OVMS3-idf/components/newlib/test/test_time.c
Ivan Grokhotkov 6091021e83 unity: separate common and IDF specific functionality
New unity component can be used for testing other applications.
Upstream version of Unity is included as a submodule.
Utilities specific to ESP-IDF unit tests (partitions, leak checking
setup/teardown functions, etc) are kept only in unit-test-app.
Kconfig options are added to allow disabling certain Unity features.
2018-11-19 12:36:31 +08:00

405 lines
14 KiB
C

#include <stdio.h>
#include <math.h>
#include "unity.h"
#include "driver/adc.h"
#include <time.h>
#include <sys/time.h>
#include "soc/rtc_cntl_reg.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "sdkconfig.h"
#include "soc/rtc.h"
#include "esp_clk.h"
#include "esp_system.h"
#include "test_utils.h"
#if portNUM_PROCESSORS == 2
// https://github.com/espressif/arduino-esp32/issues/120
TEST_CASE("Reading RTC registers on APP CPU doesn't affect clock", "[newlib]")
{
// This runs on APP CPU:
void time_adc_test_task(void* arg)
{
for (int i = 0; i < 200000; ++i) {
// wait for 20us, reading one of RTC registers
uint32_t ccount = xthal_get_ccount();
while (xthal_get_ccount() - ccount < 20 * CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ) {
volatile uint32_t val = REG_READ(RTC_CNTL_STATE0_REG);
(void) val;
}
}
SemaphoreHandle_t * p_done = (SemaphoreHandle_t *) arg;
xSemaphoreGive(*p_done);
vTaskDelay(1);
vTaskDelete(NULL);
}
SemaphoreHandle_t done = xSemaphoreCreateBinary();
xTaskCreatePinnedToCore(&time_adc_test_task, "time_adc", 4096, &done, 5, NULL, 1);
// This runs on PRO CPU:
for (int i = 0; i < 4; ++i) {
struct timeval tv_start;
gettimeofday(&tv_start, NULL);
vTaskDelay(1000/portTICK_PERIOD_MS);
struct timeval tv_stop;
gettimeofday(&tv_stop, NULL);
float time_sec = tv_stop.tv_sec - tv_start.tv_sec + 1e-6f * (tv_stop.tv_usec - tv_start.tv_usec);
printf("(0) time taken: %f sec\n", time_sec);
TEST_ASSERT_TRUE(fabs(time_sec - 1.0f) < 0.1);
}
TEST_ASSERT_TRUE(xSemaphoreTake(done, 5000 / portTICK_RATE_MS));
}
#endif // portNUM_PROCESSORS == 2
TEST_CASE("test adjtime function", "[newlib]")
{
struct timeval tv_time;
struct timeval tv_delta;
struct timeval tv_outdelta;
TEST_ASSERT_EQUAL(adjtime(NULL, NULL), 0);
tv_time.tv_sec = 5000;
tv_time.tv_usec = 5000;
TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
tv_outdelta.tv_sec = 5;
tv_outdelta.tv_usec = 5;
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
tv_delta.tv_sec = INT_MAX / 1000000L;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
tv_delta.tv_sec = INT_MIN / 1000000L;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1);
tv_delta.tv_sec = 0;
tv_delta.tv_usec = -900000;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
TEST_ASSERT_TRUE(tv_outdelta.tv_usec <= 0);
tv_delta.tv_sec = 0;
tv_delta.tv_usec = 900000;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0);
tv_delta.tv_sec = -4;
tv_delta.tv_usec = -900000;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, -4);
TEST_ASSERT_TRUE(tv_outdelta.tv_usec <= 0);
// after settimeofday() adjtime() is stopped
tv_delta.tv_sec = 15;
tv_delta.tv_usec = 900000;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0);
TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0);
// after gettimeofday() adjtime() is not stopped
tv_delta.tv_sec = 15;
tv_delta.tv_usec = 900000;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0);
TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0);
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15);
TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0);
tv_delta.tv_sec = 1;
tv_delta.tv_usec = 0;
TEST_ASSERT_EQUAL(adjtime(&tv_delta, NULL), 0);
vTaskDelay(1000 / portTICK_PERIOD_MS);
TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0);
TEST_ASSERT_TRUE(tv_outdelta.tv_sec == 0);
// the correction will be equal to (1_000_000us >> 6) = 15_625 us.
TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec >= 15600);
TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec <= 15650);
}
static volatile bool exit_flag;
static void adjtimeTask2(void *pvParameters)
{
xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
struct timeval delta = {.tv_sec = 0, .tv_usec = 0};
struct timeval outdelta;
// although exit flag is set in another task, checking (exit_flag == false) is safe
while (exit_flag == false) {
delta.tv_sec += 1;
delta.tv_usec = 900000;
if (delta.tv_sec >= 2146) delta.tv_sec = 1;
adjtime(&delta, &outdelta);
}
xSemaphoreGive(*sema);
vTaskDelete(NULL);
}
static void timeTask(void *pvParameters)
{
xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
// although exit flag is set in another task, checking (exit_flag == false) is safe
while (exit_flag == false) {
tv_time.tv_sec += 1;
settimeofday(&tv_time, NULL);
gettimeofday(&tv_time, NULL);
}
xSemaphoreGive(*sema);
vTaskDelete(NULL);
}
TEST_CASE("test for no interlocking adjtime, gettimeofday and settimeofday functions", "[newlib]")
{
TaskHandle_t th[4];
exit_flag = false;
struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 };
TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0);
const int max_tasks = 2;
xSemaphoreHandle exit_sema[max_tasks];
for (int i = 0; i < max_tasks; ++i) {
exit_sema[i] = xSemaphoreCreateBinary();
}
#ifndef CONFIG_FREERTOS_UNICORE
printf("CPU0 and CPU1. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask \n");
xTaskCreatePinnedToCore(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0], 0);
xTaskCreatePinnedToCore(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1], 1);
#else
printf("Only one CPU. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask\n");
xTaskCreate(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0]);
xTaskCreate(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1]);
#endif
printf("start wait for 5 seconds\n");
vTaskDelay(5000 / portTICK_PERIOD_MS);
// set exit flag to let thread exit
exit_flag = true;
for (int i = 0; i < max_tasks; ++i) {
if (!xSemaphoreTake(exit_sema[i], 2000/portTICK_PERIOD_MS)) {
TEST_FAIL_MESSAGE("exit_sema not released by test task");
}
vSemaphoreDelete(exit_sema[i]);
}
}
#ifndef CONFIG_FREERTOS_UNICORE
static xSemaphoreHandle gettime_start_sema;
static xSemaphoreHandle adjtime_continue_sema;
static void adjtimeTask(void *pvParameters)
{
const uint64_t adjtime_us = 2000000000; // 2000 sec
struct timeval delta = {.tv_sec = adjtime_us / 1000000, .tv_usec = 900000};
struct timeval outdelta;
struct timeval tv_time;
int shift = 1;
int cycle = 0;
// although exit flag is set in another task, checking (exit_flag == false) is safe
while (exit_flag == false) {
gettimeofday(&tv_time, NULL);
uint64_t start_time_us = (uint64_t)tv_time.tv_sec * 1000000L + tv_time.tv_usec;
++cycle;
if (shift > 3000) {
shift = 1;
}
int i_shift = shift++;
xSemaphoreGive(gettime_start_sema);
while (--i_shift) {
__asm__ __volatile__ ("nop": : : "memory");
};
adjtime(&delta, &outdelta);
xSemaphoreTake(adjtime_continue_sema, portMAX_DELAY);
gettimeofday(&tv_time, NULL);
uint64_t end_time_us = (uint64_t)tv_time.tv_sec * 1000000L + tv_time.tv_usec;
if (!(start_time_us < end_time_us) || (end_time_us - start_time_us > adjtime_us)
|| (end_time_us - start_time_us > 300) || (end_time_us - start_time_us < 30)) {
printf("ERROR: start_time_us %lld usec.\n", start_time_us);
printf("ERROR: end_time_us %lld usec.\n", end_time_us);
printf("ERROR: dt %lld usec.\n", end_time_us - start_time_us);
printf("ERROR: cycle %d\n", cycle);
printf("ERROR: shift %d\n", shift);
TEST_FAIL_MESSAGE("The time is corrupted due to the lack of locks for the adjtime function.");
}
}
xSemaphoreGive(adjtime_continue_sema);
xSemaphoreGive(gettime_start_sema);
vTaskDelete(NULL);
}
static void gettimeofdayTask(void *pvParameters)
{
struct timeval tv_time;
// although exit flag is set in another task, checking (exit_flag == false) is safe
while (exit_flag == false) {
xSemaphoreTake(gettime_start_sema, portMAX_DELAY);
gettimeofday(&tv_time, NULL);
xSemaphoreGive(adjtime_continue_sema);
}
xSemaphoreGive(adjtime_continue_sema);
xSemaphoreGive(gettime_start_sema);
vTaskDelete(NULL);
}
TEST_CASE("test for thread safety adjtime and gettimeofday functions", "[newlib]")
