1053 lines
42 KiB
C
1053 lines
42 KiB
C
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "sdkconfig.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/portmacro.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/queue.h"
|
|
#include "freertos/semphr.h"
|
|
#include "esp_types.h"
|
|
#include "esp_log.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_pm.h"
|
|
#include "soc/can_periph.h"
|
|
#include "driver/gpio.h"
|
|
#include "driver/periph_ctrl.h"
|
|
#include "driver/can.h"
|
|
#if CONFIG_IDF_TARGET_ESP32
|
|
|
|
/* ---------------------------- Definitions --------------------------------- */
|
|
//Internal Macros
|
|
#define CAN_CHECK(cond, ret_val) ({ \
|
|
if (!(cond)) { \
|
|
return (ret_val); \
|
|
} \
|
|
})
|
|
#define CAN_CHECK_FROM_CRIT(cond, ret_val) ({ \
|
|
if (!(cond)) { \
|
|
CAN_EXIT_CRITICAL(); \
|
|
return ret_val; \
|
|
} \
|
|
})
|
|
#define CAN_SET_FLAG(var, mask) ((var) |= (mask))
|
|
#define CAN_RESET_FLAG(var, mask) ((var) &= ~(mask))
|
|
#define CAN_TAG "CAN"
|
|
|
|
/*
|
|
* Baud Rate Prescaler Divider config/values. The BRP_DIV bit is located in the
|
|
* CAN interrupt enable register, and is only available in ESP32 Revision 2 or
|
|
* later. Setting this bit will cause the APB clock to be prescaled (divided) by
|
|
* a factor 2, before having the BRP applied. This will allow for lower bit rates
|
|
* to be achieved.
|
|
*/
|
|
#define BRP_DIV_EN_THRESH 128 //A BRP config value large this this will need to enable brp_div
|
|
#define BRP_DIV_EN_BIT 0x10 //Bit mask for brp_div in the interrupt register
|
|
//When brp_div is enabled, the BRP config value must be any multiple of 4 between 132 and 256
|
|
#define BRP_CHECK_WITH_DIV(brp) ((brp) >= 132 && (brp) <= 256 && ((brp) & 0x3) == 0)
|
|
//When brp_div is disabled, the BRP config value must be any even number between 2 to 128
|
|
#define BRP_CHECK_NO_DIV(brp) ((brp) >= 2 && (brp) <= 128 && ((brp) & 0x1) == 0)
|
|
|
|
//Driver default config/values
|
|
#define DRIVER_DEFAULT_EWL 96 //Default Error Warning Limit value
|
|
#define DRIVER_DEFAULT_TEC 0 //TX Error Counter starting value
|
|
#define DRIVER_DEFAULT_REC 0 //RX Error Counter starting value
|
|
#define DRIVER_DEFAULT_CLKOUT_DIV 14 //APB CLK divided by two
|
|
#define DRIVER_DEFAULT_INTERRUPTS 0xE7 //Exclude data overrun (bit[3]) and brp_div (bit[4])
|
|
#define DRIVER_DEFAULT_ERR_PASS_CNT 128 //Error counter threshold for error passive
|
|
|
|
//Command Bit Masks
|
|
#define CMD_TX_REQ 0x01 //Transmission Request
|
|
#define CMD_ABORT_TX 0x02 //Abort Transmission
|
|
#define CMD_RELEASE_RX_BUFF 0x04 //Release Receive Buffer
|
|
#define CMD_CLR_DATA_OVRN 0x08 //Clear Data Overrun
|
|
#define CMD_SELF_RX_REQ 0x10 //Self Reception Request
|
|
#define CMD_TX_SINGLE_SHOT 0x03 //Single Shot Transmission
|
|
#define CMD_SELF_RX_SINGLE_SHOT 0x12 //Single Shot Self Reception
|
|
|
|
//Control flags
|
|
#define CTRL_FLAG_STOPPED 0x001 //CAN peripheral in stopped state
|
|
#define CTRL_FLAG_RECOVERING 0x002 //Bus is undergoing bus recovery
|
|
#define CTRL_FLAG_ERR_WARN 0x004 //TEC or REC is >= error warning limit
|
|
#define CTRL_FLAG_ERR_PASSIVE 0x008 //TEC or REC is >= 128
|
|
#define CTRL_FLAG_BUS_OFF 0x010 //Bus-off due to TEC >= 256
|
|
#define CTRL_FLAG_TX_BUFF_OCCUPIED 0x020 //Transmit buffer is occupied
|
|
#define CTRL_FLAG_SELF_TEST 0x040 //Configured to Self Test Mode
|
|
#define CTRL_FLAG_LISTEN_ONLY 0x080 //Configured to Listen Only Mode
|
|
|
|
//Constants use for frame formatting and parsing
|
|
#define FRAME_MAX_LEN 13 //EFF with 8 bytes of data
|
|
#define FRAME_MAX_DATA_LEN 8 //Max data bytes allowed in CAN2.0
|
|
#define FRAME_EXTD_ID_LEN 4 //EFF ID requires 4 bytes (29bit)
|
|
#define FRAME_STD_ID_LEN 2 //SFF ID requires 2 bytes (11bit)
|
|
#define FRAME_INFO_LEN 1 //Frame info requires 1 byte
|
|
|
|
#define ALERT_LOG_LEVEL_WARNING CAN_ALERT_ARB_LOST //Alerts above and including this level use ESP_LOGW
|
|
#define ALERT_LOG_LEVEL_ERROR CAN_ALERT_TX_FAILED //Alerts above and including this level use ESP_LOGE
|
|
|
|
/* ------------------ Typedefs, structures, and variables ------------------- */
|
|
|
|
/* Formatted frame structure has identical layout as TX/RX buffer registers.
