OVMS3-idf/components/driver/sdmmc_transaction.c

491 lines
17 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "esp_err.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/task.h"
#include "soc/sdmmc_periph.h"
#include "soc/soc_memory_layout.h"
#include "driver/sdmmc_types.h"
#include "driver/sdmmc_defs.h"
#include "driver/sdmmc_host.h"
#include "sdmmc_private.h"
/* Number of DMA descriptors used for transfer.
* Increasing this value above 4 doesn't improve performance for the usual case
* of SD memory cards (most data transfers are multiples of 512 bytes).
*/
#define SDMMC_DMA_DESC_CNT 4
static const char* TAG = "sdmmc_req";
typedef enum {
SDMMC_IDLE,
SDMMC_SENDING_CMD,
SDMMC_SENDING_DATA,
SDMMC_BUSY,
} sdmmc_req_state_t;
typedef struct {
uint8_t* ptr;
size_t size_remaining;
size_t next_desc;
size_t desc_remaining;
} sdmmc_transfer_state_t;
const uint32_t SDMMC_DATA_ERR_MASK =
SDMMC_INTMASK_DTO | SDMMC_INTMASK_DCRC |
SDMMC_INTMASK_HTO | SDMMC_INTMASK_SBE |
SDMMC_INTMASK_EBE;
const uint32_t SDMMC_DMA_DONE_MASK =
SDMMC_IDMAC_INTMASK_RI | SDMMC_IDMAC_INTMASK_TI |
SDMMC_IDMAC_INTMASK_NI;
const uint32_t SDMMC_CMD_ERR_MASK =
SDMMC_INTMASK_RTO |
SDMMC_INTMASK_RCRC |
SDMMC_INTMASK_RESP_ERR;
static sdmmc_desc_t s_dma_desc[SDMMC_DMA_DESC_CNT];
static sdmmc_transfer_state_t s_cur_transfer = { 0 };
static QueueHandle_t s_request_mutex;
static bool s_is_app_cmd; // This flag is set if the next command is an APP command
#ifdef CONFIG_PM_ENABLE
static esp_pm_lock_handle_t s_pm_lock;
#endif
static esp_err_t handle_idle_state_events();
static sdmmc_hw_cmd_t make_hw_cmd(sdmmc_command_t* cmd);
static esp_err_t handle_event(sdmmc_command_t* cmd, sdmmc_req_state_t* state,
sdmmc_event_t* unhandled_events);
static esp_err_t process_events(sdmmc_event_t evt, sdmmc_command_t* cmd,
sdmmc_req_state_t* pstate, sdmmc_event_t* unhandled_events);
static void process_command_response(uint32_t status, sdmmc_command_t* cmd);
static void fill_dma_descriptors(size_t num_desc);
static size_t get_free_descriptors_count();
static bool wait_for_busy_cleared(int timeout_ms);
esp_err_t sdmmc_host_transaction_handler_init()
{
assert(s_request_mutex == NULL);
s_request_mutex = xSemaphoreCreateMutex();
if (!s_request_mutex) {
return ESP_ERR_NO_MEM;
}
s_is_app_cmd = false;
#ifdef CONFIG_PM_ENABLE
esp_err_t err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "sdmmc", &s_pm_lock);
if (err != ESP_OK) {
vSemaphoreDelete(s_request_mutex);
s_request_mutex = NULL;
return err;
}
#endif
return ESP_OK;
}
void sdmmc_host_transaction_handler_deinit()
{
assert(s_request_mutex);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_delete(s_pm_lock);
s_pm_lock = NULL;
#endif
vSemaphoreDelete(s_request_mutex);
s_request_mutex = NULL;
}
esp_err_t sdmmc_host_do_transaction(int slot, sdmmc_command_t* cmdinfo)
{
esp_err_t ret;
xSemaphoreTake(s_request_mutex, portMAX_DELAY);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_acquire(s_pm_lock);
#endif
// dispose of any events which happened asynchronously
handle_idle_state_events();
// convert cmdinfo to hardware register value
sdmmc_hw_cmd_t hw_cmd = make_hw_cmd(cmdinfo);
if (cmdinfo->data) {
// Length should be either <4 or >=4 and =0 (mod 4).
