OVMS3-idf/components/esp_system/port/panic_handler.c
2020-03-10 19:56:24 +08:00

529 lines
18 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include "freertos/xtensa_context.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_spi_flash.h"
#include "esp_private/panic_reason.h"
#include "esp_private/system_internal.h"
#include "esp_debug_helpers.h"
#include "soc/soc_memory_layout.h"
#include "soc/cpu.h"
#include "soc/soc_caps.h"
#include "soc/rtc.h"
#include "hal/soc_hal.h"
#include "hal/cpu_hal.h"
#include "hal/timer_hal.h"
#include "sdkconfig.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/cache_err_int.h"
#include "esp32/dport_access.h"
#include "esp32/rom/uart.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/cache_err_int.h"
#include "esp32s2/rom/uart.h"
#include "soc/extmem_reg.h"
#include "soc/cache_memory.h"
#include "soc/rtc_cntl_reg.h"
#endif
#include "panic_internal.h"
extern void esp_panic_handler(panic_info_t*);
static XtExcFrame* xt_exc_frames[SOC_CPU_CORES_NUM] = {NULL};
/*
Panic handlers; these get called when an unhandled exception occurs or the assembly-level
task switching / interrupt code runs into an unrecoverable error. The default task stack
overflow handler and abort handler are also in here.
*/
/*
Note: The linker script will put everything in this file in IRAM/DRAM, so it also works with flash cache disabled.
*/
static void print_illegal_instruction_details(const void* f)
{
XtExcFrame* frame = (XtExcFrame*) f;
/* Print out memory around the instruction word */
uint32_t epc = frame->pc;
epc = (epc & ~0x3) - 4;
/* check that the address was sane */
if (epc < SOC_IROM_MASK_LOW || epc >= SOC_IROM_HIGH) {
return;
}
volatile uint32_t* pepc = (uint32_t*)epc;
panic_print_str("Memory dump at 0x");
panic_print_hex(epc);
panic_print_str(": ");
panic_print_hex(*pepc);
panic_print_str(" ");
panic_print_hex(*(pepc + 1));
panic_print_str(" ");
panic_print_hex(*(pepc + 2));
}
static void print_debug_exception_details(const void* f)
{
int debug_rsn;
asm("rsr.debugcause %0":"=r"(debug_rsn));
panic_print_str("Debug exception reason: ");
if (debug_rsn & XCHAL_DEBUGCAUSE_ICOUNT_MASK) {
panic_print_str("SingleStep ");
}
if (debug_rsn & XCHAL_DEBUGCAUSE_IBREAK_MASK) {
panic_print_str("HwBreakpoint ");
}
if (debug_rsn & XCHAL_DEBUGCAUSE_DBREAK_MASK) {
//Unlike what the ISA manual says, this core seemingly distinguishes from a DBREAK
//reason caused by watchdog 0 and one caused by watchdog 1 by setting bit 8 of the
//debugcause if the cause is watchpoint 1 and clearing it if it's watchpoint 0.
if (debug_rsn & (1 << 8)) {
#if CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK
int core = 0;
#if !CONFIG_FREERTOS_UNICORE
if (f == xt_exc_frames[1]) {
core = 1;
}
#endif
const char *name = pcTaskGetTaskName(xTaskGetCurrentTaskHandleForCPU(core));
panic_print_str("Stack canary watchpoint triggered (");
panic_print_str(name);
panic_print_str(") ");
#else
panic_print_str("Watchpoint 1 triggered ");
#endif
} else {
panic_print_str("Watchpoint 0 triggered ");
}
}
if (debug_rsn & XCHAL_DEBUGCAUSE_BREAK_MASK) {
panic_print_str("BREAK instr ");
}
if (debug_rsn & XCHAL_DEBUGCAUSE_BREAKN_MASK) {
panic_print_str("BREAKN instr ");
}
if (debug_rsn & XCHAL_DEBUGCAUSE_DEBUGINT_MASK) {
panic_print_str("DebugIntr ");
}
}
