OVMS3-idf/components/mbedtls/test/test_mbedtls_sha.c
Angus Gratton f3277cf2dc hwcrypto sha: Allow SHA contexts to be shared between tasks
Previously, hardware SHA engine "locks" were mutex semaphores. This meant that the task which
started a particular SHA session (in hardware) needed to finalise that session, or an invalid
FreeRTOS state was created.

Replace with binary semaphore which can be shared between tasks.

Includes a unit test, but unit test doesn't crash even without this fix
(some other unknown condition is required).
2019-01-23 04:59:44 +00:00

301 lines
11 KiB
C

/* mbedTLS SHA unit tests
*/
#include <string.h>
#include <stdio.h>
#include <stdbool.h>
#include <esp_system.h>
#include "mbedtls/sha1.h"
#include "mbedtls/sha256.h"
#include "mbedtls/sha512.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "unity.h"
#include "sdkconfig.h"
#include "test_apb_dport_access.h"
TEST_CASE("mbedtls SHA self-tests", "[mbedtls]")
{
start_apb_access_loop();
TEST_ASSERT_FALSE_MESSAGE(mbedtls_sha1_self_test(1), "SHA1 self-tests should pass.");
TEST_ASSERT_FALSE_MESSAGE(mbedtls_sha256_self_test(1), "SHA256 self-tests should pass.");
TEST_ASSERT_FALSE_MESSAGE(mbedtls_sha512_self_test(1), "SHA512 self-tests should pass.");
TEST_ASSERT_FALSE_MESSAGE(mbedtls_sha512_self_test(1), "SHA512 self-tests should pass.");
verify_apb_access_loop();
}
static const unsigned char *one_hundred_as = (unsigned char *)
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
static const unsigned char *one_hundred_bs = (unsigned char *)
"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb";
static const uint8_t sha256_thousand_as[32] = {
0x41, 0xed, 0xec, 0xe4, 0x2d, 0x63, 0xe8, 0xd9, 0xbf, 0x51, 0x5a, 0x9b, 0xa6, 0x93, 0x2e, 0x1c,
0x20, 0xcb, 0xc9, 0xf5, 0xa5, 0xd1, 0x34, 0x64, 0x5a, 0xdb, 0x5d, 0xb1, 0xb9, 0x73, 0x7e, 0xa3 };
static const uint8_t sha256_thousand_bs[32] = {
0xf6, 0xf1, 0x18, 0xe1, 0x20, 0xe5, 0x2b, 0xe0, 0xbd, 0x0c, 0xfd, 0xf2, 0x79, 0x4c, 0xd1, 0x2c, 0x07, 0x68, 0x6c, 0xc8, 0x71, 0x23, 0x5a, 0xc2, 0xf1, 0x14, 0x59, 0x37, 0x8e, 0x6d, 0x23, 0x5b
};
static const uint8_t sha512_thousand_bs[64] = {
0xa6, 0x68, 0x68, 0xa3, 0x73, 0x53, 0x2a, 0x5c, 0xc3, 0x3f, 0xbf, 0x43, 0x4e, 0xba, 0x10, 0x86, 0xb3, 0x87, 0x09, 0xe9, 0x14, 0x3f, 0xbf, 0x37, 0x67, 0x8d, 0x43, 0xd9, 0x9b, 0x95, 0x08, 0xd5, 0x80, 0x2d, 0xbe, 0x9d, 0xe9, 0x1a, 0x54, 0xab, 0x9e, 0xbc, 0x8a, 0x08, 0xa0, 0x1a, 0x89, 0xd8, 0x72, 0x68, 0xdf, 0x52, 0x69, 0x7f, 0x1c, 0x70, 0xda, 0xe8, 0x3f, 0xe5, 0xae, 0x5a, 0xfc, 0x9d
};
static const uint8_t sha384_thousand_bs[48] = {
0x6d, 0xe5, 0xf5, 0x88, 0x57, 0x60, 0x83, 0xff, 0x7c, 0x94, 0x61, 0x5f, 0x8d, 0x96, 0xf2, 0x76, 0xd5, 0x3f, 0x77, 0x0c, 0x8e, 0xc1, 0xbf, 0xb6, 0x04, 0x27, 0xa4, 0xba, 0xea, 0x6c, 0x68, 0x44, 0xbd, 0xb0, 0x9c, 0xef, 0x6a, 0x09, 0x28, 0xe8, 0x1f, 0xfc, 0x95, 0x03, 0x69, 0x99, 0xab, 0x1a
