// you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "rom/ets_sys.h" #include "esp_log.h" #include "soc/rtc_io_reg.h" #include "soc/rtc_io_struct.h" #include "soc/sens_reg.h" #include "soc/sens_struct.h" #include "soc/rtc_cntl_reg.h" #include "soc/rtc_cntl_struct.h" #include "rtc_io.h" #include "touch_pad.h" #include "adc.h" #include "dac.h" #include "freertos/FreeRTOS.h" #include "freertos/xtensa_api.h" #include "freertos/semphr.h" #include "freertos/timers.h" #include "esp_intr_alloc.h" #include "sys/lock.h" #include "driver/rtc_cntl.h" #include "driver/gpio.h" #ifndef NDEBUG // Enable built-in checks in queue.h in debug builds #define INVARIANTS #endif #include "rom/queue.h" static const char *RTC_MODULE_TAG = "RTC_MODULE"; #define RTC_MODULE_CHECK(a, str, ret_val) if (!(a)) { \ ESP_LOGE(RTC_MODULE_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \ return (ret_val); \ } #define RTC_RES_CHECK(res, ret_val) if ( (a) != ESP_OK) { \ ESP_LOGE(RTC_MODULE_TAG,"%s:%d (%s)", __FILE__, __LINE__, __FUNCTION__); \ return (ret_val); \ } #define ADC1_CHECK_FUNCTION_RET(fun_ret) if(fun_ret!=ESP_OK){\ ESP_LOGE(RTC_MODULE_TAG,"%s:%d\n",__FUNCTION__,__LINE__);\ return ESP_FAIL;\ } #define DAC_ERR_STR_CHANNEL_ERROR "DAC channel error" portMUX_TYPE rtc_spinlock = portMUX_INITIALIZER_UNLOCKED; static SemaphoreHandle_t rtc_touch_mux = NULL; typedef struct { TimerHandle_t timer; uint32_t filtered_val[TOUCH_PAD_MAX]; uint32_t filter_period; uint32_t period; bool enable; } touch_pad_filter_t; static touch_pad_filter_t *s_touch_pad_filter = NULL; //Reg,Mux,Fun,IE,Up,Down,Rtc_number const rtc_gpio_desc_t rtc_gpio_desc[GPIO_PIN_COUNT] = { {RTC_IO_TOUCH_PAD1_REG, RTC_IO_TOUCH_PAD1_MUX_SEL_M, RTC_IO_TOUCH_PAD1_FUN_SEL_S, RTC_IO_TOUCH_PAD1_FUN_IE_M, RTC_IO_TOUCH_PAD1_RUE_M, RTC_IO_TOUCH_PAD1_RDE_M, RTC_IO_TOUCH_PAD1_SLP_SEL_M, RTC_IO_TOUCH_PAD1_SLP_IE_M, RTC_IO_TOUCH_PAD1_HOLD_M, RTC_CNTL_TOUCH_PAD1_HOLD_FORCE_M, RTC_IO_TOUCH_PAD1_DRV_V, RTC_IO_TOUCH_PAD1_DRV_S, 11}, //0 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //1 {RTC_IO_TOUCH_PAD2_REG, RTC_IO_TOUCH_PAD2_MUX_SEL_M, RTC_IO_TOUCH_PAD2_FUN_SEL_S, RTC_IO_TOUCH_PAD2_FUN_IE_M, RTC_IO_TOUCH_PAD2_RUE_M, RTC_IO_TOUCH_PAD2_RDE_M, RTC_IO_TOUCH_PAD2_SLP_SEL_M, RTC_IO_TOUCH_PAD2_SLP_IE_M, RTC_IO_TOUCH_PAD2_HOLD_M, RTC_CNTL_TOUCH_PAD2_HOLD_FORCE_M, RTC_IO_TOUCH_PAD2_DRV_V, RTC_IO_TOUCH_PAD2_DRV_S, 12}, //2 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //3 {RTC_IO_TOUCH_PAD0_REG, RTC_IO_TOUCH_PAD0_MUX_SEL_M, RTC_IO_TOUCH_PAD0_FUN_SEL_S, RTC_IO_TOUCH_PAD0_FUN_IE_M, RTC_IO_TOUCH_PAD0_RUE_M, RTC_IO_TOUCH_PAD0_RDE_M, RTC_IO_TOUCH_PAD0_SLP_SEL_M, RTC_IO_TOUCH_PAD0_SLP_IE_M, RTC_IO_TOUCH_PAD0_HOLD_M, RTC_CNTL_TOUCH_PAD0_HOLD_FORCE_M, RTC_IO_TOUCH_PAD0_DRV_V, RTC_IO_TOUCH_PAD0_DRV_S, 10}, //4 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //5 