if (cmdinfo->datalen >= 4 && cmdinfo->datalen % 4 != 0) {
ESP_LOGD(TAG, "%s: invalid size: total=%d",
__func__, cmdinfo->datalen);
ret = ESP_ERR_INVALID_SIZE;
goto out;
}
if ((intptr_t) cmdinfo->data % 4 != 0 ||
!esp_ptr_dma_capable(cmdinfo->data)) {
ESP_LOGD(TAG, "%s: buffer %p can not be used for DMA", __func__, cmdinfo->data);
ret = ESP_ERR_INVALID_ARG;
goto out;
}
// this clears "owned by IDMAC" bits
memset(s_dma_desc, 0, sizeof(s_dma_desc));
// initialize first descriptor
s_dma_desc[0].first_descriptor = 1;
// save transfer info
s_cur_transfer.ptr = (uint8_t*) cmdinfo->data;
s_cur_transfer.size_remaining = cmdinfo->datalen;
s_cur_transfer.next_desc = 0;
s_cur_transfer.desc_remaining = (cmdinfo->datalen + SDMMC_DMA_MAX_BUF_LEN - 1) / SDMMC_DMA_MAX_BUF_LEN;
// prepare descriptors
fill_dma_descriptors(SDMMC_DMA_DESC_CNT);
// write transfer info into hardware
sdmmc_host_dma_prepare(&s_dma_desc[0], cmdinfo->blklen, cmdinfo->datalen);
}
// write command into hardware, this also sends the command to the card
ret = sdmmc_host_start_command(slot, hw_cmd, cmdinfo->arg);
if (ret != ESP_OK) {
goto out;
}
// process events until transfer is complete
cmdinfo->error = ESP_OK;
sdmmc_req_state_t state = SDMMC_SENDING_CMD;
sdmmc_event_t unhandled_events = { 0 };
while (state != SDMMC_IDLE) {
ret = handle_event(cmdinfo, &state, &unhandled_events);
if (ret != ESP_OK) {
break;
}
}
if (ret == ESP_OK && (cmdinfo->flags & SCF_WAIT_BUSY)) {
if (!wait_for_busy_cleared(cmdinfo->timeout_ms)) {
ret = ESP_ERR_TIMEOUT;
}
}
s_is_app_cmd = (ret == ESP_OK && cmdinfo->opcode == MMC_APP_CMD);
out:
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(s_pm_lock);
#endif
xSemaphoreGive(s_request_mutex);
return ret;
}
static size_t get_free_descriptors_count()
{
const size_t next = s_cur_transfer.next_desc;
size_t count = 0;
/* Starting with the current DMA descriptor, count the number of
* descriptors which have 'owned_by_idmac' set to 0. These are the
* descriptors already processed by the DMA engine.
*/
for (size_t i = 0; i < SDMMC_DMA_DESC_CNT; ++i) {
sdmmc_desc_t* desc = &s_dma_desc[(next + i) % SDMMC_DMA_DESC_CNT];
if (desc->owned_by_idmac) {
break;
}
++count;
if (desc->next_desc_ptr == NULL) {
/* final descriptor in the chain */
break;
}
}
return count;
}
static void fill_dma_descriptors(size_t num_desc)
{
for (size_t i = 0; i < num_desc; ++i) {
if (s_cur_transfer.size_remaining == 0) {
return;
}
const size_t next = s_cur_transfer.next_desc;
sdmmc_desc_t* desc = &s_dma_desc[next];
assert(!desc->owned_by_idmac);
size_t size_to_fill =
(s_cur_transfer.size_remaining < SDMMC_DMA_MAX_BUF_LEN) ?
s_cur_transfer.size_remaining : SDMMC_DMA_MAX_BUF_LEN;
bool last = size_to_fill == s_cur_transfer.size_remaining;
desc->last_descriptor = last;
desc->second_address_chained = 1;
desc->owned_by_idmac = 1;
desc->buffer1_ptr = s_cur_transfer.ptr;
desc->next_desc_ptr = (last) ? NULL : &s_dma_desc[(next + 1) % SDMMC_DMA_DESC_CNT];
assert(size_to_fill < 4 || size_to_fill % 4 == 0);
desc->buffer1_size = (size_to_fill + 3) & (~3);
s_cur_transfer.size_remaining -= size_to_fill;
s_cur_transfer.ptr += size_to_fill;
s_cur_transfer.next_desc = (s_cur_transfer.next_desc + 1) % SDMMC_DMA_DESC_CNT;
ESP_LOGV(TAG, "fill %d desc=%d rem=%d next=%d last=%d sz=%d",
num_desc, next, s_cur_transfer.size_remaining,
s_cur_transfer.next_desc, desc->last_descriptor, desc->buffer1_size);
}
}
static esp_err_t handle_idle_state_events()
{
/* Handle any events which have happened in between transfers.
* Under current assumptions (no SDIO support) only card detect events
* can happen in the idle state.