|
|
This allows for direct copy to/from TX/RX buffer. The two reserved bits in TX
|
|
buffer are used in the frame structure to store the self_reception and
|
|
single_shot flags. */
|
|
typedef union {
|
|
struct {
|
|
struct {
|
|
uint8_t dlc: 4; //Data length code (0 to 8) of the frame
|
|
uint8_t self_reception: 1; //This frame should be transmitted using self reception command
|
|
uint8_t single_shot: 1; //This frame should be transmitted using single shot command
|
|
uint8_t rtr: 1; //This frame is a remote transmission request
|
|
uint8_t frame_format: 1; //Format of the frame (1 = extended, 0 = standard)
|
|
};
|
|
union {
|
|
struct {
|
|
uint8_t id[FRAME_STD_ID_LEN]; //11 bit standard frame identifier
|
|
uint8_t data[FRAME_MAX_DATA_LEN]; //Data bytes (0 to 8)
|
|
uint8_t reserved8[2];
|
|
} standard;
|
|
struct {
|
|
uint8_t id[FRAME_EXTD_ID_LEN]; //29 bit extended frame identifier
|
|
uint8_t data[FRAME_MAX_DATA_LEN]; //Data bytes (0 to 8)
|
|
} extended;
|
|
};
|
|
};
|
|
uint8_t bytes[FRAME_MAX_LEN];
|
|
} can_frame_t;
|
|
|
|
//Control structure for CAN driver
|
|
typedef struct {
|
|
//Control and status members
|
|
uint32_t control_flags;
|
|
uint32_t rx_missed_count;
|
|
uint32_t tx_failed_count;
|
|
uint32_t arb_lost_count;
|
|
uint32_t bus_error_count;
|
|
intr_handle_t isr_handle;
|
|
//TX and RX
|
|
QueueHandle_t tx_queue;
|
|
QueueHandle_t rx_queue;
|
|
int tx_msg_count;
|
|
int rx_msg_count;
|
|
//Alerts
|
|
SemaphoreHandle_t alert_semphr;
|
|
uint32_t alerts_enabled;
|
|
uint32_t alerts_triggered;
|
|
#ifdef CONFIG_PM_ENABLE
|
|
//Power Management
|
|
esp_pm_lock_handle_t pm_lock;
|
|
#endif
|
|
} can_obj_t;
|
|
|
|
static can_obj_t *p_can_obj = NULL;
|
|
static portMUX_TYPE can_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
|
#define CAN_ENTER_CRITICAL() portENTER_CRITICAL(&can_spinlock)
|
|
#define CAN_EXIT_CRITICAL() portEXIT_CRITICAL(&can_spinlock)
|
|
|
|
/* ------------------- Configuration Register Functions---------------------- */
|
|
|
|
static inline esp_err_t can_enter_reset_mode(void)
|
|
{
|
|
/* Enter reset mode (required to write to configuration registers). Reset mode
|
|
also prevents all CAN activity on the current module and is automatically
|
|
set upon entering a BUS-OFF condition. */
|
|
CAN.mode_reg.reset = 1; //Set reset mode bit
|
|
CAN_CHECK(CAN.mode_reg.reset == 1, ESP_ERR_INVALID_STATE); //Check bit was set
|
|
return ESP_OK;
|
|
}
|
|
|
|
static inline esp_err_t can_exit_reset_mode(void)
|
|
{
|
|
/* Exiting reset mode will return the CAN module to operating mode. Reset mode
|
|
must also be exited in order to trigger BUS-OFF recovery sequence. */
|
|
CAN.mode_reg.reset = 0; //Exit reset mode
|
|
CAN_CHECK(CAN.mode_reg.reset == 0, ESP_ERR_INVALID_STATE); //Check bit was reset
|
|
return ESP_OK;
|
|
}
|
|
|
|
static inline void can_config_pelican(void)
|
|
{
|
|
//Use PeliCAN address layout. Exposes extra registers
|
|
CAN.clock_divider_reg.can_mode = 1;
|
|
}
|
|
|
|
static inline void can_config_mode(can_mode_t mode)
|
|
{
|
|
//Configure CAN mode of operation
|
|
can_mode_reg_t mode_reg;
|
|
mode_reg.val = CAN.mode_reg.val; //Get current value of mode register
|
|
if (mode == CAN_MODE_NO_ACK) {
|
|
mode_reg.self_test = 1;
|
|
mode_reg.listen_only = 0;
|
|
} else if (mode == CAN_MODE_LISTEN_ONLY) {
|
|
mode_reg.self_test = 0;
|
|
mode_reg.listen_only = 1;
|
|
} else {
|
|
//Default to normal operating mode
|
|
mode_reg.self_test = 0;
|
|
mode_reg.listen_only = 0;
|
|
}
|
|
CAN.mode_reg.val = mode_reg.val; //Write back modified value to register
|
|
}
|
|
|
|
static inline void can_config_interrupts(uint32_t interrupts)
|
|
{
|
|
//Enable interrupt sources
|
|
CAN.interrupt_enable_reg.val = interrupts;
|
|
}
|
|
|
|
static inline void can_config_bus_timing(uint32_t brp, uint32_t sjw, uint32_t tseg_1, uint32_t tseg_2, bool triple_sampling)
|
|
{
|
|
/* Configure bus/bit timing of CAN peripheral.
|
|
- BRP (even from 2 to 128) divide APB to CAN system clock (T_scl)
|
|
- SJW (1 to 4) is number of T_scl to shorten/lengthen for bit synchronization
|
|
- TSEG_1 (1 to 16) is number of T_scl in a bit time before sample point
|
|
- TSEG_2 (1 to 8) is number of T_scl in a bit time after sample point
|
|
- triple_sampling will cause each bit time to be sampled 3 times */
|
|
can_bus_tim_0_reg_t timing_reg_0;
|
|
can_bus_tim_1_reg_t timing_reg_1;
|
|
timing_reg_0.baud_rate_prescaler = (brp / 2) - 1;
|
|
timing_reg_0.sync_jump_width = sjw - 1;
|
|
timing_reg_1.time_seg_1 = tseg_1 - 1;
|
|
timing_reg_1.time_seg_2 = tseg_2 - 1;
|
|
timing_reg_1.sampling = triple_sampling;
|
|
CAN.bus_timing_0_reg.val = timing_reg_0.val;
|
|
CAN.bus_timing_1_reg.val = timing_reg_1.val;
|
|
}
|
|
|
|
static inline void can_config_error(int err_warn_lim, int rx_err_cnt, int tx_err_cnt)
|
|
{
|
|
/* Set error warning limit, RX error counter, and TX error counter. Note that
|
|
forcibly setting RX/TX error counters will incur the expected status changes
|
|
and interrupts as soon as reset mode exits. */
|
|
if (err_warn_lim >= 0 && err_warn_lim <= UINT8_MAX) {
|
|
//Defaults to 96 after hardware reset.
|
|
CAN.error_warning_limit_reg.byte = err_warn_lim;
|
|
}
|
|
if (rx_err_cnt >= 0 && rx_err_cnt <= UINT8_MAX) {
|
|
//Defaults to 0 after hardware reset.
