OVMS3-idf/components/mbedtls/port/esp32s2/sha.c
Marius Vikhammer b75edc84e3 esp32s2 SHA: fallback to hashing block by block for non DMA memory
Also adds unit test for SHA with input buffer in flash

Closes IDF-1529
2020-06-10 15:09:20 +08:00

396 lines
11 KiB
C

/*
* ESP32 hardware accelerated SHA1/256/512 implementation
* based on mbedTLS FIPS-197 compliant version.
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/*
* The SHA-1 standard was published by NIST in 1993.
*
* http://www.itl.nist.gov/fipspubs/fip180-1.htm
*/
#include <string.h>
#include <stdio.h>
#include <sys/lock.h>
#include "esp_log.h"
#include "esp_crypto_lock.h"
#include "esp32s2/rom/cache.h"
#include "esp32s2/rom/lldesc.h"
#include "esp32s2/rom/ets_sys.h"
#include "soc/crypto_dma_reg.h"
#include "soc/dport_reg.h"
#include "soc/hwcrypto_reg.h"
#include "soc/cache_memory.h"
#include "soc/periph_defs.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "driver/periph_ctrl.h"
#include "sys/param.h"
#include "esp32s2/sha.h"
/* Max amount of bytes in a single DMA operation is 4095,
for SHA this means that the biggest safe amount of bytes is
31 blocks of 128 bytes = 3968
*/
#define SHA_DMA_MAX_BYTES 3968
/* The longest length of a single block is for SHA512 = 128 byte */
#define SHA_MAX_BLK_LEN 128
const static char *TAG = "esp-sha";
/* Return block size (in bytes) for a given SHA type */
inline static size_t block_length(esp_sha_type type)
{
switch (type) {
case SHA1:
case SHA2_224:
case SHA2_256:
return 64;
case SHA2_384:
case SHA2_512:
case SHA2_512224:
case SHA2_512256:
case SHA2_512T:
return 128;
default:
return 0;
}
}
/* Return state size (in bytes) for a given SHA type */
inline static size_t state_length(esp_sha_type type)
{
switch (type) {
case SHA1:
return 160 / 8;
case SHA2_224:
case SHA2_256:
return 256 / 8;
case SHA2_384:
case SHA2_512:
case SHA2_512224:
case SHA2_512256:
case SHA2_512T:
return 512 / 8;
default:
return 0;
}
}
/* Enable SHA peripheral and then lock it */
void esp_sha_acquire_hardware()
{
esp_crypto_dma_lock_acquire();
/* Enable SHA and DMA hardware */
periph_module_enable(PERIPH_SHA_DMA_MODULE);
/* DMA for SHA */
REG_WRITE(CRYPTO_DMA_AES_SHA_SELECT_REG, 1);
}
/* Disable SHA peripheral block and then release it */
void esp_sha_release_hardware()
{
/* Disable SHA and DMA hardware */
periph_module_disable(PERIPH_SHA_DMA_MODULE);
esp_crypto_dma_lock_release();
}
/* Busy wait until SHA is idle */
static void esp_sha_wait_idle(void)
{
while (DPORT_REG_READ(SHA_BUSY_REG) != 0) {
}
}
void esp_sha_write_digest_state(esp_sha_type sha_type, void *digest_state)
{
uint32_t *digest_state_words = (uint32_t *)digest_state;
uint32_t *reg_addr_buf = (uint32_t *)(SHA_H_BASE);
for (int i = 0; i < state_length(sha_type) / 4; i++) {
REG_WRITE(&reg_addr_buf[i], digest_state_words[i]);
}
}
/* Read the SHA digest from hardware */
void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state)
{
uint32_t *digest_state_words = (uint32_t *)digest_state;
int word_len = state_length(sha_type) / 4;
esp_dport_access_read_buffer(digest_state_words, SHA_H_BASE, word_len);
/* Fault injection check: verify SHA engine actually ran,
state is not all zeroes.