static void print_backtrace_entry(uint32_t pc, uint32_t sp)
{
panic_print_str("0x");
panic_print_hex(pc);
panic_print_str(":0x");
panic_print_hex(sp);
}
static void print_backtrace(const void* f, int core)
{
XtExcFrame *frame = (XtExcFrame*) f;
int depth = 100;
//Initialize stk_frame with first frame of stack
esp_backtrace_frame_t stk_frame = {.pc = frame->pc, .sp = frame->a1, .next_pc = frame->a0};
panic_print_str("\r\nBacktrace: ");
print_backtrace_entry(esp_cpu_process_stack_pc(stk_frame.pc), stk_frame.sp);
//Check if first frame is valid
bool corrupted = !(esp_stack_ptr_is_sane(stk_frame.sp) &&
esp_ptr_executable((void*)esp_cpu_process_stack_pc(stk_frame.pc)));
uint32_t i = ((depth <= 0) ? INT32_MAX : depth) - 1; //Account for stack frame that's already printed
while (i-- > 0 && stk_frame.next_pc != 0 && !corrupted) {
if (!esp_backtrace_get_next_frame(&stk_frame)) { //Get next stack frame
corrupted = true;
}
panic_print_str(" ");
print_backtrace_entry(esp_cpu_process_stack_pc(stk_frame.pc), stk_frame.sp);
}
//Print backtrace termination marker
if (corrupted) {
panic_print_str(" |<-CORRUPTED");
} else if (stk_frame.next_pc != 0) { //Backtrace continues
panic_print_str(" |<-CONTINUES");
}
}
static void print_registers(const void *f, int core)
{
XtExcFrame* frame = (XtExcFrame*) f;
int *regs = (int *)frame;
int x, y;
const char *sdesc[] = {
"PC ", "PS ", "A0 ", "A1 ", "A2 ", "A3 ", "A4 ", "A5 ",
"A6 ", "A7 ", "A8 ", "A9 ", "A10 ", "A11 ", "A12 ", "A13 ",
"A14 ", "A15 ", "SAR ", "EXCCAUSE", "EXCVADDR", "LBEG ", "LEND ", "LCOUNT "
};
/* only dump registers for 'real' crashes, if crashing via abort()
the register window is no longer useful.
*/
panic_print_str("Core ");
panic_print_dec(core);
panic_print_str(" register dump:");
for (x = 0; x < 24; x += 4) {
panic_print_str("\r\n");
for (y = 0; y < 4; y++) {
if (sdesc[x + y][0] != 0) {
panic_print_str(sdesc[x + y]);
panic_print_str(": 0x");
panic_print_hex(regs[x + y + 1]);
panic_print_str(" ");
}
}
}
// If the core which triggers the interrupt watchpoint was in ISR context, dump the epc registers.
if (xPortInterruptedFromISRContext()
#if !CONFIG_FREERTOS_UNICORE
&& ((core == 0 && frame->exccause == PANIC_RSN_INTWDT_CPU0) ||
(core == 1 && frame->exccause == PANIC_RSN_INTWDT_CPU1))
#endif //!CONFIG_FREERTOS_UNICORE
) {
panic_print_str("\r\n");
uint32_t __value;
panic_print_str("Core ");
panic_print_dec(core);
panic_print_str(" was running in ISR context:\r\n");
__asm__("rsr.epc1 %0" : "=a"(__value));
panic_print_str("EPC1 : 0x");
panic_print_hex(__value);
__asm__("rsr.epc2 %0" : "=a"(__value));
panic_print_str(" EPC2 : 0x");
panic_print_hex(__value);
__asm__("rsr.epc3 %0" : "=a"(__value));
panic_print_str(" EPC3 : 0x");
panic_print_hex(__value);
__asm__("rsr.epc4 %0" : "=a"(__value));
panic_print_str(" EPC4 : 0x");
panic_print_hex(__value);
}
}
static void print_state(const void* f)
{
#if !CONFIG_FREERTOS_UNICORE
int err_core = f == xt_exc_frames[0] ? 0 : 1;
#else
int err_core = 0;
#endif
print_registers(f, err_core);
panic_print_str("\r\n");
print_backtrace(f, err_core);
panic_print_str("\r\n");
#if !CONFIG_FREERTOS_UNICORE
// If there are other frame info, print them as well
for (int i = 0; i < SOC_CPU_CORES_NUM; i++) {
// `f` is the frame for the offending core, see note above.