|
|
CAN.rx_error_counter_reg.byte = rx_err_cnt;
|
|
}
|
|
if (tx_err_cnt >= 0 && tx_err_cnt <= UINT8_MAX) {
|
|
//Defaults to 0 after hardware reset, and 127 after BUS-OFF event
|
|
CAN.tx_error_counter_reg.byte = tx_err_cnt;
|
|
}
|
|
}
|
|
|
|
static inline void can_config_acceptance_filter(uint32_t code, uint32_t mask, bool single_filter)
|
|
{
|
|
//Set filter mode
|
|
CAN.mode_reg.acceptance_filter = (single_filter) ? 1 : 0;
|
|
//Swap code and mask to match big endian registers
|
|
uint32_t code_swapped = __builtin_bswap32(code);
|
|
uint32_t mask_swapped = __builtin_bswap32(mask);
|
|
for (int i = 0; i < 4; i++) {
|
|
CAN.acceptance_filter.code_reg[i].byte = ((code_swapped >> (i * 8)) & 0xFF);
|
|
CAN.acceptance_filter.mask_reg[i].byte = ((mask_swapped >> (i * 8)) & 0xFF);
|
|
}
|
|
}
|
|
|
|
static inline void can_config_clk_out(uint32_t divider)
|
|
{
|
|
/* Configure CLKOUT. CLKOUT is a pre-scaled version of APB CLK. Divider can be
|
|
1, or any even number from 2 to 14. Set to out of range value (0) to disable
|
|
CLKOUT. */
|
|
can_clk_div_reg_t clock_divider_reg;
|
|
clock_divider_reg.val = CAN.clock_divider_reg.val;
|
|
if (divider >= 2 && divider <= 14) {
|
|
clock_divider_reg.clock_off = 0;
|
|
clock_divider_reg.clock_divider = (divider / 2) - 1;
|
|
} else if (divider == 1) {
|
|
clock_divider_reg.clock_off = 0;
|
|
clock_divider_reg.clock_divider = 7;
|
|
} else {
|
|
clock_divider_reg.clock_off = 1;
|
|
clock_divider_reg.clock_divider = 0;
|
|
}
|
|
CAN.clock_divider_reg.val = clock_divider_reg.val;
|
|
}
|
|
|
|
/* ---------------------- Runtime Register Functions------------------------- */
|
|
|
|
static inline void can_set_command(uint8_t commands)
|
|
{
|
|
CAN.command_reg.val = commands;
|
|
}
|
|
|
|
static void can_set_tx_buffer_and_transmit(can_frame_t *frame)
|
|
{
|
|
//Copy frame structure into TX buffer registers
|
|
for (int i = 0; i < FRAME_MAX_LEN; i++) {
|
|
CAN.tx_rx_buffer[i].val = frame->bytes[i];
|
|
}
|
|
|
|
//Set correct transmit command
|
|
uint8_t command;
|
|
if (frame->self_reception) {
|
|
command = (frame->single_shot) ? CMD_SELF_RX_SINGLE_SHOT : CMD_SELF_RX_REQ;
|
|
} else {
|
|
command = (frame->single_shot) ? CMD_TX_SINGLE_SHOT : CMD_TX_REQ;
|
|
}
|
|
can_set_command(command);
|
|
}
|
|
|
|
static inline uint32_t can_get_status(void)
|
|
{
|
|
return CAN.status_reg.val;
|
|
}
|
|
|
|
static inline uint32_t can_get_interrupt_reason(void)
|
|
{
|
|
return CAN.interrupt_reg.val;
|
|
}
|
|
|
|
static inline uint32_t can_get_arbitration_lost_capture(void)
|
|
{
|
|
return CAN.arbitration_lost_captue_reg.val;
|
|
//Todo: ALC read only to re-arm arb lost interrupt. Add function to decode ALC
|
|
}
|
|
|
|
static inline uint32_t can_get_error_code_capture(void)
|
|
{
|
|
return CAN.error_code_capture_reg.val;
|
|
//Todo: ECC read only to re-arm bus error interrupt. Add function to decode ECC
|
|
}
|
|
|
|
static inline void can_get_error_counters(uint32_t *tx_error_cnt, uint32_t *rx_error_cnt)
|
|
{
|
|
if (tx_error_cnt != NULL) {
|
|
*tx_error_cnt = CAN.tx_error_counter_reg.byte;
|
|
}
|
|
if (rx_error_cnt != NULL) {
|
|
*rx_error_cnt = CAN.rx_error_counter_reg.byte;
|
|
}
|
|
}
|
|
|
|
static inline void can_get_rx_buffer_and_clear(can_frame_t *frame)
|
|
{
|
|
//Copy RX buffer registers into frame structure
|
|
for (int i = 0; i < FRAME_MAX_LEN; i++) {
|
|
frame->bytes[i] = CAN.tx_rx_buffer[i].val;
|
|
}
|
|
//Clear RX buffer
|
|
can_set_command(CMD_RELEASE_RX_BUFF);
|
|
}
|
|
|
|
static inline uint32_t can_get_rx_message_counter(void)
|
|
{
|
|
return CAN.rx_message_counter_reg.val;
|
|
}
|
|
|
|
/* -------------------- Interrupt and Alert Handlers ------------------------ */
|
|
|
|
static void can_alert_handler(uint32_t alert_code, int *alert_req)
|
|
{
|
|
if (p_can_obj->alerts_enabled & alert_code) {
|
|
//Signify alert has occurred
|
|
CAN_SET_FLAG(p_can_obj->alerts_triggered, alert_code);
|
|
*alert_req = 1;
|
|
if (p_can_obj->alerts_enabled & CAN_ALERT_AND_LOG) {
|
|
if (alert_code >= ALERT_LOG_LEVEL_ERROR) {
|
|
ESP_EARLY_LOGE(CAN_TAG, "Alert %d", alert_code);
|
|
} else if (alert_code >= ALERT_LOG_LEVEL_WARNING) {
|
|
ESP_EARLY_LOGW(CAN_TAG, "Alert %d", alert_code);
|
|
} else {
|
|
ESP_EARLY_LOGI(CAN_TAG, "Alert %d", alert_code);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void can_intr_handler_err_warn(can_status_reg_t *status, int *alert_req)
|
|
{
|
|
if (status->bus) {
|
|
if (status->error) {
|
|
//Bus-Off condition. TEC should set and held at 127, REC should be 0, reset mode entered
|
|
CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_BUS_OFF);
|
|
/* Note: REC is still allowed to increase during bus-off. REC > err_warn
|
|
can prevent "bus recovery complete" interrupt from occurring. Set to
|
|
listen only mode to freeze REC. */
|
|
can_config_mode(CAN_MODE_LISTEN_ONLY);
|
|
can_alert_handler(CAN_ALERT_BUS_OFF, alert_req);
|
|
} else {
|
|
//Bus-recovery in progress. TEC has dropped below error warning limit
|
|
can_alert_handler(CAN_ALERT_RECOVERY_IN_PROGRESS, alert_req);
|
|
}
|
|
} else {
|
|
if (status->error) {
|
|
//TEC or REC surpassed error warning limit
|
|
CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_WARN);
|
|
can_alert_handler(CAN_ALERT_ABOVE_ERR_WARN, alert_req);
|
|
} else if (p_can_obj->control_flags & CTRL_FLAG_RECOVERING) {
|
|
//Bus recovery complete.
