OVMS3-idf/components/soc/esp32/include/soc/rtc.h
2019-09-19 19:22:44 +08:00

652 lines
25 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "soc/soc.h"
#include "soc/rtc_periph.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file rtc.h
* @brief Low-level RTC power, clock, and sleep functions.
*
* Functions in this file facilitate configuration of ESP32's RTC_CNTL peripheral.
* RTC_CNTL peripheral handles many functions:
* - enables/disables clocks and power to various parts of the chip; this is
* done using direct register access (forcing power up or power down) or by
* allowing state machines to control power and clocks automatically
* - handles sleep and wakeup functions
* - maintains a 48-bit counter which can be used for timekeeping
*
* These functions are not thread safe, and should not be viewed as high level
* APIs. For example, while this file provides a function which can switch
* CPU frequency, this function is on its own is not sufficient to implement
* frequency switching in ESP-IDF context: some coordination with RTOS,
* peripheral drivers, and WiFi/BT stacks is also required.
*
* These functions will normally not be used in applications directly.
* ESP-IDF provides, or will provide, drivers and other facilities to use
* RTC subsystem functionality.
*
* The functions are loosely split into the following groups:
* - rtc_clk: clock switching, calibration
* - rtc_time: reading RTC counter, conversion between counter values and time
* - rtc_sleep: entry into sleep modes
* - rtc_init: initialization
*/
/**
* @brief Possible main XTAL frequency values.
*
* Enum values should be equal to frequency in MHz.
*/
typedef enum {
RTC_XTAL_FREQ_AUTO = 0, //!< Automatic XTAL frequency detection
RTC_XTAL_FREQ_40M = 40, //!< 40 MHz XTAL
RTC_XTAL_FREQ_26M = 26, //!< 26 MHz XTAL
RTC_XTAL_FREQ_24M = 24, //!< 24 MHz XTAL
} rtc_xtal_freq_t;
/**
* @brief CPU frequency values
*/
typedef enum {
RTC_CPU_FREQ_XTAL = 0, //!< Main XTAL frequency
RTC_CPU_FREQ_80M = 1, //!< 80 MHz
RTC_CPU_FREQ_160M = 2, //!< 160 MHz
RTC_CPU_FREQ_240M = 3, //!< 240 MHz
RTC_CPU_FREQ_2M = 4, //!< 2 MHz
} rtc_cpu_freq_t;
/**
* @brief CPU clock source
*/
typedef enum {
RTC_CPU_FREQ_SRC_XTAL, //!< XTAL
RTC_CPU_FREQ_SRC_PLL, //!< PLL (480M or 320M)
RTC_CPU_FREQ_SRC_8M, //!< Internal 8M RTC oscillator
RTC_CPU_FREQ_SRC_APLL //!< APLL
} rtc_cpu_freq_src_t;
/**
* @brief CPU clock configuration structure
*/
typedef struct rtc_cpu_freq_config_s {
rtc_cpu_freq_src_t source; //!< The clock from which CPU clock is derived
uint32_t source_freq_mhz; //!< Source clock frequency
uint32_t div; //!< Divider, freq_mhz = source_freq_mhz / div
uint32_t freq_mhz; //!< CPU clock frequency
} rtc_cpu_freq_config_t;
/**
* @brief RTC SLOW_CLK frequency values
*/
typedef enum {
RTC_SLOW_FREQ_RTC = 0, //!< Internal 150 kHz RC oscillator
RTC_SLOW_FREQ_32K_XTAL = 1, //!< External 32 kHz XTAL
RTC_SLOW_FREQ_8MD256 = 2, //!< Internal 8 MHz RC oscillator, divided by 256
} rtc_slow_freq_t;
/**
* @brief RTC FAST_CLK frequency values
*/
typedef enum {
RTC_FAST_FREQ_XTALD4 = 0, //!< Main XTAL, divided by 4
RTC_FAST_FREQ_8M = 1, //!< Internal 8 MHz RC oscillator
} rtc_fast_freq_t;