*/
sdmmc_event_t evt;
while (sdmmc_host_wait_for_event(0, &evt) == ESP_OK) {
if (evt.sdmmc_status & SDMMC_INTMASK_CD) {
ESP_LOGV(TAG, "card detect event");
evt.sdmmc_status &= ~SDMMC_INTMASK_CD;
}
if (evt.sdmmc_status != 0 || evt.dma_status != 0) {
ESP_LOGE(TAG, "handle_idle_state_events unhandled: %08x %08x",
evt.sdmmc_status, evt.dma_status);
}
}
return ESP_OK;
}
static esp_err_t handle_event(sdmmc_command_t* cmd, sdmmc_req_state_t* state,
sdmmc_event_t* unhandled_events)
{
sdmmc_event_t event;
esp_err_t err = sdmmc_host_wait_for_event(cmd->timeout_ms / portTICK_PERIOD_MS, &event);
if (err != ESP_OK) {
ESP_LOGE(TAG, "sdmmc_host_wait_for_event returned 0x%x", err);
if (err == ESP_ERR_TIMEOUT) {
sdmmc_host_dma_stop();
}
return err;
}
ESP_LOGV(TAG, "sdmmc_handle_event: event %08x %08x, unhandled %08x %08x",
event.sdmmc_status, event.dma_status,
unhandled_events->sdmmc_status, unhandled_events->dma_status);
event.sdmmc_status |= unhandled_events->sdmmc_status;
event.dma_status |= unhandled_events->dma_status;
process_events(event, cmd, state, unhandled_events);
ESP_LOGV(TAG, "sdmmc_handle_event: events unhandled: %08x %08x", unhandled_events->sdmmc_status, unhandled_events->dma_status);
return ESP_OK;
}
static bool cmd_needs_auto_stop(const sdmmc_command_t* cmd)
{
/* SDMMC host needs an "auto stop" flag for the following commands: */
return cmd->datalen > 0 &&
(cmd->opcode == MMC_WRITE_BLOCK_MULTIPLE ||
cmd->opcode == MMC_READ_BLOCK_MULTIPLE ||
cmd->opcode == MMC_WRITE_DAT_UNTIL_STOP ||
cmd->opcode == MMC_READ_DAT_UNTIL_STOP);
}
static sdmmc_hw_cmd_t make_hw_cmd(sdmmc_command_t* cmd)
{
sdmmc_hw_cmd_t res = { 0 };
res.cmd_index = cmd->opcode;
if (cmd->opcode == MMC_STOP_TRANSMISSION) {
res.stop_abort_cmd = 1;
} else if (cmd->opcode == MMC_GO_IDLE_STATE) {
res.send_init = 1;
} else {
res.wait_complete = 1;
}
if (cmd->opcode == MMC_GO_IDLE_STATE) {
res.send_init = 1;
}
if (cmd->flags & SCF_RSP_PRESENT) {
res.response_expect = 1;
if (cmd->flags & SCF_RSP_136) {
res.response_long = 1;
}
}
if (cmd->flags & SCF_RSP_CRC) {
res.check_response_crc = 1;
}
res.use_hold_reg = 1;
if (cmd->data) {
res.data_expected = 1;
if ((cmd->flags & SCF_CMD_READ) == 0) {
res.rw = 1;
}
assert(cmd->datalen % cmd->blklen == 0);
res.send_auto_stop = cmd_needs_auto_stop(cmd) ? 1 : 0;
}
ESP_LOGV(TAG, "%s: opcode=%d, rexp=%d, crc=%d, auto_stop=%d", __func__,
res.cmd_index, res.response_expect, res.check_response_crc,
res.send_auto_stop);
return res;
}
static void process_command_response(uint32_t status, sdmmc_command_t* cmd)
{
if (cmd->flags & SCF_RSP_PRESENT) {
if (cmd->flags & SCF_RSP_136) {
/* Destination is 4-byte aligned, can memcopy from peripheral registers */
memcpy(cmd->response, (uint32_t*) SDMMC.resp, 4 * sizeof(uint32_t));
} else {
cmd->response[0] = SDMMC.resp[0];
cmd->response[1] = 0;
cmd->response[2] = 0;
cmd->response[3] = 0;
}
}
esp_err_t err = ESP_OK;
if (status & SDMMC_INTMASK_RTO) {
// response timeout is only possible when response is expected
assert(cmd->flags & SCF_RSP_PRESENT);
err = ESP_ERR_TIMEOUT;
} else if ((cmd->flags & SCF_RSP_CRC) && (status & SDMMC_INTMASK_RCRC)) {
err = ESP_ERR_INVALID_CRC;
} else if (status & SDMMC_INTMASK_RESP_ERR) {
err = ESP_ERR_INVALID_RESPONSE;
}
if (err != ESP_OK) {
cmd->error = err;
if (cmd->data) {
sdmmc_host_dma_stop();
}
ESP_LOGD(TAG, "%s: error 0x%x (status=%08x)", __func__, err, status);