|
|
esp_err_t err = can_enter_reset_mode();
|
|
assert(err == ESP_OK);
|
|
//Reset and set flags to the equivalent of the stopped state
|
|
CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_RECOVERING | CTRL_FLAG_ERR_WARN |
|
|
CTRL_FLAG_ERR_PASSIVE | CTRL_FLAG_BUS_OFF |
|
|
CTRL_FLAG_TX_BUFF_OCCUPIED);
|
|
CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_STOPPED);
|
|
can_alert_handler(CAN_ALERT_BUS_RECOVERED, alert_req);
|
|
} else {
|
|
//TEC and REC are both below error warning
|
|
CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_WARN);
|
|
can_alert_handler(CAN_ALERT_BELOW_ERR_WARN, alert_req);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void can_intr_handler_err_passive(int *alert_req)
|
|
{
|
|
uint32_t tec, rec;
|
|
can_get_error_counters(&tec, &rec);
|
|
if (tec >= DRIVER_DEFAULT_ERR_PASS_CNT || rec >= DRIVER_DEFAULT_ERR_PASS_CNT) {
|
|
//Entered error passive
|
|
CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_PASSIVE);
|
|
can_alert_handler(CAN_ALERT_ERR_PASS, alert_req);
|
|
} else {
|
|
//Returned to error active
|
|
CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_PASSIVE);
|
|
can_alert_handler(CAN_ALERT_ERR_ACTIVE, alert_req);
|
|
}
|
|
}
|
|
|
|
static void can_intr_handler_bus_err(int *alert_req)
|
|
{
|
|
// ECC register is read to re-arm bus error interrupt. ECC is not used
|
|
(void) can_get_error_code_capture();
|
|
p_can_obj->bus_error_count++;
|
|
can_alert_handler(CAN_ALERT_BUS_ERROR, alert_req);
|
|
}
|
|
|
|
static void can_intr_handler_arb_lost(int *alert_req)
|
|
{
|
|
//ALC register is read to re-arm arb lost interrupt. ALC is not used
|
|
(void) can_get_arbitration_lost_capture();
|
|
p_can_obj->arb_lost_count++;
|
|
can_alert_handler(CAN_ALERT_ARB_LOST, alert_req);
|
|
}
|
|
|
|
static void can_intr_handler_rx(BaseType_t *task_woken, int *alert_req)
|
|
{
|
|
can_rx_msg_cnt_reg_t msg_count_reg;
|
|
msg_count_reg.val = can_get_rx_message_counter();
|
|
|
|
for (int i = 0; i < msg_count_reg.rx_message_counter; i++) {
|
|
can_frame_t frame;
|
|
can_get_rx_buffer_and_clear(&frame);
|
|
//Copy frame into RX Queue
|
|
if (xQueueSendFromISR(p_can_obj->rx_queue, &frame, task_woken) == pdTRUE) {
|
|
p_can_obj->rx_msg_count++;
|
|
} else {
|
|
p_can_obj->rx_missed_count++;
|
|
can_alert_handler(CAN_ALERT_RX_QUEUE_FULL, alert_req);
|
|
}
|
|
}
|
|
//Todo: Add Software Filters
|
|
//Todo: Check for data overrun of RX FIFO, then trigger alert
|
|
}
|
|
|
|
static void can_intr_handler_tx(can_status_reg_t *status, int *alert_req)
|
|
{
|
|
//Handle previously transmitted frame
|
|
if (status->tx_complete) {
|
|
can_alert_handler(CAN_ALERT_TX_SUCCESS, alert_req);
|
|
} else {
|
|
p_can_obj->tx_failed_count++;
|
|
can_alert_handler(CAN_ALERT_TX_FAILED, alert_req);
|
|
}
|
|
|
|
//Update TX message count
|
|
p_can_obj->tx_msg_count--;
|
|
assert(p_can_obj->tx_msg_count >= 0); //Sanity check
|
|
|
|
//Check if there are more frames to transmit
|
|
if (p_can_obj->tx_msg_count > 0 && p_can_obj->tx_queue != NULL) {
|
|
can_frame_t frame;
|
|
int res = xQueueReceiveFromISR(p_can_obj->tx_queue, &frame, NULL);
|
|
if (res == pdTRUE) {
|
|
can_set_tx_buffer_and_transmit(&frame);
|
|
} else {
|
|
assert(false && "failed to get a frame from TX queue");
|
|
}
|
|
} else {
|
|
//No more frames to transmit
|
|
CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED);
|
|
can_alert_handler(CAN_ALERT_TX_IDLE, alert_req);
|
|
}
|
|
}
|
|
|
|
static void can_intr_handler_main(void *arg)
|
|
{
|
|
BaseType_t task_woken = pdFALSE;
|
|
int alert_req = 0;
|
|
can_status_reg_t status;
|
|
can_intr_reg_t intr_reason;
|
|
|
|
CAN_ENTER_CRITICAL();
|
|
status.val = can_get_status();
|
|
intr_reason.val = (p_can_obj != NULL) ? can_get_interrupt_reason() : 0; //Incase intr occurs whilst driver is being uninstalled
|
|
|
|
#ifdef __clang_analyzer__
|
|
if (intr_reason.val == 0) { // Teach clang-tidy that all bitfields are zero if a register is zero; othewise it warns about p_can_obj null dereference
|
|
intr_reason.err_warn = intr_reason.err_passive = intr_reason.bus_err = intr_reason.arb_lost = intr_reason.rx = intr_reason.tx = 0;
|
|
}
|
|
#endif
|
|
//Handle error counter related interrupts
|
|
if (intr_reason.err_warn) {
|
|
//Triggers when Bus-Status or Error-status bits change
|
|
can_intr_handler_err_warn(&status, &alert_req);
|
|
}
|
|
if (intr_reason.err_passive) {
|
|
//Triggers when entering/returning error passive/active state
|
|
can_intr_handler_err_passive(&alert_req);
|
|
}
|
|
|
|
//Handle other error interrupts
|
|
if (intr_reason.bus_err) {
|
|
//Triggers when an error (Bit, Stuff, CRC, Form, ACK) occurs on the CAN bus
|
|
can_intr_handler_bus_err(&alert_req);
|
|
}
|
|
if (intr_reason.arb_lost) {
|
|
//Triggers when arbitration is lost
|
|
can_intr_handler_arb_lost(&alert_req);
|
|
}
|
|
|
|
//Handle TX/RX interrupts
|
|
if (intr_reason.rx) {
|
|
//Triggers when RX buffer has one or more frames. Disabled if RX Queue length = 0
|
|
can_intr_handler_rx(&task_woken, &alert_req);
|
|
}
|
|
if (intr_reason.tx) {
|
|
//Triggers when TX buffer becomes free after a transmission
|
|
can_intr_handler_tx(&status, &alert_req);
|
|
}
|
|
/* Todo: Check possible bug where transmitting self reception request then
|
|
clearing rx buffer will cancel the transmission. */
|
|
CAN_EXIT_CRITICAL();
|
|
|
|
if (p_can_obj->alert_semphr != NULL && alert_req) {
|
|
//Give semaphore if alerts were triggered
|
|
xSemaphoreGiveFromISR(p_can_obj->alert_semphr, &task_woken);
|
|
}
|
|
if (task_woken == pdTRUE) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
|
|
/* ---------------------- Frame and GPIO functions ------------------------- */
|
|
|
|
static void can_format_frame(uint32_t id, uint8_t dlc, const uint8_t *data, uint32_t flags, can_frame_t *tx_frame)
|
|
{
|
|
/* This function encodes a message into a frame structure. The frame structure has
|
|
an identical layout to the TX buffer, allowing the frame structure to be directly
|
|
copied into TX buffer. */
|
|
//Set frame information
|
|
tx_frame->dlc = dlc;
|
|
tx_frame->rtr = (flags & CAN_MSG_FLAG_RTR) ? 1 : 0;
|
|
tx_frame->frame_format = (flags & CAN_MSG_FLAG_EXTD) ? 1 : 0;
|
|
tx_frame->self_reception = (flags & CAN_MSG_FLAG_SELF) ? 1 : 0;
|
|
tx_frame->single_shot = (flags & CAN_MSG_FLAG_SS) ? 1 : 0;
|
|
|
|
//Set ID
|
|
int id_len = (flags & CAN_MSG_FLAG_EXTD) ? FRAME_EXTD_ID_LEN : FRAME_STD_ID_LEN;
|
|
uint8_t *id_buffer = (flags & CAN_MSG_FLAG_EXTD) ? tx_frame->extended.id : tx_frame->standard.id;
|
|
//Split ID into 4 or 2 bytes, and turn into big-endian with left alignment (<< 3 or 5)
|
|
uint32_t id_temp = (flags & CAN_MSG_FLAG_EXTD) ? __builtin_bswap32((id & CAN_EXTD_ID_MASK) << 3) : //((id << 3) >> 8*(3-i))
|
|
__builtin_bswap16((id & CAN_STD_ID_MASK) << 5); //((id << 5) >> 8*(1-i))
|
|
for (int i = 0; i < id_len; i++) {
|
|
id_buffer[i] = (id_temp >> (8 * i)) & 0xFF; //Copy big-endian ID byte by byte
|
|
}
|
|
|
|
//Set Data.