/* With the default value of CK8M_DFREQ, 8M clock frequency is 8.5 MHz +/- 7% */
#define RTC_FAST_CLK_FREQ_APPROX 8500000
/**
* @brief Clock source to be calibrated using rtc_clk_cal function
*/
typedef enum {
RTC_CAL_RTC_MUX = 0, //!< Currently selected RTC SLOW_CLK
RTC_CAL_8MD256 = 1, //!< Internal 8 MHz RC oscillator, divided by 256
RTC_CAL_32K_XTAL = 2 //!< External 32 kHz XTAL
} rtc_cal_sel_t;
/**
* Initialization parameters for rtc_clk_init
*/
typedef struct rtc_clk_config_s {
rtc_xtal_freq_t xtal_freq : 8; //!< Main XTAL frequency
rtc_cpu_freq_t cpu_freq_mhz : 10; //!< CPU frequency to set, in MHz
rtc_fast_freq_t fast_freq : 1; //!< RTC_FAST_CLK frequency to set
rtc_slow_freq_t slow_freq : 2; //!< RTC_SLOW_CLK frequency to set
uint32_t clk_8m_div : 3; //!< RTC 8M clock divider (division is by clk_8m_div+1, i.e. 0 means 8MHz frequency)
uint32_t slow_clk_dcap : 8; //!< RTC 150k clock adjustment parameter (higher value leads to lower frequency)
uint32_t clk_8m_dfreq : 8; //!< RTC 8m clock adjustment parameter (higher value leads to higher frequency)
} rtc_clk_config_t;
/**
* Default initializer for rtc_clk_config_t
*/
#define RTC_CLK_CONFIG_DEFAULT() { \
.xtal_freq = RTC_XTAL_FREQ_AUTO, \
.cpu_freq_mhz = 80, \
.fast_freq = RTC_FAST_FREQ_8M, \
.slow_freq = RTC_SLOW_FREQ_RTC, \
.clk_8m_div = 0, \
.slow_clk_dcap = RTC_CNTL_SCK_DCAP_DEFAULT, \
.clk_8m_dfreq = RTC_CNTL_CK8M_DFREQ_DEFAULT, \
}
/**
* Initialize clocks and set CPU frequency
*
* If cfg.xtal_freq is set to RTC_XTAL_FREQ_AUTO, this function will attempt
* to auto detect XTAL frequency. Auto detection is performed by comparing
* XTAL frequency with the frequency of internal 8MHz oscillator. Note that at
* high temperatures the frequency of the internal 8MHz oscillator may drift
* enough for auto detection to be unreliable.
* Auto detection code will attempt to distinguish between 26MHz and 40MHz
* crystals. 24 MHz crystals are not supported by auto detection code.
* If XTAL frequency can not be auto detected, this 26MHz frequency will be used.
*
* @param cfg clock configuration as rtc_clk_config_t
*/
void rtc_clk_init(rtc_clk_config_t cfg);
/**
* @brief Get main XTAL frequency
*
* This is the value stored in RTC register RTC_XTAL_FREQ_REG by the bootloader. As passed to
* rtc_clk_init function, or if the value was RTC_XTAL_FREQ_AUTO, the detected
* XTAL frequency.
*
* @return XTAL frequency, one of rtc_xtal_freq_t
*/
rtc_xtal_freq_t rtc_clk_xtal_freq_get();
/**
* @brief Update XTAL frequency
*
* Updates the XTAL value stored in RTC_XTAL_FREQ_REG. Usually this value is ignored
* after startup.
*
* @param xtal_freq New frequency value
*/
void rtc_clk_xtal_freq_update(rtc_xtal_freq_t xtal_freq);
/**
* @brief Enable or disable 32 kHz XTAL oscillator
* @param en true to enable, false to disable
*/
void rtc_clk_32k_enable(bool en);
/**
* @brief Configure 32 kHz XTAL oscillator to accept external clock signal
*/
void rtc_clk_32k_enable_external();
/**
* @brief Get the state of 32k XTAL oscillator
* @return true if 32k XTAL oscillator has been enabled
*/
bool rtc_clk_32k_enabled();
/**
* @brief Enable 32k oscillator, configuring it for fast startup time.