}
}
static void process_data_status(uint32_t status, sdmmc_command_t* cmd)
{
if (status & SDMMC_DATA_ERR_MASK) {
if (status & SDMMC_INTMASK_DTO) {
cmd->error = ESP_ERR_TIMEOUT;
} else if (status & SDMMC_INTMASK_DCRC) {
cmd->error = ESP_ERR_INVALID_CRC;
} else if ((status & SDMMC_INTMASK_EBE) &&
(cmd->flags & SCF_CMD_READ) == 0) {
cmd->error = ESP_ERR_TIMEOUT;
} else {
cmd->error = ESP_FAIL;
}
SDMMC.ctrl.fifo_reset = 1;
}
if (cmd->error != 0) {
if (cmd->data) {
sdmmc_host_dma_stop();
}
ESP_LOGD(TAG, "%s: error 0x%x (status=%08x)", __func__, cmd->error, status);
}
}
static inline bool mask_check_and_clear(uint32_t* state, uint32_t mask) {
bool ret = ((*state) & mask) != 0;
*state &= ~mask;
return ret;
}
static esp_err_t process_events(sdmmc_event_t evt, sdmmc_command_t* cmd,
sdmmc_req_state_t* pstate, sdmmc_event_t* unhandled_events)
{
const char* const s_state_names[] __attribute__((unused)) = {
"IDLE",
"SENDING_CMD",
"SENDIND_DATA",
"BUSY"
};
sdmmc_event_t orig_evt = evt;
ESP_LOGV(TAG, "%s: state=%s evt=%x dma=%x", __func__, s_state_names[*pstate],
evt.sdmmc_status, evt.dma_status);
sdmmc_req_state_t next_state = *pstate;
sdmmc_req_state_t state = (sdmmc_req_state_t) -1;
while (next_state != state) {
state = next_state;
switch (state) {
case SDMMC_IDLE:
break;
case SDMMC_SENDING_CMD:
if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_CMD_ERR_MASK)) {
process_command_response(orig_evt.sdmmc_status, cmd);
break; // Need to wait for the CMD_DONE interrupt
}
if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_INTMASK_CMD_DONE)) {
process_command_response(orig_evt.sdmmc_status, cmd);
if (cmd->error != ESP_OK) {
next_state = SDMMC_IDLE;
break;
}
if (cmd->data == NULL) {
next_state = SDMMC_IDLE;
} else {
next_state = SDMMC_SENDING_DATA;
}
}
break;
case SDMMC_SENDING_DATA:
if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_DATA_ERR_MASK)) {
process_data_status(orig_evt.sdmmc_status, cmd);
sdmmc_host_dma_stop();
}
if (mask_check_and_clear(&evt.dma_status, SDMMC_DMA_DONE_MASK)) {
s_cur_transfer.desc_remaining--;
if (s_cur_transfer.size_remaining) {
int desc_to_fill = get_free_descriptors_count();
fill_dma_descriptors(desc_to_fill);
sdmmc_host_dma_resume();
}
if (s_cur_transfer.desc_remaining == 0) {
next_state = SDMMC_BUSY;
}
}
if (orig_evt.sdmmc_status & (SDMMC_INTMASK_SBE | SDMMC_INTMASK_DATA_OVER)) {
// On start bit error, DATA_DONE interrupt will not be generated
next_state = SDMMC_IDLE;
break;
}
break;
case SDMMC_BUSY:
if (!mask_check_and_clear(&evt.sdmmc_status, SDMMC_INTMASK_DATA_OVER)) {
break;
}
process_data_status(orig_evt.sdmmc_status, cmd);
next_state = SDMMC_IDLE;
break;
}
ESP_LOGV(TAG, "%s state=%s next_state=%s", __func__, s_state_names[state], s_state_names[next_state]);
}
*pstate = state;
*unhandled_events = evt;
return ESP_OK;
}
static bool wait_for_busy_cleared(int timeout_ms)
{
if (timeout_ms == 0) {
return !sdmmc_host_card_busy();
}
/* It would have been nice to do this without polling, however the peripheral
* can only generate Busy Clear Interrupt for data write commands, and waiting
* for busy clear is mostly needed for other commands such as MMC_SWITCH.
*/
int timeout_ticks = (timeout_ms + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS;
while (timeout_ticks-- > 0) {
if (!sdmmc_host_card_busy()) {
return true;
}
vTaskDelay(1);
}
return false;
}