|
|
uint8_t *data_buffer = (flags & CAN_MSG_FLAG_EXTD) ? tx_frame->extended.data : tx_frame->standard.data;
|
|
for (int i = 0; (i < dlc) && (i < FRAME_MAX_DATA_LEN); i++) { //Handle case where dlc is > 8
|
|
data_buffer[i] = data[i];
|
|
}
|
|
}
|
|
|
|
static void can_parse_frame(can_frame_t *rx_frame, uint32_t *id, uint8_t *dlc, uint8_t *data, uint32_t *flags)
|
|
{
|
|
//This function decodes a frame structure into it's constituent components.
|
|
|
|
//Copy frame information
|
|
*dlc = rx_frame->dlc;
|
|
*flags = 0;
|
|
*flags |= (rx_frame->dlc > FRAME_MAX_DATA_LEN) ? CAN_MSG_FLAG_DLC_NON_COMP : 0;
|
|
*flags |= (rx_frame->rtr) ? CAN_MSG_FLAG_RTR : 0;
|
|
*flags |= (rx_frame->frame_format) ? CAN_MSG_FLAG_EXTD : 0;
|
|
|
|
//Copy ID
|
|
int id_len = (rx_frame->frame_format) ? FRAME_EXTD_ID_LEN : FRAME_STD_ID_LEN;
|
|
uint8_t *id_buffer = (rx_frame->frame_format) ? rx_frame->extended.id : rx_frame->standard.id;
|
|
uint32_t id_temp = 0;
|
|
for (int i = 0; i < id_len; i++) {
|
|
id_temp |= id_buffer[i] << (8 * i); //Copy big-endian ID byte by byte
|
|
}
|
|
//Revert endianness of 4 or 2 byte ID, and shift into 29 or 11 bit ID
|
|
id_temp = (rx_frame->frame_format) ? (__builtin_bswap32(id_temp) >> 3) : //((byte[i] << 8*(3-i)) >> 3)
|
|
(__builtin_bswap16(id_temp) >> 5); //((byte[i] << 8*(1-i)) >> 5)
|
|
*id = id_temp & ((rx_frame->frame_format) ? CAN_EXTD_ID_MASK : CAN_STD_ID_MASK);
|
|
|
|
//Copy data
|
|
uint8_t *data_buffer = (rx_frame->frame_format) ? rx_frame->extended.data : rx_frame->standard.data;
|
|
for (int i = 0; (i < rx_frame->dlc) && (i < FRAME_MAX_DATA_LEN); i++) {
|
|
data[i] = data_buffer[i];
|
|
}
|
|
//Set remaining bytes of data to 0
|
|
for (int i = rx_frame->dlc; i < FRAME_MAX_DATA_LEN; i++) {
|
|
data[i] = 0;
|
|
}
|
|
}
|
|
|
|
static void can_configure_gpio(gpio_num_t tx, gpio_num_t rx, gpio_num_t clkout, gpio_num_t bus_status)
|
|
{
|
|
//Set TX pin
|
|
gpio_set_pull_mode(tx, GPIO_FLOATING);
|
|
gpio_matrix_out(tx, CAN_TX_IDX, false, false);
|
|
gpio_pad_select_gpio(tx);
|
|
|
|
//Set RX pin
|
|
gpio_set_pull_mode(rx, GPIO_FLOATING);
|
|
gpio_matrix_in(rx, CAN_RX_IDX, false);
|
|
gpio_pad_select_gpio(rx);
|
|
gpio_set_direction(rx, GPIO_MODE_INPUT);
|
|
|
|
//Configure output clock pin (Optional)
|
|
if (clkout >= 0 && clkout < GPIO_NUM_MAX) {
|
|
gpio_set_pull_mode(clkout, GPIO_FLOATING);
|
|
gpio_matrix_out(clkout, CAN_CLKOUT_IDX, false, false);
|
|
gpio_pad_select_gpio(clkout);
|
|
}
|
|
|
|
//Configure bus status pin (Optional)
|
|
if (bus_status >= 0 && bus_status < GPIO_NUM_MAX) {
|
|
gpio_set_pull_mode(bus_status, GPIO_FLOATING);
|
|
gpio_matrix_out(bus_status, CAN_BUS_OFF_ON_IDX, false, false);
|
|
gpio_pad_select_gpio(bus_status);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------- Public Functions ---------------------------- */
|
|
|
|
esp_err_t can_driver_install(const can_general_config_t *g_config, const can_timing_config_t *t_config, const can_filter_config_t *f_config)
|
|
{
|
|
//Check arguments
|
|
CAN_CHECK(g_config != NULL, ESP_ERR_INVALID_ARG);
|
|
CAN_CHECK(t_config != NULL, ESP_ERR_INVALID_ARG);
|
|
CAN_CHECK(f_config != NULL, ESP_ERR_INVALID_ARG);
|
|
CAN_CHECK(g_config->rx_queue_len > 0, ESP_ERR_INVALID_ARG);
|
|
CAN_CHECK(g_config->tx_io >= 0 && g_config->tx_io < GPIO_NUM_MAX, ESP_ERR_INVALID_ARG);
|
|
CAN_CHECK(g_config->rx_io >= 0 && g_config->rx_io < GPIO_NUM_MAX, ESP_ERR_INVALID_ARG);
|
|
#if (CONFIG_ESP32_REV_MIN >= 2)
|
|
//ESP32 revision 2 or later chips have a brp_div bit. Check that the BRP config value is valid when brp_div is enabled or disabled
|
|
CAN_CHECK(BRP_CHECK_WITH_DIV(t_config->brp) || BRP_CHECK_NO_DIV(t_config->brp), ESP_ERR_INVALID_ARG);
|
|
#else
|
|
CAN_CHECK(BRP_CHECK_NO_DIV(t_config->brp), ESP_ERR_INVALID_ARG);
|
|
#endif
|
|
|
|
esp_err_t ret;
|
|
can_obj_t *p_can_obj_dummy;
|
|
|
|
//Create a CAN object
|
|
p_can_obj_dummy = calloc(1, sizeof(can_obj_t));
|
|
CAN_CHECK(p_can_obj_dummy != NULL, ESP_ERR_NO_MEM);
|
|
|
|
//Initialize queues, semaphores, and power management locks
|
|
p_can_obj_dummy->tx_queue = (g_config->tx_queue_len > 0) ? xQueueCreate(g_config->tx_queue_len, sizeof(can_frame_t)) : NULL;
|
|
p_can_obj_dummy->rx_queue = xQueueCreate(g_config->rx_queue_len, sizeof(can_frame_t));
|
|
p_can_obj_dummy->alert_semphr = xSemaphoreCreateBinary();
|
|
if ((g_config->tx_queue_len > 0 && p_can_obj_dummy->tx_queue == NULL) ||
|
|
p_can_obj_dummy->rx_queue == NULL || p_can_obj_dummy->alert_semphr == NULL) {
|
|
ret = ESP_ERR_NO_MEM;
|
|
goto err;
|
|
}
|
|
#ifdef CONFIG_PM_ENABLE
|
|
esp_err_t pm_err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "can", &(p_can_obj_dummy->pm_lock));
|
|
if (pm_err != ESP_OK ) {
|
|
ret = pm_err;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
//Initialize flags and variables