* Note: to achieve higher frequency stability, rtc_clk_32k_enable function
* must be called one the 32k XTAL oscillator has started up. This function
* will initially disable the 32k XTAL oscillator, so it should not be called
* when the system is using 32k XTAL as RTC_SLOW_CLK.
*
* @param cycle Number of 32kHz cycles to bootstrap external crystal.
* If 0, no square wave will be used to bootstrap crystal oscillation.
*/
void rtc_clk_32k_bootstrap(uint32_t cycle);
/**
* @brief Enable or disable 8 MHz internal oscillator
*
* Output from 8 MHz internal oscillator is passed into a configurable
* divider, which by default divides the input clock frequency by 256.
* Output of the divider may be used as RTC_SLOW_CLK source.
* Output of the divider is referred to in register descriptions and code as
* 8md256 or simply d256. Divider values other than 256 may be configured, but
* this facility is not currently needed, so is not exposed in the code.
*
* When 8MHz/256 divided output is not needed, the divider should be disabled
* to reduce power consumption.
*
* @param clk_8m_en true to enable 8MHz generator
* @param d256_en true to enable /256 divider
*/
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en);
/**
* @brief Get the state of 8 MHz internal oscillator
* @return true if the oscillator is enabled
*/
bool rtc_clk_8m_enabled();
/**
* @brief Get the state of /256 divider which is applied to 8MHz clock
* @return true if the divided output is enabled
*/
bool rtc_clk_8md256_enabled();
/**
* @brief Enable or disable APLL
*
* Output frequency is given by the formula:
* apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)/((o_div + 2) * 2)
*
* The dividend in this expression should be in the range of 240 - 600 MHz.
*
* In rev. 0 of ESP32, sdm0 and sdm1 are unused and always set to 0.
*
* @param enable true to enable, false to disable
* @param sdm0 frequency adjustment parameter, 0..255
* @param sdm1 frequency adjustment parameter, 0..255
* @param sdm2 frequency adjustment parameter, 0..63
* @param o_div frequency divider, 0..31
*/
void rtc_clk_apll_enable(bool enable, uint32_t sdm0, uint32_t sdm1,
uint32_t sdm2, uint32_t o_div);
/**
* @brief Select source for RTC_SLOW_CLK
* @param slow_freq clock source (one of rtc_slow_freq_t values)
*/
void rtc_clk_slow_freq_set(rtc_slow_freq_t slow_freq);
/**
* @brief Get the RTC_SLOW_CLK source
* @return currently selected clock source (one of rtc_slow_freq_t values)
*/
rtc_slow_freq_t rtc_clk_slow_freq_get();
/**
* @brief Get the approximate frequency of RTC_SLOW_CLK, in Hz
*
* - if RTC_SLOW_FREQ_RTC is selected, returns ~150000
* - if RTC_SLOW_FREQ_32K_XTAL is selected, returns 32768
* - if RTC_SLOW_FREQ_8MD256 is selected, returns ~33000
*
* rtc_clk_cal function can be used to get more precise value by comparing
* RTC_SLOW_CLK frequency to the frequency of main XTAL.
*
* @return RTC_SLOW_CLK frequency, in Hz
*/
uint32_t rtc_clk_slow_freq_get_hz();
/**
* @brief Select source for RTC_FAST_CLK
* @param fast_freq clock source (one of rtc_fast_freq_t values)
*/
void rtc_clk_fast_freq_set(rtc_fast_freq_t fast_freq);
/**
* @brief Get the RTC_FAST_CLK source
* @return currently selected clock source (one of rtc_fast_freq_t values)
*/
rtc_fast_freq_t rtc_clk_fast_freq_get();
/**
*
* @brief Get CPU frequency config corresponding to a rtc_cpu_freq_t value
* @param cpu_freq CPU frequency enumeration value
* @param[out] out_config Output, CPU frequency configuration structure
*/
void rtc_clk_cpu_freq_to_config(rtc_cpu_freq_t cpu_freq, rtc_cpu_freq_config_t* out_config);
/**
* @brief Get CPU frequency config for a given frequency
* @param freq_mhz Frequency in MHz
* @param[out] out_config Output, CPU frequency configuration structure
* @return true if frequency can be obtained, false otherwise
*/
bool rtc_clk_cpu_freq_mhz_to_config(uint32_t freq_mhz, rtc_cpu_freq_config_t* out_config);
/**
* @brief Switch CPU frequency
*
* This function sets CPU frequency according to the given configuration
* structure. It enables PLLs, if necessary.
