OVMS3-idf/components/spi_flash/partition.c

348 lines
12 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <sys/lock.h>
#include "esp_flash_partitions.h"
#include "esp_attr.h"
#include "esp_flash_data_types.h"
#include "esp_spi_flash.h"
#include "esp_partition.h"
#include "esp_flash_encrypt.h"
#include "esp_log.h"
#include "bootloader_common.h"
#define HASH_LEN 32 /* SHA-256 digest length */
#ifndef NDEBUG
// Enable built-in checks in queue.h in debug builds
#define INVARIANTS
#endif
#include "rom/queue.h"
typedef struct partition_list_item_ {
esp_partition_t info;
SLIST_ENTRY(partition_list_item_) next;
} partition_list_item_t;
typedef struct esp_partition_iterator_opaque_ {
esp_partition_type_t type; // requested type
esp_partition_subtype_t subtype; // requested subtype
const char* label; // requested label (can be NULL)
partition_list_item_t* next_item; // next item to iterate to
esp_partition_t* info; // pointer to info (it is redundant, but makes code more readable)
} esp_partition_iterator_opaque_t;
static esp_partition_iterator_opaque_t* iterator_create(esp_partition_type_t type, esp_partition_subtype_t subtype, const char* label);
static esp_err_t load_partitions();
static SLIST_HEAD(partition_list_head_, partition_list_item_) s_partition_list =
SLIST_HEAD_INITIALIZER(s_partition_list);
static _lock_t s_partition_list_lock;
esp_partition_iterator_t esp_partition_find(esp_partition_type_t type,
esp_partition_subtype_t subtype, const char* label)
{
if (SLIST_EMPTY(&s_partition_list)) {
// only lock if list is empty (and check again after acquiring lock)
_lock_acquire(&s_partition_list_lock);
esp_err_t err = ESP_OK;
if (SLIST_EMPTY(&s_partition_list)) {
err = load_partitions();
}
_lock_release(&s_partition_list_lock);
if (err != ESP_OK) {
return NULL;
}
}
// create an iterator pointing to the start of the list
// (next item will be the first one)
esp_partition_iterator_t it = iterator_create(type, subtype, label);
// advance iterator to the next item which matches constraints
it = esp_partition_next(it);
// if nothing found, it == NULL and iterator has been released
return it;
}
esp_partition_iterator_t esp_partition_next(esp_partition_iterator_t it)
{
assert(it);
// iterator reached the end of linked list?
if (it->next_item == NULL) {
esp_partition_iterator_release(it);
return NULL;
}
_lock_acquire(&s_partition_list_lock);
for (; it->next_item != NULL; it->next_item = SLIST_NEXT(it->next_item, next)) {
esp_partition_t* p = &it->next_item->info;
if (it->type != p->type) {
continue;
}
if (it->subtype != 0xff && it->subtype != p->subtype) {
continue;
}
if (it->label != NULL && strcmp(it->label, p->label) != 0) {
continue;
}
// all constraints match, bail out
break;
}
_lock_release(&s_partition_list_lock);
if (it->next_item == NULL) {
esp_partition_iterator_release(it);
return NULL;
}
it->info = &it->next_item->info;
it->next_item = SLIST_NEXT(it->next_item, next);
return it;
}
const esp_partition_t* esp_partition_find_first(esp_partition_type_t type,
esp_partition_subtype_t subtype, const char* label)
{
esp_partition_iterator_t it = esp_partition_find(type, subtype, label);
if (it == NULL) {
return NULL;
}
const esp_partition_t* res = esp_partition_get(it);
esp_partition_iterator_release(it);
return res;
}
static esp_partition_iterator_opaque_t* iterator_create(esp_partition_type_t type,
esp_partition_subtype_t subtype, const char* label)
{
esp_partition_iterator_opaque_t* it =
(esp_partition_iterator_opaque_t*) malloc(sizeof(esp_partition_iterator_opaque_t));
it->type = type;
it->subtype = subtype;
it->label = label;
it->next_item = SLIST_FIRST(&s_partition_list);
it->info = NULL;
return it;
}
// Create linked list of partition_list_item_t structures.
// This function is called only once, with s_partition_list_lock taken.