|
|
p_can_obj_dummy->control_flags = CTRL_FLAG_STOPPED;
|
|
p_can_obj_dummy->control_flags |= (g_config->mode == CAN_MODE_NO_ACK) ? CTRL_FLAG_SELF_TEST : 0;
|
|
p_can_obj_dummy->control_flags |= (g_config->mode == CAN_MODE_LISTEN_ONLY) ? CTRL_FLAG_LISTEN_ONLY : 0;
|
|
p_can_obj_dummy->tx_msg_count = 0;
|
|
p_can_obj_dummy->rx_msg_count = 0;
|
|
p_can_obj_dummy->tx_failed_count = 0;
|
|
p_can_obj_dummy->rx_missed_count = 0;
|
|
p_can_obj_dummy->arb_lost_count = 0;
|
|
p_can_obj_dummy->bus_error_count = 0;
|
|
p_can_obj_dummy->alerts_enabled = g_config->alerts_enabled;
|
|
p_can_obj_dummy->alerts_triggered = 0;
|
|
|
|
//Initialize CAN peripheral registers, and allocate interrupt
|
|
CAN_ENTER_CRITICAL();
|
|
if (p_can_obj == NULL) {
|
|
p_can_obj = p_can_obj_dummy;
|
|
} else {
|
|
//Check if driver is already installed
|
|
CAN_EXIT_CRITICAL();
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
goto err;
|
|
}
|
|
periph_module_reset(PERIPH_CAN_MODULE);
|
|
periph_module_enable(PERIPH_CAN_MODULE); //Enable APB CLK to CAN peripheral
|
|
esp_err_t err = can_enter_reset_mode(); //Must enter reset mode to write to config registers
|
|
assert(err == ESP_OK);
|
|
can_config_pelican(); //Use PeliCAN addresses
|
|
/* Note: REC is allowed to increase even in reset mode. Listen only mode
|
|
will freeze REC. The desired mode will be set when can_start() is called. */
|
|
can_config_mode(CAN_MODE_LISTEN_ONLY);
|
|
#if (CONFIG_ESP32_REV_MIN >= 2)
|
|
//If the BRP config value is large enough, the brp_div bit must be enabled to achieve the same effective baud rate prescaler
|
|
can_config_interrupts((t_config->brp > BRP_DIV_EN_THRESH) ? DRIVER_DEFAULT_INTERRUPTS | BRP_DIV_EN_BIT : DRIVER_DEFAULT_INTERRUPTS);
|
|
can_config_bus_timing((t_config->brp > BRP_DIV_EN_THRESH) ? t_config->brp/2 : t_config->brp, t_config->sjw, t_config->tseg_1, t_config->tseg_2, t_config->triple_sampling);
|
|
#else
|
|
can_config_interrupts(DRIVER_DEFAULT_INTERRUPTS);
|
|
can_config_bus_timing(t_config->brp, t_config->sjw, t_config->tseg_1, t_config->tseg_2, t_config->triple_sampling);
|
|
#endif
|
|
can_config_error(DRIVER_DEFAULT_EWL, DRIVER_DEFAULT_REC, DRIVER_DEFAULT_TEC);
|
|
can_config_acceptance_filter(f_config->acceptance_code, f_config->acceptance_mask, f_config->single_filter);
|
|
can_config_clk_out(g_config->clkout_divider);
|
|
//Allocate GPIO and Interrupts
|
|
can_configure_gpio(g_config->tx_io, g_config->rx_io, g_config->clkout_io, g_config->bus_off_io);
|
|
(void) can_get_interrupt_reason(); //Read interrupt reg to clear it before allocating ISR
|
|
ESP_ERROR_CHECK(esp_intr_alloc(ETS_CAN_INTR_SOURCE, 0, can_intr_handler_main, NULL, &p_can_obj->isr_handle));
|
|
//Todo: Allow interrupt to be registered to specified CPU
|
|
CAN_EXIT_CRITICAL();
|
|
|
|
#ifdef CONFIG_PM_ENABLE
|
|
ESP_ERROR_CHECK(esp_pm_lock_acquire(p_can_obj->pm_lock)); //Acquire pm_lock to keep APB clock at 80MHz
|
|
#endif
|
|
return ESP_OK; //CAN module is still in reset mode, users need to call can_start() afterwards
|
|
|
|
err:
|
|
//Cleanup CAN object and return error
|
|
if (p_can_obj_dummy != NULL) {
|
|
if (p_can_obj_dummy->tx_queue != NULL) {
|
|
vQueueDelete(p_can_obj_dummy->tx_queue);
|
|
p_can_obj_dummy->tx_queue = NULL;
|
|
}
|
|
if (p_can_obj_dummy->rx_queue != NULL) {
|
|
vQueueDelete(p_can_obj_dummy->rx_queue);
|
|
p_can_obj_dummy->rx_queue = NULL;
|
|
}
|
|
if (p_can_obj_dummy->alert_semphr != NULL) {
|
|
vSemaphoreDelete(p_can_obj_dummy->alert_semphr);
|
|
p_can_obj_dummy->alert_semphr = NULL;
|
|
}
|
|
#ifdef CONFIG_PM_ENABLE
|
|
if (p_can_obj_dummy->pm_lock != NULL) {
|
|
ESP_ERROR_CHECK(esp_pm_lock_delete(p_can_obj_dummy->pm_lock));
|
|
}
|
|
#endif
|
|
free(p_can_obj_dummy);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t can_driver_uninstall(void)
|
|
{
|
|
can_obj_t *p_can_obj_dummy;
|
|
|
|
CAN_ENTER_CRITICAL();
|
|
//Check state
|
|
CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE);
|
|
CAN_CHECK_FROM_CRIT(p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_BUS_OFF), ESP_ERR_INVALID_STATE);
|
|
esp_err_t err = can_enter_reset_mode(); //Enter reset mode to stop any CAN bus activity
|
|
assert(err == ESP_OK);
|
|
//Clear registers by reading
|
|
(void) can_get_interrupt_reason();
|
|
(void) can_get_arbitration_lost_capture();
|
|
(void) can_get_error_code_capture();
|
|
|
|
ESP_ERROR_CHECK(esp_intr_free(p_can_obj->isr_handle)); //Free interrupt
|
|
periph_module_disable(PERIPH_CAN_MODULE); //Disable CAN peripheral
|
|
p_can_obj_dummy = p_can_obj; //Use dummy to shorten critical section
|
|
p_can_obj = NULL;
|
|
CAN_EXIT_CRITICAL();
|
|
|
|
//Delete queues, semaphores, and power management locks
|
|
if (p_can_obj_dummy->tx_queue != NULL) {
|
|
vQueueDelete(p_can_obj_dummy->tx_queue);
|
|
}
|
|