};
static const uint8_t sha1_thousand_as[20] = {
0x29, 0x1e, 0x9a, 0x6c, 0x66, 0x99, 0x49, 0x49, 0xb5, 0x7b, 0xa5,
0xe6, 0x50, 0x36, 0x1e, 0x98, 0xfc, 0x36, 0xb1, 0xba };
TEST_CASE("mbedtls SHA interleaving", "[mbedtls]")
{
mbedtls_sha1_context sha1_ctx;
mbedtls_sha256_context sha256_ctx;
mbedtls_sha512_context sha512_ctx;
unsigned char sha1[20], sha256[32], sha512[64];
mbedtls_sha1_init(&sha1_ctx);
mbedtls_sha256_init(&sha256_ctx);
mbedtls_sha512_init(&sha512_ctx);
TEST_ASSERT_EQUAL(0, mbedtls_sha1_starts_ret(&sha1_ctx));
TEST_ASSERT_EQUAL(0, mbedtls_sha256_starts_ret(&sha256_ctx, false));
TEST_ASSERT_EQUAL(0, mbedtls_sha512_starts_ret(&sha512_ctx, false));
for (int i = 0; i < 10; i++) {
TEST_ASSERT_EQUAL(0, mbedtls_sha1_update_ret(&sha1_ctx, one_hundred_as, 100));
TEST_ASSERT_EQUAL(0, mbedtls_sha256_update_ret(&sha256_ctx, one_hundred_as, 100));
TEST_ASSERT_EQUAL(0, mbedtls_sha512_update_ret(&sha512_ctx, one_hundred_bs, 100));
}
TEST_ASSERT_EQUAL(0, mbedtls_sha1_finish_ret(&sha1_ctx, sha1));
TEST_ASSERT_EQUAL(0, mbedtls_sha256_finish_ret(&sha256_ctx, sha256));
TEST_ASSERT_EQUAL(0, mbedtls_sha512_finish_ret(&sha512_ctx, sha512));
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha512_thousand_bs, sha512, 64, "SHA512 calculation");
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha256_thousand_as, sha256, 32, "SHA256 calculation");
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha1_thousand_as, sha1, 20, "SHA1 calculation");
}
static xSemaphoreHandle done_sem;
static void tskRunSHA1Test(void *pvParameters)
{
mbedtls_sha1_context sha1_ctx;
unsigned char sha1[20];
for (int i = 0; i < 1000; i++) {
mbedtls_sha1_init(&sha1_ctx);
TEST_ASSERT_EQUAL(0, mbedtls_sha1_starts_ret(&sha1_ctx));
for (int j = 0; j < 10; j++) {
TEST_ASSERT_EQUAL(0, mbedtls_sha1_update_ret(&sha1_ctx, (unsigned char *)one_hundred_as, 100));
}
TEST_ASSERT_EQUAL(0, mbedtls_sha1_finish_ret(&sha1_ctx, sha1));
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha1_thousand_as, sha1, 20, "SHA1 calculation");
}
xSemaphoreGive(done_sem);
vTaskDelete(NULL);
}
static void tskRunSHA256Test(void *pvParameters)
{
mbedtls_sha256_context sha256_ctx;
unsigned char sha256[32];
for (int i = 0; i < 1000; i++) {
mbedtls_sha256_init(&sha256_ctx);
TEST_ASSERT_EQUAL(0, mbedtls_sha256_starts_ret(&sha256_ctx, false));
for (int j = 0; j < 10; j++) {
TEST_ASSERT_EQUAL(0, mbedtls_sha256_update_ret(&sha256_ctx, (unsigned char *)one_hundred_bs, 100));
}
TEST_ASSERT_EQUAL(0, mbedtls_sha256_finish_ret(&sha256_ctx, sha256));
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha256_thousand_bs, sha256, 32, "SHA256 calculation");
}
xSemaphoreGive(done_sem);
vTaskDelete(NULL);