*/
for (int i = 0; i < word_len; i++) {
if (digest_state_words[i] != 0) {
return;
}
}
abort(); // SHA peripheral returned all zero state, probably due to fault injection
}
/* The initial hash value for SHA512/t is generated according to the
algorithm described in the TRM, chapter SHA-Accelerator
*/
int esp_sha_512_t_init_hash(uint16_t t)
{
uint32_t t_string = 0;
uint8_t t0, t1, t2, t_len;
if (t == 384) {
ESP_LOGE(TAG, "Invalid t for SHA512/t, t = %u,cannot be 384", t);
return -1;
}
if (t <= 9) {
t_string = (uint32_t)((1 << 23) | ((0x30 + t) << 24));
t_len = 0x48;
} else if (t <= 99) {
t0 = t % 10;
t1 = (t / 10) % 10;
t_string = (uint32_t)((1 << 15) | ((0x30 + t0) << 16) |
(((0x30 + t1) << 24)));
t_len = 0x50;
} else if (t <= 512) {
t0 = t % 10;
t1 = (t / 10) % 10;
t2 = t / 100;
t_string = (uint32_t)((1 << 7) | ((0x30 + t0) << 8) |
(((0x30 + t1) << 16) + ((0x30 + t2) << 24)));
t_len = 0x58;
} else {
ESP_LOGE(TAG, "Invalid t for SHA512/t, t = %u, must equal or less than 512", t);
return -1;
}
REG_WRITE(SHA_T_LENGTH_REG, t_len);
REG_WRITE(SHA_T_STRING_REG, t_string);
REG_WRITE(SHA_MODE_REG, SHA2_512T);
REG_WRITE(SHA_START_REG, 1);
esp_sha_wait_idle();
return 0;
}
static void esp_sha_fill_text_block(esp_sha_type sha_type, const void *input)
{
uint32_t *reg_addr_buf = (uint32_t *)(SHA_TEXT_BASE);
uint32_t *data_words = NULL;
/* Fill the data block */
data_words = (uint32_t *)(input);
for (int i = 0; i < block_length(sha_type) / 4; i++) {
reg_addr_buf[i] = (data_words[i]);
}
asm volatile ("memw");
}
/* Hash a single SHA block */
static void esp_sha_block(esp_sha_type sha_type, const void *input, bool is_first_block)
{
esp_sha_fill_text_block(sha_type, input);
esp_sha_wait_idle();
/* Start hashing */
if (is_first_block) {
REG_WRITE(SHA_START_REG, 1);
} else {
REG_WRITE(SHA_CONTINUE_REG, 1);
}
}
/* Hash the input block by block, using non-DMA mode */
static void esp_sha_block_mode(esp_sha_type sha_type, const uint8_t *input, uint32_t ilen,
const uint8_t *buf, uint32_t buf_len, bool is_first_block)
{
size_t blk_len = 0;
int num_block = 0;
blk_len = block_length(sha_type);
REG_WRITE(SHA_MODE_REG, sha_type);
num_block = ilen / blk_len;
if (buf_len != 0) {
esp_sha_block(sha_type, buf, is_first_block);
is_first_block = false;
}
for (int i = 0; i < num_block; i++) {
esp_sha_block(sha_type, input + blk_len*i, is_first_block);
is_first_block = false;
}
esp_sha_wait_idle();
}
static int esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
const void *buf, uint32_t buf_len, bool is_first_block);
/* Performs SHA on multiple blocks at a time using DMA
splits up into smaller operations for inputs that exceed a single DMA list
*/
int esp_sha_dma(esp_sha_type sha_type, const void *input, uint32_t ilen,
const void *buf, uint32_t buf_len, bool is_first_block)
{
int ret = 0;
unsigned char *dma_cap_buf = NULL;
int dma_op_num = ( ilen / (SHA_DMA_MAX_BYTES + 1) ) + 1;
if (buf_len > block_length(sha_type)) {
ESP_LOGE(TAG, "SHA DMA buf_len cannot exceed max size for a single block");
return -1;
}