vQueueDelete(p_can_obj_dummy->rx_queue);
|
|
vSemaphoreDelete(p_can_obj_dummy->alert_semphr);
|
|
#ifdef CONFIG_PM_ENABLE
|
|
//Release and delete power management lock
|
|
ESP_ERROR_CHECK(esp_pm_lock_release(p_can_obj_dummy->pm_lock));
|
|
ESP_ERROR_CHECK(esp_pm_lock_delete(p_can_obj_dummy->pm_lock));
|
|
#endif
|
|
free(p_can_obj_dummy); //Free can driver object
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t can_start(void)
|
|
{
|
|
//Check state
|
|
CAN_ENTER_CRITICAL();
|
|
CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE);
|
|
CAN_CHECK_FROM_CRIT(p_can_obj->control_flags & CTRL_FLAG_STOPPED, ESP_ERR_INVALID_STATE);
|
|
|
|
//Reset RX queue, and RX message count
|
|
xQueueReset(p_can_obj->rx_queue);
|
|
p_can_obj->rx_msg_count = 0;
|
|
esp_err_t err = can_enter_reset_mode(); //Should already be in bus-off mode, set again to make sure
|
|
assert(err == ESP_OK);
|
|
|
|
//Currently in listen only mode, need to set to mode specified by configuration
|
|
can_mode_t mode;
|
|
if (p_can_obj->control_flags & CTRL_FLAG_SELF_TEST) {
|
|
mode = CAN_MODE_NO_ACK;
|
|
} else if (p_can_obj->control_flags & CTRL_FLAG_LISTEN_ONLY) {
|
|
mode = CAN_MODE_LISTEN_ONLY;
|
|
} else {
|
|
mode = CAN_MODE_NORMAL;
|
|
}
|
|
can_config_mode(mode); //Set mode
|
|
(void) can_get_interrupt_reason(); //Clear interrupt register
|
|
err = can_exit_reset_mode();
|
|
assert(err == ESP_OK);
|
|
|
|
CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_STOPPED);
|
|
CAN_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t can_stop(void)
|
|
{
|
|
//Check state
|
|
CAN_ENTER_CRITICAL();
|
|
CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE);
|
|
CAN_CHECK_FROM_CRIT(!(p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_BUS_OFF)), ESP_ERR_INVALID_STATE);
|
|
|
|
//Clear interrupts and reset flags
|
|
esp_err_t err = can_enter_reset_mode();
|
|
assert(err == ESP_OK);
|
|
(void) can_get_interrupt_reason(); //Read interrupt register to clear interrupts
|
|
can_config_mode(CAN_MODE_LISTEN_ONLY); //Set to listen only mode to freeze REC
|
|
CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED);
|
|
CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_STOPPED);
|
|
|
|
//Reset TX Queue and message count
|
|
if (p_can_obj->tx_queue != NULL) {
|
|
xQueueReset(p_can_obj->tx_queue);
|
|
}
|
|
p_can_obj->tx_msg_count = 0;
|
|
|
|
CAN_EXIT_CRITICAL();
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t can_transmit(const can_message_t *message, TickType_t ticks_to_wait)
|
|
{
|
|
//Check arguments
|
|
CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE);
|
|
CAN_CHECK(message != NULL, ESP_ERR_INVALID_ARG);
|
|
CAN_CHECK((message->data_length_code <= FRAME_MAX_DATA_LEN) || (message->flags & CAN_MSG_FLAG_DLC_NON_COMP), ESP_ERR_INVALID_ARG);
|
|
|
|
CAN_ENTER_CRITICAL();
|
|
//Check State
|
|
CAN_CHECK_FROM_CRIT(!(p_can_obj->control_flags & CTRL_FLAG_LISTEN_ONLY), ESP_ERR_NOT_SUPPORTED);
|
|
CAN_CHECK_FROM_CRIT(!(p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_BUS_OFF)), ESP_ERR_INVALID_STATE);
|
|
//Format frame
|
|
esp_err_t ret = ESP_FAIL;
|
|
can_frame_t tx_frame;
|
|
can_format_frame(message->identifier, message->data_length_code, message->data, message->flags, &tx_frame);
|
|
//Check if frame can be sent immediately
|
|
if ((p_can_obj->tx_msg_count == 0) && !(p_can_obj->control_flags & CTRL_FLAG_TX_BUFF_OCCUPIED)) {
|
|
//No other frames waiting to transmit. Bypass queue and transmit immediately
|
|
can_set_tx_buffer_and_transmit(&tx_frame);
|
|
p_can_obj->tx_msg_count++;
|
|
CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED);
|
|
ret = ESP_OK;
|
|
}
|
|
CAN_EXIT_CRITICAL();
|
|
|
|
if (ret != ESP_OK) {
|
|
if (p_can_obj->tx_queue == NULL) {
|
|
//TX Queue is disabled and TX buffer is occupied, message was not sent
|
|
ret = ESP_FAIL;
|
|
} else if (xQueueSend(p_can_obj->tx_queue, &tx_frame, ticks_to_wait) == pdTRUE) {
|
|
//Copied to TX Queue
|
|
CAN_ENTER_CRITICAL();
|
|
if (p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_BUS_OFF)) {
|
|
//TX queue was reset (due to stop/bus_off), remove copied frame from queue to prevent transmission
|
|
int res = xQueueReceive(p_can_obj->tx_queue, &tx_frame, 0);
|
|
assert(res == pdTRUE);
|
|
ret = ESP_ERR_INVALID_STATE;
|
|
} else if ((p_can_obj->tx_msg_count == 0) && !(p_can_obj->control_flags & CTRL_FLAG_TX_BUFF_OCCUPIED)) {
|
|
//TX buffer was freed during copy, manually trigger transmission
|
|
int res = xQueueReceive(p_can_obj->tx_queue, &tx_frame, 0);
|
|
assert(res == pdTRUE);
|
|
can_set_tx_buffer_and_transmit(&tx_frame);
|
|
p_can_obj->tx_msg_count++;
|
|
CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED);
|
|
ret = ESP_OK;
|
|
} else {
|
|
//Frame was copied to queue, waiting to be transmitted
|
|
p_can_obj->tx_msg_count++;
|
|
ret = ESP_OK;
|
|
}