}
#define SHA_TASK_STACK_SIZE (10*1024)
TEST_CASE("mbedtls SHA multithreading", "[mbedtls]")
{
done_sem = xSemaphoreCreateCounting(4, 0);
xTaskCreate(tskRunSHA1Test, "SHA1Task1", SHA_TASK_STACK_SIZE, NULL, 3, NULL);
xTaskCreate(tskRunSHA1Test, "SHA1Task2", SHA_TASK_STACK_SIZE, NULL, 3, NULL);
xTaskCreate(tskRunSHA256Test, "SHA256Task1", SHA_TASK_STACK_SIZE, NULL, 3, NULL);
xTaskCreate(tskRunSHA256Test, "SHA256Task2", SHA_TASK_STACK_SIZE, NULL, 3, NULL);
for(int i = 0; i < 4; i++) {
if(!xSemaphoreTake(done_sem, 10000/portTICK_PERIOD_MS)) {
TEST_FAIL_MESSAGE("done_sem not released by test task");
}
}
vSemaphoreDelete(done_sem);
}
void tskRunSHASelftests(void *param)
{
for (int i = 0; i < 5; i++) {
if(mbedtls_sha1_self_test(1)) {
printf("SHA1 self-tests failed.\n");
while(1) {}
}
if(mbedtls_sha256_self_test(1)) {
printf("SHA256 self-tests failed.\n");
while(1) {}
}
if(mbedtls_sha512_self_test(1)) {
printf("SHA512 self-tests failed.\n");
while(1) {}
}
if(mbedtls_sha512_self_test(1)) {
printf("SHA512 self-tests failed.\n");
while(1) {}
}
}
xSemaphoreGive(done_sem);
vTaskDelete(NULL);
}
TEST_CASE("mbedtls SHA self-tests multithreaded", "[mbedtls]")
{
done_sem = xSemaphoreCreateCounting(2, 0);
xTaskCreate(tskRunSHASelftests, "SHASelftests1", SHA_TASK_STACK_SIZE, NULL, 3, NULL);
xTaskCreate(tskRunSHASelftests, "SHASelftests2", SHA_TASK_STACK_SIZE, NULL, 3, NULL);
const int TIMEOUT_MS = 20000;
for(int i = 0; i < 2; i++) {
if(!xSemaphoreTake(done_sem, TIMEOUT_MS/portTICK_PERIOD_MS)) {
TEST_FAIL_MESSAGE("done_sem not released by test task");
}
}
vSemaphoreDelete(done_sem);
}
TEST_CASE("mbedtls SHA512 clone", "[mbedtls]")
{
mbedtls_sha512_context ctx;
mbedtls_sha512_context clone;
unsigned char sha512[64];
mbedtls_sha512_init(&ctx);
TEST_ASSERT_EQUAL(0, mbedtls_sha512_starts_ret(&ctx, false));
for (int i = 0; i < 5; i++) {
TEST_ASSERT_EQUAL(0, mbedtls_sha512_update_ret(&ctx, one_hundred_bs, 100));
}
mbedtls_sha512_clone(&clone, &ctx);
for (int i = 0; i < 5; i++) {
TEST_ASSERT_EQUAL(0, mbedtls_sha512_update_ret(&ctx, one_hundred_bs, 100));
TEST_ASSERT_EQUAL(0, mbedtls_sha512_update_ret(&clone, one_hundred_bs, 100));
}
TEST_ASSERT_EQUAL(0, mbedtls_sha512_finish_ret(&ctx, sha512));
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha512_thousand_bs, sha512, 64, "SHA512 original calculation");
TEST_ASSERT_EQUAL(0, mbedtls_sha512_finish_ret(&clone, sha512));
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha512_thousand_bs, sha512, 64, "SHA512 cloned calculation");
}
TEST_CASE("mbedtls SHA384 clone", "[mbedtls]")
{
mbedtls_sha512_context ctx;
mbedtls_sha512_context clone;
unsigned char sha384[48];
mbedtls_sha512_init(&ctx);
TEST_ASSERT_EQUAL(0, mbedtls_sha512_starts_ret(&ctx, true));
for (int i = 0; i < 5; i++) {