/* DMA cannot access memory in the iCache range, hash block by block instead of using DMA */
if (!esp_ptr_dma_ext_capable(input) && !esp_ptr_dma_capable(input) && (ilen != 0)) {
esp_sha_block_mode(sha_type, input, ilen, buf, buf_len, is_first_block);
return 0;
}
#if (CONFIG_ESP32S2_SPIRAM_SUPPORT)
if (esp_ptr_external_ram(input)) {
Cache_WriteBack_Addr((uint32_t)input, ilen);
}
if (esp_ptr_external_ram(buf)) {
Cache_WriteBack_Addr((uint32_t)buf, buf_len);
}
#endif
/* Copy to internal buf if buf is in non DMA capable memory */
if (!esp_ptr_dma_ext_capable(buf) && !esp_ptr_dma_capable(buf) && (buf_len != 0)) {
dma_cap_buf = heap_caps_malloc(sizeof(unsigned char) * buf_len, MALLOC_CAP_DMA);
if (dma_cap_buf == NULL) {
ESP_LOGE(TAG, "Failed to allocate buf memory");
ret = -1;
goto cleanup;
}
memcpy(dma_cap_buf, buf, buf_len);
buf = dma_cap_buf;
}
/* The max amount of blocks in a single hardware operation is 2^6 - 1 = 63
Thus we only do a single DMA input list + dma buf list,
which is max 3968/64 + 64/64 = 63 blocks */
for (int i = 0; i < dma_op_num; i++) {
int dma_chunk_len = MIN(ilen, SHA_DMA_MAX_BYTES);
ret = esp_sha_dma_process(sha_type, input, dma_chunk_len, buf, buf_len, is_first_block);
if (ret != 0) {
goto cleanup;
}
ilen -= dma_chunk_len;
input += dma_chunk_len;
// Only append buf to the first operation
buf_len = 0;
is_first_block = false;
}
cleanup:
free(dma_cap_buf);
return ret;
}
static void esp_sha_dma_init(lldesc_t *input)
{
/* Reset DMA */
SET_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST);
CLEAR_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST);
/* Set descriptors */
CLEAR_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_ADDR);
SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, ((uint32_t)(input))&OUT_LINK_REG_OUTLINK_ADDR);
/* Start transfer */
SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_START);
}
/* Performs SHA on multiple blocks at a time */
static esp_err_t esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
const void *buf, uint32_t buf_len, bool is_first_block)
{
size_t blk_len = 0;
int ret = 0;
lldesc_t dma_descr_input = {};
lldesc_t dma_descr_buf = {};
lldesc_t *dma_descr_head;
blk_len = block_length(sha_type);
REG_WRITE(SHA_MODE_REG, sha_type);
REG_WRITE(SHA_BLOCK_NUM_REG, ((ilen + buf_len) / blk_len));
/* DMA descriptor for Memory to DMA-SHA transfer */
if (ilen) {
dma_descr_input.length = ilen;
dma_descr_input.size = ilen;
dma_descr_input.owner = 1;
dma_descr_input.eof = 1;
dma_descr_input.buf = input;
dma_descr_head = &dma_descr_input;
}
/* Check after input to overide head if there is any buf*/
if (buf_len) {
dma_descr_buf.length = buf_len;
dma_descr_buf.size = buf_len;
dma_descr_buf.owner = 1;
dma_descr_buf.eof = 1;
dma_descr_buf.buf = buf;
dma_descr_head = &dma_descr_buf;
}
/* Link DMA lists */
if (buf_len && ilen) {
dma_descr_buf.eof = 0;
dma_descr_buf.empty = (uint32_t)(&dma_descr_input);
}
esp_sha_dma_init(dma_descr_head);
/* Start hashing */
if (is_first_block) {
REG_WRITE(SHA_DMA_START_REG, 1);
} else {
REG_WRITE(SHA_DMA_CONTINUE_REG, 1);
}
esp_sha_wait_idle();
return ret;
}