|
|
CAN_EXIT_CRITICAL();
|
|
} else {
|
|
//Timed out waiting for free space on TX queue
|
|
ret = ESP_ERR_TIMEOUT;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t can_receive(can_message_t *message, TickType_t ticks_to_wait)
|
|
{
|
|
//Check arguments and state
|
|
CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE);
|
|
CAN_CHECK(message != NULL, ESP_ERR_INVALID_ARG);
|
|
|
|
//Get frame from RX Queue or RX Buffer
|
|
can_frame_t rx_frame;
|
|
if (xQueueReceive(p_can_obj->rx_queue, &rx_frame, ticks_to_wait) != pdTRUE) {
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
|
|
CAN_ENTER_CRITICAL();
|
|
p_can_obj->rx_msg_count--;
|
|
CAN_EXIT_CRITICAL();
|
|
|
|
//Decode frame
|
|
can_parse_frame(&rx_frame, &(message->identifier), &(message->data_length_code), message->data, &(message->flags));
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t can_read_alerts(uint32_t *alerts, TickType_t ticks_to_wait)
|
|
{
|
|
//Check arguments and state
|
|
CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE);
|
|
CAN_CHECK(alerts != NULL, ESP_ERR_INVALID_ARG);
|
|
|
|
//Wait for an alert to occur
|
|
if (xSemaphoreTake(p_can_obj->alert_semphr, ticks_to_wait) == pdTRUE) {
|
|
CAN_ENTER_CRITICAL();
|
|
*alerts = p_can_obj->alerts_triggered;
|
|
p_can_obj->alerts_triggered = 0; //Clear triggered alerts
|
|
CAN_EXIT_CRITICAL();
|
|
return ESP_OK;
|
|
} else {
|
|
*alerts = 0;
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
esp_err_t can_reconfigure_alerts(uint32_t alerts_enabled, uint32_t *current_alerts)
|
|
{
|
|
CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE);
|
|
CAN_ENTER_CRITICAL();
|
|
uint32_t cur_alerts;
|
|
can_read_alerts(&cur_alerts, 0); //Clear any unhandled alerts
|
|
p_can_obj->alerts_enabled = alerts_enabled; //Update enabled alerts
|
|
CAN_EXIT_CRITICAL();
|
|
|
|
if (current_alerts != NULL) {
|
|
*current_alerts = cur_alerts;
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t can_initiate_recovery(void)
|
|
{
|
|
CAN_ENTER_CRITICAL();
|
|
//Check state
|
|
CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE);
|
|
CAN_CHECK_FROM_CRIT(p_can_obj->control_flags & CTRL_FLAG_BUS_OFF, ESP_ERR_INVALID_STATE);
|
|
CAN_CHECK_FROM_CRIT(!(p_can_obj->control_flags & CTRL_FLAG_RECOVERING), ESP_ERR_INVALID_STATE);
|
|
|
|
//Reset TX Queue/Counters
|
|
if (p_can_obj->tx_queue != NULL) {
|
|
xQueueReset(p_can_obj->tx_queue);
|
|
}
|
|
p_can_obj->tx_msg_count = 0;
|
|
CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED);
|
|
CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_RECOVERING);
|
|
|
|
//Trigger start of recovery process
|
|
esp_err_t err = can_exit_reset_mode();
|
|
assert(err == ESP_OK);
|
|
CAN_EXIT_CRITICAL();
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t can_get_status_info(can_status_info_t *status_info)
|
|
{
|
|
//Check parameters and state
|
|
CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE);
|
|
CAN_CHECK(status_info != NULL, ESP_ERR_INVALID_ARG);
|
|
|
|
CAN_ENTER_CRITICAL();
|
|
uint32_t tec, rec;
|
|
can_get_error_counters(&tec, &rec);
|
|
status_info->tx_error_counter = tec;
|
|
status_info->rx_error_counter = rec;
|
|
status_info->msgs_to_tx = p_can_obj->tx_msg_count;
|
|
status_info->msgs_to_rx = p_can_obj->rx_msg_count;
|
|
status_info->tx_failed_count = p_can_obj->tx_failed_count;
|
|
status_info->rx_missed_count = p_can_obj->rx_missed_count;
|
|
status_info->arb_lost_count = p_can_obj->arb_lost_count;
|
|
status_info->bus_error_count = p_can_obj->bus_error_count;
|
|
if (p_can_obj->control_flags & CTRL_FLAG_RECOVERING) {
|
|
status_info->state = CAN_STATE_RECOVERING;
|
|
} else if (p_can_obj->control_flags & CTRL_FLAG_BUS_OFF) {
|
|
status_info->state = CAN_STATE_BUS_OFF;
|
|
} else if (p_can_obj->control_flags & CTRL_FLAG_STOPPED) {
|
|
status_info->state = CAN_STATE_STOPPED;
|
|
} else {
|
|
status_info->state = CAN_STATE_RUNNING;
|
|
}
|
|
CAN_EXIT_CRITICAL();
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t can_clear_transmit_queue(void)
|
|
{
|
|
//Check State
|
|
CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE);
|
|
CAN_CHECK(p_can_obj->tx_queue != NULL, ESP_ERR_NOT_SUPPORTED);
|
|
|
|
CAN_ENTER_CRITICAL();
|
|
//If a message is currently undergoing transmission, the tx interrupt handler will decrement tx_msg_count
|
|
p_can_obj->tx_msg_count = (p_can_obj->control_flags & CTRL_FLAG_TX_BUFF_OCCUPIED) ? 1 : 0;
|
|
xQueueReset(p_can_obj->tx_queue);
|
|
CAN_EXIT_CRITICAL();
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t can_clear_receive_queue(void)
|
|
{
|
|
//Check State
|
|
CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE);
|
|
|
|
CAN_ENTER_CRITICAL();
|
|
p_can_obj->rx_msg_count = 0;
|
|
xQueueReset(p_can_obj->rx_queue);
|
|
CAN_EXIT_CRITICAL();
|
|
|
|
return ESP_OK;
|
|
}
|
|
#endif
|