM_PROCESSORS - 1);
|
|
xSemaphoreTake(read_arg.done, portMAX_DELAY);
|
|
|
|
timer_pause(TIMER_GROUP_0, TIMER_0);
|
|
timer_disable_intr(TIMER_GROUP_0, TIMER_0);
|
|
esp_intr_free(handle);
|
|
vSemaphoreDelete(read_arg.done);
|
|
free(read_arg.buf);
|
|
}
|
|
|
|
|
|
#if portNUM_PROCESSORS > 1
|
|
TEST_CASE("spi_flash deadlock with high priority busy-waiting task", "[spi_flash]")
|
|
{
|
|
typedef struct {
|
|
QueueHandle_t queue;
|
|
volatile bool done;
|
|
} deadlock_test_arg_t;
|
|
|
|
/* Create two tasks: high-priority consumer on CPU0, low-priority producer on CPU1.
|
|
* Consumer polls the queue until it gets some data, then yields.
|
|
* Run flash operation on CPU0. Check that when IPC1 task blocks out the producer,
|
|
* the task which does flash operation does not get blocked by the consumer.
|
|
*/
|
|
|
|
void producer_task(void* varg)
|
|
{
|
|
int dummy = 0;
|
|
deadlock_test_arg_t* arg = (deadlock_test_arg_t*) varg;
|
|
while (!arg->done) {
|
|
xQueueSend(arg->queue, &dummy, 0);
|
|
vTaskDelay(1);
|
|
}
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
void consumer_task(void* varg)
|
|
{
|
|
int dummy;
|
|
deadlock_test_arg_t* arg = (deadlock_test_arg_t*) varg;
|
|
while (!arg->done) {
|
|
if (xQueueReceive(arg->queue, &dummy, 0) == pdTRUE) {
|
|
vTaskDelay(1);
|
|
}
|
|
}
|
|
vTaskDelete(NULL);
|
|
}
|
|
deadlock_test_arg_t arg = {
|
|
.queue = xQueueCreate(32, sizeof(int)),
|
|
.done = false
|
|
};
|
|
|
|
TEST_ASSERT(xTaskCreatePinnedToCore(&producer_task, "producer", 4096, &arg, 5, NULL, 1));
|
|
TEST_ASSERT(xTaskCreatePinnedToCore(&consumer_task, "consumer", 4096, &arg, 10, NULL, 0));
|
|
|
|
for (int i = 0; i < 1000; i++) {
|
|
uint32_t dummy;
|
|
TEST_ESP_OK(spi_flash_read(0, &dummy, sizeof(dummy)));
|
|
}
|
|
|
|
arg.done = true;
|
|
vTaskDelay(5);
|
|
vQueueDelete(arg.queue);
|
|
|
|
/* Check that current task priority is still correct */
|
|
TEST_ASSERT_EQUAL_INT(uxTaskPriorityGet(NULL), UNITY_FREERTOS_PRIORITY);
|
|
}
|
|
#endif // portNUM_PROCESSORS > 1
|