*
* @note This function in not intended to be called by applications in FreeRTOS
* environment. This is because it does not adjust various timers based on the
* new CPU frequency.
*
* @param config CPU frequency configuration structure
*/
void rtc_clk_cpu_freq_set_config(const rtc_cpu_freq_config_t* config);
/**
* @brief Switch CPU frequency (optimized for speed)
*
* This function is a faster equivalent of rtc_clk_cpu_freq_set_config.
* It works faster because it does not disable PLLs when switching from PLL to
* XTAL and does not enabled them when switching back. If PLL is not already
* enabled when this function is called to switch from XTAL to PLL frequency,
* or the PLL which is enabled is the wrong one, this function will fall back
* to calling rtc_clk_cpu_freq_set_config.
*
* Unlike rtc_clk_cpu_freq_set_config, this function relies on static data,
* so it is less safe to use it e.g. from a panic handler (when memory might
* be corrupted).
*
* @note This function in not intended to be called by applications in FreeRTOS
* environment. This is because it does not adjust various timers based on the
* new CPU frequency.
*
* @param config CPU frequency configuration structure
*/
void rtc_clk_cpu_freq_set_config_fast(const rtc_cpu_freq_config_t* config);
/**
* @brief Get the currently used CPU frequency configuration
* @param[out] out_config Output, CPU frequency configuration structure
*/
void rtc_clk_cpu_freq_get_config(rtc_cpu_freq_config_t* out_config);
/**
* @brief Switch CPU clock source to XTAL
*
* Short form for filling in rtc_cpu_freq_config_t structure and calling
* rtc_clk_cpu_freq_set_config when a switch to XTAL is needed.
* Assumes that XTAL frequency has been determined — don't call in startup code.
*/
void rtc_clk_cpu_freq_set_xtal();
/**
* @brief Store new APB frequency value into RTC_APB_FREQ_REG
*
* This function doesn't change any hardware clocks.
*
* Functions which perform frequency switching and change APB frequency call
* this function to update the value of APB frequency stored in RTC_APB_FREQ_REG
* (one of RTC general purpose retention registers). This should not normally
* be called from application code.
*
* @param apb_freq new APB frequency, in Hz
*/
void rtc_clk_apb_freq_update(uint32_t apb_freq);
/**
* @brief Get the current stored APB frequency.
* @return The APB frequency value as last set via rtc_clk_apb_freq_update(), in Hz.
*/
uint32_t rtc_clk_apb_freq_get();
#define RTC_CLK_CAL_FRACT 19 //!< Number of fractional bits in values returned by rtc_clk_cal
/**
* @brief Measure RTC slow clock's period, based on main XTAL frequency
*
* This function will time out and return 0 if the time for the given number
* of cycles to be counted exceeds the expected time twice. This may happen if
* 32k XTAL is being calibrated, but the oscillator has not started up (due to
* incorrect loading capacitance, board design issue, or lack of 32 XTAL on board).
*
* @param cal_clk clock to be measured
* @param slow_clk_cycles number of slow clock cycles to average
* @return average slow clock period in microseconds, Q13.19 fixed point format,
* or 0 if calibration has timed out
*/
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slow_clk_cycles);
/**
* @brief Measure ratio between XTAL frequency and RTC slow clock frequency
* @param cal_clk slow clock to be measured
* @param slow_clk_cycles number of slow clock cycles to average
* @return average ratio between XTAL frequency and slow clock frequency,
* Q13.19 fixed point format, or 0 if calibration has timed out.