if (err_core != i && xt_exc_frames[i] != NULL) {
panic_print_str("\r\n");
print_registers(xt_exc_frames[i], i);
panic_print_str("\r\n");
print_backtrace(xt_exc_frames[i], i);
}
}
#endif
}
#if CONFIG_IDF_TARGET_ESP32S2
static inline void print_cache_err_details(const void* f)
{
uint32_t vaddr = 0, size = 0;
uint32_t status[2];
status[0] = REG_READ(EXTMEM_CACHE_DBG_STATUS0_REG);
status[1] = REG_READ(EXTMEM_CACHE_DBG_STATUS1_REG);
for (int i = 0; i < 32; i++) {
switch (status[0] & BIT(i)) {
case EXTMEM_IC_SYNC_SIZE_FAULT_ST:
vaddr = REG_READ(EXTMEM_PRO_ICACHE_MEM_SYNC0_REG);
size = REG_READ(EXTMEM_PRO_ICACHE_MEM_SYNC1_REG);
panic_print_str("Icache sync parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_IC_PRELOAD_SIZE_FAULT_ST:
vaddr = REG_READ(EXTMEM_PRO_ICACHE_PRELOAD_ADDR_REG);
size = REG_READ(EXTMEM_PRO_ICACHE_PRELOAD_SIZE_REG);
panic_print_str("Icache preload parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_ICACHE_REJECT_ST:
vaddr = REG_READ(EXTMEM_PRO_ICACHE_REJECT_VADDR_REG);
panic_print_str("Icache reject error occurred while accessing the address 0x");
panic_print_hex(vaddr);
if (REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_CONTENT_REG) & MMU_INVALID) {
panic_print_str(" (invalid mmu entry)");
}
panic_print_str("\r\n");
break;
default:
break;
}
switch (status[1] & BIT(i)) {
case EXTMEM_DC_SYNC_SIZE_FAULT_ST:
vaddr = REG_READ(EXTMEM_PRO_DCACHE_MEM_SYNC0_REG);
size = REG_READ(EXTMEM_PRO_DCACHE_MEM_SYNC1_REG);
panic_print_str("Dcache sync parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_DC_PRELOAD_SIZE_FAULT_ST:
vaddr = REG_READ(EXTMEM_PRO_DCACHE_PRELOAD_ADDR_REG);
size = REG_READ(EXTMEM_PRO_DCACHE_PRELOAD_SIZE_REG);
panic_print_str("Dcache preload parameter configuration error, the error address and size is 0x");
panic_print_hex(vaddr);
panic_print_str("(0x");
panic_print_hex(size);
panic_print_str(")\r\n");
break;
case EXTMEM_DCACHE_WRITE_FLASH_ST:
panic_print_str("Write back error occurred while dcache tries to write back to flash\r\n");
break;
case EXTMEM_DCACHE_REJECT_ST:
vaddr = REG_READ(EXTMEM_PRO_DCACHE_REJECT_VADDR_REG);
panic_print_str("Dcache reject error occurred while accessing the address 0x");
panic_print_hex(vaddr);
if (REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_CONTENT_REG) & MMU_INVALID) {
panic_print_str(" (invalid mmu entry)");
}
panic_print_str("\r\n");
break;
case EXTMEM_MMU_ENTRY_FAULT_ST:
vaddr = REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_VADDR_REG);
panic_print_str("MMU entry fault error occurred while accessing the address 0x");
panic_print_hex(vaddr);
if (REG_READ(EXTMEM_PRO_CACHE_MMU_FAULT_CONTENT_REG) & MMU_INVALID) {
panic_print_str(" (invalid mmu entry)");
}
panic_print_str("\r\n");
break;
default:
break;
}
}
}
#endif
static void frame_to_panic_info(XtExcFrame *frame, panic_info_t* info, bool pseudo_excause)
{
info->core = cpu_hal_get_core_id();
info->exception = PANIC_EXCEPTION_FAULT;
info->details = NULL;
if (pseudo_excause) {
if (frame->exccause == PANIC_RSN_INTWDT_CPU0) {
info->core = 0;
info->exception = PANIC_EXCEPTION_IWDT;
} else if (frame->exccause == PANIC_RSN_INTWDT_CPU1) {
info->core = 1;
info->exception = PANIC_EXCEPTION_IWDT;
} else if (frame->exccause == PANIC_RSN_CACHEERR) {
info->core = esp_cache_err_get_cpuid();
} else {}
//Please keep in sync with PANIC_RSN_* defines
static const char *pseudo_reason[] = {
"Unknown reason",
"Unhandled debug exception",
"Double exception",
"Unhandled kernel exception",
"Coprocessor exception",
"Interrupt wdt timeout on CPU0",
"Interrupt wdt timeout on CPU1",
#if CONFIG_IDF_TARGET_ESP32
"Cache disabled but cached memory region accessed",
#elif CONFIG_IDF_TARGET_ESP32S2
"Cache exception",
#endif
};
info->reason = pseudo_reason[0];
info->description = NULL;
if (frame->exccause <= PANIC_RSN_MAX) {
info->reason = pseudo_reason[frame->exccause];
}
if (frame->exccause == PANIC_RSN_DEBUGEXCEPTION) {
info->details = print_debug_exception_details;