TEST_ASSERT_EQUAL(0, mbedtls_sha512_update_ret(&ctx, one_hundred_bs, 100));
}
mbedtls_sha512_clone(&clone, &ctx);
for (int i = 0; i < 5; i++) {
TEST_ASSERT_EQUAL(0, mbedtls_sha512_update_ret(&ctx, one_hundred_bs, 100));
TEST_ASSERT_EQUAL(0, mbedtls_sha512_update_ret(&clone, one_hundred_bs, 100));
}
TEST_ASSERT_EQUAL(0, mbedtls_sha512_finish_ret(&ctx, sha384));
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha384_thousand_bs, sha384, 48, "SHA512 original calculation");
TEST_ASSERT_EQUAL(0, mbedtls_sha512_finish_ret(&clone, sha384));
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha384_thousand_bs, sha384, 48, "SHA512 cloned calculation");
}
TEST_CASE("mbedtls SHA256 clone", "[mbedtls]")
{
mbedtls_sha256_context ctx;
mbedtls_sha256_context clone;
unsigned char sha256[64];
mbedtls_sha256_init(&ctx);
TEST_ASSERT_EQUAL(0, mbedtls_sha256_starts_ret(&ctx, false));
for (int i = 0; i < 5; i++) {
TEST_ASSERT_EQUAL(0, mbedtls_sha256_update_ret(&ctx, one_hundred_as, 100));
}
mbedtls_sha256_clone(&clone, &ctx);
for (int i = 0; i < 5; i++) {
TEST_ASSERT_EQUAL(0, mbedtls_sha256_update_ret(&ctx, one_hundred_as, 100));
TEST_ASSERT_EQUAL(0, mbedtls_sha256_update_ret(&clone, one_hundred_as, 100));
}
TEST_ASSERT_EQUAL(0, mbedtls_sha256_finish_ret(&ctx, sha256));
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha256_thousand_as, sha256, 32, "SHA256 original calculation");
TEST_ASSERT_EQUAL(0, mbedtls_sha256_finish_ret(&clone, sha256));
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha256_thousand_as, sha256, 32, "SHA256 cloned calculation");
}
typedef struct {
mbedtls_sha256_context ctx;
uint8_t result[32];
int ret;
bool done;
} finalise_sha_param_t;
static void tskFinaliseSha(void *v_param)
{
finalise_sha_param_t *param = (finalise_sha_param_t *)v_param;
for (int i = 0; i < 5; i++) {
TEST_ASSERT_EQUAL(0, mbedtls_sha256_update_ret(&param->ctx, one_hundred_as, 100));
}
param->ret = mbedtls_sha256_finish_ret(&param->ctx, param->result);
param->done = true;
vTaskDelete(NULL);
}
TEST_CASE("mbedtls SHA session passed between tasks" , "[mbedtls]")
{
finalise_sha_param_t param = { 0 };
mbedtls_sha256_init(&param.ctx);
TEST_ASSERT_EQUAL(0, mbedtls_sha256_starts_ret(&param.ctx, false));
for (int i = 0; i < 5; i++) {
TEST_ASSERT_EQUAL(0, mbedtls_sha256_update_ret(&param.ctx, one_hundred_as, 100));
}
// pass the SHA context off to a different task
//
// note: at the moment this doesn't crash even if a mutex semaphore is used as the
// engine lock, but it can crash...
xTaskCreate(tskFinaliseSha, "SHAFinalise", SHA_TASK_STACK_SIZE, &param, 3, NULL);
while (!param.done) {
vTaskDelay(1);
}
TEST_ASSERT_EQUAL(0, param.ret);
TEST_ASSERT_EQUAL_MEMORY_MESSAGE(sha256_thousand_as, param.result, 32, "SHA256 result from other task");
}