*/
uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slow_clk_cycles);
/**
* @brief Convert time interval from microseconds to RTC_SLOW_CLK cycles
* @param time_in_us Time interval in microseconds
* @param slow_clk_period Period of slow clock in microseconds, Q13.19
* fixed point format (as returned by rtc_slowck_cali).
* @return number of slow clock cycles
*/
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period);
/**
* @brief Convert time interval from RTC_SLOW_CLK to microseconds
* @param time_in_us Time interval in RTC_SLOW_CLK cycles
* @param slow_clk_period Period of slow clock in microseconds, Q13.19
* fixed point format (as returned by rtc_slowck_cali).
* @return time interval in microseconds
*/
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period);
/**
* @brief Get current value of RTC counter
*
* RTC has a 48-bit counter which is incremented by 2 every 2 RTC_SLOW_CLK
* cycles. Counter value is not writable by software. The value is not adjusted
* when switching to a different RTC_SLOW_CLK source.
*
* Note: this function may take up to 1 RTC_SLOW_CLK cycle to execute
*
* @return current value of RTC counter
*/
uint64_t rtc_time_get();
/**
* @brief Busy loop until next RTC_SLOW_CLK cycle
*
* This function returns not earlier than the next RTC_SLOW_CLK clock cycle.
* In some cases (e.g. when RTC_SLOW_CLK cycle is very close), it may return
* one RTC_SLOW_CLK cycle later.
*/
void rtc_clk_wait_for_slow_cycle();
/**
* @brief sleep configuration for rtc_sleep_init function
*/
typedef struct rtc_sleep_config_s {
uint32_t lslp_mem_inf_fpu : 1; //!< force normal voltage in sleep mode (digital domain memory)
uint32_t rtc_mem_inf_fpu : 1; //!< force normal voltage in sleep mode (RTC memory)
uint32_t rtc_mem_inf_follow_cpu : 1;//!< keep low voltage in sleep mode (even if ULP/touch is used)
uint32_t rtc_fastmem_pd_en : 1; //!< power down RTC fast memory
uint32_t rtc_slowmem_pd_en : 1; //!< power down RTC slow memory
uint32_t rtc_peri_pd_en : 1; //!< power down RTC peripherals
uint32_t wifi_pd_en : 1; //!< power down WiFi
uint32_t rom_mem_pd_en : 1; //!< power down main RAM and ROM
uint32_t deep_slp : 1; //!< power down digital domain
uint32_t wdt_flashboot_mod_en : 1; //!< enable WDT flashboot mode
uint32_t dig_dbias_wak : 3; //!< set bias for digital domain, in active mode
uint32_t dig_dbias_slp : 3; //!< set bias for digital domain, in sleep mode
uint32_t rtc_dbias_wak : 3; //!< set bias for RTC domain, in active mode
uint32_t rtc_dbias_slp : 3; //!< set bias for RTC domain, in sleep mode
uint32_t lslp_meminf_pd : 1; //!< remove all peripheral force power up flags
uint32_t vddsdio_pd_en : 1; //!< power down VDDSDIO regulator
uint32_t xtal_fpu : 1; //!< keep main XTAL powered up in sleep
} rtc_sleep_config_t;
/**
* Default initializer for rtc_sleep_config_t
*
* This initializer sets all fields to "reasonable" values (e.g. suggested for
* production use) based on a combination of RTC_SLEEP_PD_x flags.