info->exception = PANIC_EXCEPTION_DEBUG;
}
#if CONFIG_IDF_TARGET_ESP32S2
if(frame->exccause == PANIC_RSN_CACHEERR) {
info->details = print_cache_err_details;
}
#endif
} else {
static const char *reason[] = {
"IllegalInstruction", "Syscall", "InstructionFetchError", "LoadStoreError",
"Level1Interrupt", "Alloca", "IntegerDivideByZero", "PCValue",
"Privileged", "LoadStoreAlignment", "res", "res",
"InstrPDAddrError", "LoadStorePIFDataError", "InstrPIFAddrError", "LoadStorePIFAddrError",
"InstTLBMiss", "InstTLBMultiHit", "InstFetchPrivilege", "res",
"InstrFetchProhibited", "res", "res", "res",
"LoadStoreTLBMiss", "LoadStoreTLBMultihit", "LoadStorePrivilege", "res",
"LoadProhibited", "StoreProhibited", "res", "res",
"Cp0Dis", "Cp1Dis", "Cp2Dis", "Cp3Dis",
"Cp4Dis", "Cp5Dis", "Cp6Dis", "Cp7Dis"
};
if (frame->exccause < (sizeof(reason) / sizeof(char *))) {
info->reason = (reason[frame->exccause]);
} else {
info->reason = "Unknown";
}
info->description = "Exception was unhandled.";
if (info->reason == reason[0]) {
info->details = print_illegal_instruction_details;
}
}
info->state = print_state;
info->addr = ((void*) ((XtExcFrame*) frame)->pc);
info->frame = frame;
}
static void panic_handler(XtExcFrame *frame, bool pseudo_excause)
{
/*
* Setup environment and perform necessary architecture/chip specific
* steps here prior to the system panic handler.
* */
int core_id = cpu_hal_get_core_id();
// If multiple cores arrive at panic handler, save frames for all of them
xt_exc_frames[core_id] = frame;
#if !CONFIG_FREERTOS_UNICORE
// These are cases where both CPUs both go into panic handler. The following code ensures
// only one core proceeds to the system panic handler.
if (pseudo_excause) {
#define BUSY_WAIT_IF_TRUE(b) { if (b) while(1); }
// For WDT expiry, pause the non-offending core - offending core handles panic
BUSY_WAIT_IF_TRUE(frame->exccause == PANIC_RSN_INTWDT_CPU0 && core_id == 1);
BUSY_WAIT_IF_TRUE(frame->exccause == PANIC_RSN_INTWDT_CPU1 && core_id == 0);
// For cache error, pause the non-offending core - offending core handles panic
BUSY_WAIT_IF_TRUE(frame->exccause == PANIC_RSN_CACHEERR && core_id != esp_cache_err_get_cpuid());
}
ets_delay_us(1);
SOC_HAL_STALL_OTHER_CORES();
#endif
#if CONFIG_IDF_TARGET_ESP32
esp_dport_access_int_abort();
#endif
#if !CONFIG_ESP_PANIC_HANDLER_IRAM
// Re-enable CPU cache for current CPU if it was disabled
if (!spi_flash_cache_enabled()) {
spi_flash_enable_cache(core_id);
panic_print_str("Re-enable cpu cache.\r\n");
}
#endif
if (esp_cpu_in_ocd_debug_mode()) {
if (frame->exccause == PANIC_RSN_INTWDT_CPU0 ||
frame->exccause == PANIC_RSN_INTWDT_CPU1) {
timer_ll_wdt_clear_intr_status(&TIMERG1);
}
}
// Convert architecture exception frame into abstracted panic info
panic_info_t info;
frame_to_panic_info(frame, &info, pseudo_excause);
// Call the system panic handler
esp_panic_handler(&info);
}
void panicHandler(XtExcFrame *frame)
{
// This panic handler gets called for when the double exception vector,
// kernel exception vector gets used; as well as handling interrupt-based
// faults cache error, wdt expiry. EXCAUSE register gets written with
// one of PANIC_RSN_* values.
panic_handler(frame, true);
}
void xt_unhandled_exception(XtExcFrame *frame)
{
panic_handler(frame, false);
}
static __attribute__((noreturn)) void esp_digital_reset(void)
{
// make sure all the panic handler output is sent from UART FIFO
uart_tx_wait_idle(CONFIG_ESP_CONSOLE_UART_NUM);
// switch to XTAL (otherwise we will keep running from the PLL)
rtc_clk_cpu_freq_set_xtal();
#if CONFIG_IDF_TARGET_ESP32
esp_cpu_unstall(PRO_CPU_NUM);
#endif
// reset the digital part
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
while (true) {
;
}
}
void __attribute__((noreturn)) panic_restart(void)
{
// If resetting because of a cache error, reset the digital part
if (esp_cache_err_get_cpuid() != -1) {
esp_digital_reset();
} else {
esp_restart_noos();
}
}