static esp_err_t load_partitions()
{
const uint32_t* ptr;
spi_flash_mmap_handle_t handle;
// map 64kB block where partition table is located
esp_err_t err = spi_flash_mmap(ESP_PARTITION_TABLE_OFFSET & 0xffff0000,
SPI_FLASH_SEC_SIZE, SPI_FLASH_MMAP_DATA, (const void**) &ptr, &handle);
if (err != ESP_OK) {
return err;
}
// calculate partition address within mmap-ed region
const esp_partition_info_t* it = (const esp_partition_info_t*)
(ptr + (ESP_PARTITION_TABLE_OFFSET & 0xffff) / sizeof(*ptr));
const esp_partition_info_t* end = it + SPI_FLASH_SEC_SIZE / sizeof(*it);
// tail of the linked list of partitions
partition_list_item_t* last = NULL;
for (; it != end; ++it) {
if (it->magic != ESP_PARTITION_MAGIC) {
break;
}
// allocate new linked list item and populate it with data from partition table
partition_list_item_t* item = (partition_list_item_t*) malloc(sizeof(partition_list_item_t));
item->info.address = it->pos.offset;
item->info.size = it->pos.size;
item->info.type = it->type;
item->info.subtype = it->subtype;
item->info.encrypted = it->flags & PART_FLAG_ENCRYPTED;
if (esp_flash_encryption_enabled() && (
it->type == PART_TYPE_APP
|| (it->type == PART_TYPE_DATA && it->subtype == PART_SUBTYPE_DATA_OTA)
|| (it->type == PART_TYPE_DATA && it->subtype == PART_SUBTYPE_DATA_NVS_KEYS))) {
/* If encryption is turned on, all app partitions and OTA data
are always encrypted */
item->info.encrypted = true;
}
// it->label may not be zero-terminated
strncpy(item->info.label, (const char*) it->label, sizeof(item->info.label) - 1);
item->info.label[sizeof(it->label)] = 0;
// add it to the list
if (last == NULL) {
SLIST_INSERT_HEAD(&s_partition_list, item, next);
} else {
SLIST_INSERT_AFTER(last, item, next);
}
last = item;
}
spi_flash_munmap(handle);
return ESP_OK;
}
void esp_partition_iterator_release(esp_partition_iterator_t iterator)
{
// iterator == NULL is okay
free(iterator);
}
const esp_partition_t* esp_partition_get(esp_partition_iterator_t iterator)
{
assert(iterator != NULL);
return iterator->info;
}
const esp_partition_t *esp_partition_verify(const esp_partition_t *partition)
{
assert(partition != NULL);
const char *label = (strlen(partition->label) > 0) ? partition->label : NULL;
esp_partition_iterator_t it = esp_partition_find(partition->type,
partition->subtype,
label);
while (it != NULL) {
const esp_partition_t *p = esp_partition_get(it);
/* Can't memcmp() whole structure here as padding contents may be different */
if (p->address == partition->address
&& partition->size == p->size
&& partition->encrypted == p->encrypted) {
esp_partition_iterator_release(it);
return p;
}
it = esp_partition_next(it);
}
esp_partition_iterator_release(it);
return NULL;
}
esp_err_t esp_partition_read(const esp_partition_t* partition,
size_t src_offset, void* dst, size_t size)
{
assert(partition != NULL);
if (src_offset > partition->size) {
return ESP_ERR_INVALID_ARG;
}
if (src_offset + size > partition->size) {
return ESP_ERR_INVALID_SIZE;
}
if (!partition->encrypted) {
return spi_flash_read(partition->address + src_offset, dst, size);
} else {
/* Encrypted partitions need to be read via a cache mapping */
const void *buf;
spi_flash_mmap_handle_t handle;
esp_err_t err;
err = esp_partition_mmap(partition, src_offset, size,
SPI_FLASH_MMAP_DATA, &buf, &handle);
if (err != ESP_OK) {
return err;
}
memcpy(dst, buf, size);
spi_flash_munmap(handle);
return ESP_OK;
}
}
esp_err_t esp_partition_write(const esp_partition_t* partition,
size_t dst_offset, const void* src, size_t size)
{
assert(partition != NULL);
if (dst_offset > partition->size) {
return ESP_ERR_INVALID_ARG;
}
if (dst_offset + size > partition->size) {
return ESP_ERR_INVALID_SIZE;
}
dst_offset = partition->address + dst_offset;
if (partition->encrypted) {
return spi_flash_write_encrypted(dst_offset, src, size);
} else {
return spi_flash_write(dst_offset, src, size);
}
}
esp_err_t esp_partition_erase_range(const esp_partition_t* partition,
size_t start_addr, size_t size)
{
assert(partition != NULL);
if (start_addr > partition->size) {
return ESP_ERR_INVALID_ARG;
}
if (start_addr + size > partition->size) {
return ESP_ERR_INVALID_SIZE;
}
if (size % SPI_FLASH_SEC_SIZE != 0) {
return ESP_ERR_INVALID_SIZE;
}
if (start_addr % SPI_FLASH_SEC_SIZE != 0) {
return ESP_ERR_INVALID_ARG;
}
return spi_flash_erase_range(partition->address + start_addr, size);
}
/*
* Note: current implementation ignores the possibility of multiple regions in the same partition being
* mapped. Reference counting and address space re-use is delegated to spi_flash_mmap.
*
* If this becomes a performance issue (i.e. if we need to map multiple regions within the partition),
* we can add esp_partition_mmapv which will accept an array of offsets and sizes, and return array of
* mmaped pointers, and a single handle for all these regions.
*/
esp_err_t esp_partition_mmap(const esp_partition_t* partition, uint32_t offset, uint32_t size,
spi_flash_mmap_memory_t memory,
const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
{
assert(partition != NULL);
if (offset > partition->size) {
return ESP_ERR_INVALID_ARG;
}
if (offset + size > partition->size) {
return ESP_ERR_INVALID_SIZE;
}
size_t phys_addr = partition->address + offset;
// offset within 64kB block
size_t region_offset = phys_addr & 0xffff;
size_t mmap_addr = phys_addr & 0xffff0000;
esp_err_t rc = spi_flash_mmap(mmap_addr, size+region_offset, memory, out_ptr, out_handle);
// adjust returned pointer to point to the correct offset
if (rc == ESP_OK) {
*out_ptr = (void*) (((ptrdiff_t) *out_ptr) + region_offset);
}
return rc;
}
esp_err_t esp_partition_get_sha256(const esp_partition_t *partition, uint8_t *sha_256)
{
return bootloader_common_get_sha256_of_partition(partition->address, partition->size, partition->type, sha_256);
}
bool esp_partition_check_identity(const esp_partition_t *partition_1, const esp_partition_t *partition_2)
{
uint8_t sha_256[2][HASH_LEN] = { 0 };
if (esp_partition_get_sha256(partition_1, sha_256[0]) == ESP_OK &&
esp_partition_get_sha256(partition_2, sha_256[1]) == ESP_OK) {
if (memcmp(sha_256[0], sha_256[1], HASH_LEN) == 0) {
// The partitions are identity
return true;
}
}
return false;
}