*
* @param RTC_SLEEP_PD_x flags combined using bitwise OR
*/
#define RTC_SLEEP_CONFIG_DEFAULT(sleep_flags) { \
.lslp_mem_inf_fpu = 0, \
.rtc_mem_inf_fpu = 0, \
.rtc_mem_inf_follow_cpu = ((sleep_flags) & RTC_SLEEP_PD_RTC_MEM_FOLLOW_CPU) ? 1 : 0, \
.rtc_fastmem_pd_en = ((sleep_flags) & RTC_SLEEP_PD_RTC_FAST_MEM) ? 1 : 0, \
.rtc_slowmem_pd_en = ((sleep_flags) & RTC_SLEEP_PD_RTC_SLOW_MEM) ? 1 : 0, \
.rtc_peri_pd_en = ((sleep_flags) & RTC_SLEEP_PD_RTC_PERIPH) ? 1 : 0, \
.wifi_pd_en = 0, \
.rom_mem_pd_en = 0, \
.deep_slp = ((sleep_flags) & RTC_SLEEP_PD_DIG) ? 1 : 0, \
.wdt_flashboot_mod_en = 0, \
.dig_dbias_wak = RTC_CNTL_DBIAS_1V10, \
.dig_dbias_slp = RTC_CNTL_DBIAS_0V90, \
.rtc_dbias_wak = RTC_CNTL_DBIAS_1V10, \
.rtc_dbias_slp = RTC_CNTL_DBIAS_0V90, \
.lslp_meminf_pd = 1, \
.vddsdio_pd_en = ((sleep_flags) & RTC_SLEEP_PD_VDDSDIO) ? 1 : 0, \
.xtal_fpu = ((sleep_flags) & RTC_SLEEP_PD_XTAL) ? 0 : 1 \
};
#define RTC_SLEEP_PD_DIG BIT(0) //!< Deep sleep (power down digital domain)
#define RTC_SLEEP_PD_RTC_PERIPH BIT(1) //!< Power down RTC peripherals
#define RTC_SLEEP_PD_RTC_SLOW_MEM BIT(2) //!< Power down RTC SLOW memory
#define RTC_SLEEP_PD_RTC_FAST_MEM BIT(3) //!< Power down RTC FAST memory
#define RTC_SLEEP_PD_RTC_MEM_FOLLOW_CPU BIT(4) //!< RTC FAST and SLOW memories are automatically powered up and down along with the CPU
#define RTC_SLEEP_PD_VDDSDIO BIT(5) //!< Power down VDDSDIO regulator
#define RTC_SLEEP_PD_XTAL BIT(6) //!< Power down main XTAL
/**
* @brief Prepare the chip to enter sleep mode
*
* This function configures various power control state machines to handle
* entry into light sleep or deep sleep mode, switches APB and CPU clock source
* (usually to XTAL), and sets bias voltages for digital and RTC power domains.
*
* This function does not actually enter sleep mode; this is done using
* rtc_sleep_start function. Software may do some other actions between
* rtc_sleep_init and rtc_sleep_start, such as set wakeup timer and configure
* wakeup sources.
* @param cfg sleep mode configuration
*/
void rtc_sleep_init(rtc_sleep_config_t cfg);
/**
* @brief Set target value of RTC counter for RTC_TIMER_TRIG_EN wakeup source
* @param t value of RTC counter at which wakeup from sleep will happen;
* only the lower 48 bits are used
*/
void rtc_sleep_set_wakeup_time(uint64_t t);
#define RTC_EXT0_TRIG_EN BIT(0) //!< EXT0 GPIO wakeup
#define RTC_EXT1_TRIG_EN BIT(1) //!< EXT1 GPIO wakeup
#define RTC_GPIO_TRIG_EN BIT(2) //!< GPIO wakeup (light sleep only)
#define RTC_TIMER_TRIG_EN BIT(3) //!< Timer wakeup
#define RTC_SDIO_TRIG_EN BIT(4) //!< SDIO wakeup (light sleep only)
#define RTC_MAC_TRIG_EN BIT(5) //!< MAC wakeup (light sleep only)
#define RTC_UART0_TRIG_EN BIT(6) //!< UART0 wakeup (light sleep only)
#define RTC_UART1_TRIG_EN BIT(7) //!< UART1 wakeup (light sleep only)
#define RTC_TOUCH_TRIG_EN BIT(8) //!< Touch wakeup
#define RTC_ULP_TRIG_EN BIT(9) //!< ULP wakeup
#define RTC_BT_TRIG_EN BIT(10) //!< BT wakeup (light sleep only)
/**
* @brief Enter deep or light sleep mode
*
* This function enters the sleep mode previously configured using rtc_sleep_init
* function. Before entering sleep, software should configure wake up sources
* appropriately (set up GPIO wakeup registers, timer wakeup registers,
* and so on).