{
exit_flag = false;
struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 0 };
TEST_ASSERT_EQUAL(0, settimeofday(&tv_time, NULL));
gettime_start_sema = xSemaphoreCreateBinary();
adjtime_continue_sema = xSemaphoreCreateBinary();
printf("CPU0 and CPU1. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask\n");
xTaskCreatePinnedToCore(adjtimeTask, "adjtimeTask", 2048, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 0);
xTaskCreatePinnedToCore(gettimeofdayTask, "gettimeofdayTask", 2048, NULL, UNITY_FREERTOS_PRIORITY - 1, NULL, 1);
printf("start wait for 10 seconds\n");
vTaskDelay(10000 / portTICK_PERIOD_MS);
// set exit flag to let thread exit
exit_flag = true;
vTaskDelay(2000 / portTICK_PERIOD_MS);
if (!xSemaphoreTake(gettime_start_sema, 1000 / portTICK_PERIOD_MS)) {
TEST_FAIL_MESSAGE("gettime_start_semaphore not released by test task");
}
if (!xSemaphoreTake(adjtime_continue_sema, 1000 / portTICK_PERIOD_MS)) {
TEST_FAIL_MESSAGE("adjtime_continue_semaphore not released by test task");
}
vSemaphoreDelete(gettime_start_sema);
vSemaphoreDelete(adjtime_continue_sema);
}
#endif
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 )
#define WITH_RTC 1
#endif
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 )
#define WITH_FRC 1
#endif
void test_posix_timers_clock (void)
{
#ifndef _POSIX_TIMERS
TEST_ASSERT_MESSAGE(false, "_POSIX_TIMERS - is not defined");
#endif
#if defined( WITH_FRC )
printf("WITH_FRC ");
#endif
#if defined( WITH_RTC )
printf("WITH_RTC ");
#endif
#ifdef CONFIG_ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
printf("External (crystal) Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
#else
printf("Internal Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz());
#endif
TEST_ASSERT(clock_settime(CLOCK_REALTIME, NULL) == -1);
TEST_ASSERT(clock_gettime(CLOCK_REALTIME, NULL) == -1);
TEST_ASSERT(clock_getres(CLOCK_REALTIME, NULL) == -1);
TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, NULL) == -1);
TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, NULL) == -1);
TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, NULL) == -1);
#if defined( WITH_FRC ) || defined( WITH_RTC )
struct timeval now = {0};
now.tv_sec = 10L;
now.tv_usec = 100000L;
TEST_ASSERT(settimeofday(&now, NULL) == 0);
TEST_ASSERT(gettimeofday(&now, NULL) == 0);
struct timespec ts = {0};
TEST_ASSERT(clock_settime(0xFFFFFFFF, &ts) == -1);
TEST_ASSERT(clock_gettime(0xFFFFFFFF, &ts) == -1);
TEST_ASSERT(clock_getres(0xFFFFFFFF, &ts) == 0);
TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == 0);
TEST_ASSERT(now.tv_sec == ts.tv_sec);
TEST_ASSERT_INT_WITHIN(5000000L, ts.tv_nsec, now.tv_usec * 1000L);
ts.tv_sec = 20;
ts.tv_nsec = 100000000L;
TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == 0);
TEST_ASSERT(gettimeofday(&now, NULL) == 0);
TEST_ASSERT(now.tv_sec == ts.tv_sec);
TEST_ASSERT_INT_WITHIN(5000L, now.tv_usec, ts.tv_nsec / 1000L);
TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
uint64_t delta_monotonic_us = 0;
#if defined( WITH_FRC )
TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec);
TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
delta_monotonic_us = esp_timer_get_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
#elif defined( WITH_RTC )
TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0);
TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0);
TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec);
TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
delta_monotonic_us = esp_clk_rtc_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L);
TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0);
TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us);
#endif // WITH_FRC
#else
struct timespec ts = {0};
TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == -1);
TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == -1);
TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == -1);
TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);
TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == -1);
TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == -1);
#endif // defined( WITH_FRC ) || defined( WITH_RTC )
}
TEST_CASE("test posix_timers clock_... functions", "[newlib]")
{
test_posix_timers_clock();
}