*
* If deep sleep mode was configured using rtc_sleep_init, and sleep is not
* rejected by hardware (based on reject_opt flags), this function never returns.
* When the chip wakes up from deep sleep, CPU is reset and execution starts
* from ROM bootloader.
*
* If light sleep mode was configured using rtc_sleep_init, this function
* returns on wakeup, or if sleep is rejected by hardware.
*
* @param wakeup_opt bit mask wake up reasons to enable (RTC_xxx_TRIG_EN flags
* combined with OR)
* @param reject_opt bit mask of sleep reject reasons:
* - RTC_CNTL_GPIO_REJECT_EN
* - RTC_CNTL_SDIO_REJECT_EN
* These flags are used to prevent entering sleep when e.g.
* an external host is communicating via SDIO slave
* @return non-zero if sleep was rejected by hardware
*/
uint32_t rtc_sleep_start(uint32_t wakeup_opt, uint32_t reject_opt);
/**
* RTC power and clock control initialization settings
*/
typedef struct rtc_config_s {
uint32_t ck8m_wait : 8; //!< Number of rtc_fast_clk cycles to wait for 8M clock to be ready
uint32_t xtal_wait : 8; //!< Number of rtc_fast_clk cycles to wait for XTAL clock to be ready
uint32_t pll_wait : 8; //!< Number of rtc_fast_clk cycles to wait for PLL to be ready
uint32_t clkctl_init : 1; //!< Perform clock control related initialization
uint32_t pwrctl_init : 1; //!< Perform power control related initialization
uint32_t rtc_dboost_fpd : 1; //!< Force power down RTC_DBOOST
} rtc_config_t;
/**
* Default initializer of rtc_config_t.
*
* This initializer sets all fields to "reasonable" values (e.g. suggested for
* production use).
*/
#define RTC_CONFIG_DEFAULT() {\
.ck8m_wait = RTC_CNTL_CK8M_WAIT_DEFAULT, \
.xtal_wait = RTC_CNTL_XTL_BUF_WAIT_DEFAULT, \
.pll_wait = RTC_CNTL_PLL_BUF_WAIT_DEFAULT, \
.clkctl_init = 1, \
.pwrctl_init = 1, \
.rtc_dboost_fpd = 1 \
}
/**
* Initialize RTC clock and power control related functions
* @param cfg configuration options as rtc_config_t
*/
void rtc_init(rtc_config_t cfg);
#define RTC_VDDSDIO_TIEH_1_8V 0 //!< TIEH field value for 1.8V VDDSDIO
#define RTC_VDDSDIO_TIEH_3_3V 1 //!< TIEH field value for 3.3V VDDSDIO
/**
* Structure describing vddsdio configuration
*/
typedef struct rtc_vddsdio_config_s {
uint32_t force : 1; //!< If 1, use configuration from RTC registers; if 0, use EFUSE/bootstrapping pins.
uint32_t enable : 1; //!< Enable VDDSDIO regulator
uint32_t tieh : 1; //!< Select VDDSDIO voltage. One of RTC_VDDSDIO_TIEH_1_8V, RTC_VDDSDIO_TIEH_3_3V
uint32_t drefh : 2; //!< Tuning parameter for VDDSDIO regulator
uint32_t drefm : 2; //!< Tuning parameter for VDDSDIO regulator
uint32_t drefl : 2; //!< Tuning parameter for VDDSDIO regulator
} rtc_vddsdio_config_t;
/**
* Get current VDDSDIO configuration
* If VDDSDIO configuration is overridden by RTC, get values from RTC
* Otherwise, if VDDSDIO is configured by EFUSE, get values from EFUSE
* Otherwise, use default values and the level of MTDI bootstrapping pin.
* @return currently used VDDSDIO configuration
*/
rtc_vddsdio_config_t rtc_vddsdio_get_config();
/**
* Set new VDDSDIO configuration using RTC registers.
* If config.force == 1, this overrides configuration done using bootstrapping
* pins and EFUSE.
*
* @param config new VDDSDIO configuration
*/
void rtc_vddsdio_set_config(rtc_vddsdio_config_t config);
#ifdef __cplusplus
}
#endif