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //6 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //7 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //8 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //9 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //10 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //11 {RTC_IO_TOUCH_PAD5_REG, RTC_IO_TOUCH_PAD5_MUX_SEL_M, RTC_IO_TOUCH_PAD5_FUN_SEL_S, RTC_IO_TOUCH_PAD5_FUN_IE_M, RTC_IO_TOUCH_PAD5_RUE_M, RTC_IO_TOUCH_PAD5_RDE_M, RTC_IO_TOUCH_PAD5_SLP_SEL_M, RTC_IO_TOUCH_PAD5_SLP_IE_M, RTC_IO_TOUCH_PAD5_HOLD_M, RTC_CNTL_TOUCH_PAD5_HOLD_FORCE_M, RTC_IO_TOUCH_PAD5_DRV_V, RTC_IO_TOUCH_PAD5_DRV_S, 15}, //12 {RTC_IO_TOUCH_PAD4_REG, RTC_IO_TOUCH_PAD4_MUX_SEL_M, RTC_IO_TOUCH_PAD4_FUN_SEL_S, RTC_IO_TOUCH_PAD4_FUN_IE_M, RTC_IO_TOUCH_PAD4_RUE_M, RTC_IO_TOUCH_PAD4_RDE_M, RTC_IO_TOUCH_PAD4_SLP_SEL_M, RTC_IO_TOUCH_PAD4_SLP_IE_M, RTC_IO_TOUCH_PAD4_HOLD_M, RTC_CNTL_TOUCH_PAD4_HOLD_FORCE_M, RTC_IO_TOUCH_PAD4_DRV_V, RTC_IO_TOUCH_PAD4_DRV_S, 14}, //13 {RTC_IO_TOUCH_PAD6_REG, RTC_IO_TOUCH_PAD6_MUX_SEL_M, RTC_IO_TOUCH_PAD6_FUN_SEL_S, RTC_IO_TOUCH_PAD6_FUN_IE_M, RTC_IO_TOUCH_PAD6_RUE_M, RTC_IO_TOUCH_PAD6_RDE_M, RTC_IO_TOUCH_PAD6_SLP_SEL_M, RTC_IO_TOUCH_PAD6_SLP_IE_M, RTC_IO_TOUCH_PAD6_HOLD_M, RTC_CNTL_TOUCH_PAD6_HOLD_FORCE_M, RTC_IO_TOUCH_PAD6_DRV_V, RTC_IO_TOUCH_PAD6_DRV_S, 16}, //14 {RTC_IO_TOUCH_PAD3_REG, RTC_IO_TOUCH_PAD3_MUX_SEL_M, RTC_IO_TOUCH_PAD3_FUN_SEL_S, RTC_IO_TOUCH_PAD3_FUN_IE_M, RTC_IO_TOUCH_PAD3_RUE_M, RTC_IO_TOUCH_PAD3_RDE_M, RTC_IO_TOUCH_PAD3_SLP_SEL_M, RTC_IO_TOUCH_PAD3_SLP_IE_M, RTC_IO_TOUCH_PAD3_HOLD_M, RTC_CNTL_TOUCH_PAD3_HOLD_FORCE_M, RTC_IO_TOUCH_PAD3_DRV_V, RTC_IO_TOUCH_PAD3_DRV_S, 13}, //15 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //16 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //17 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //18 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //19 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //20 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //21 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //22 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //23 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //24 {RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_MUX_SEL_M, RTC_IO_PDAC1_FUN_SEL_S, RTC_IO_PDAC1_FUN_IE_M, RTC_IO_PDAC1_RUE_M, RTC_IO_PDAC1_RDE_M, RTC_IO_PDAC1_SLP_SEL_M, RTC_IO_PDAC1_SLP_IE_M, RTC_IO_PDAC1_HOLD_M, RTC_CNTL_PDAC1_HOLD_FORCE_M, RTC_IO_PDAC1_DRV_V, RTC_IO_PDAC1_DRV_S, 6}, //25 {RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_MUX_SEL_M, RTC_IO_PDAC2_FUN_SEL_S, RTC_IO_PDAC2_FUN_IE_M, RTC_IO_PDAC2_RUE_M, RTC_IO_PDAC2_RDE_M, RTC_IO_PDAC2_SLP_SEL_M, RTC_IO_PDAC2_SLP_IE_M, RTC_IO_PDAC2_HOLD_M, RTC_CNTL_PDAC1_HOLD_FORCE_M, RTC_IO_PDAC2_DRV_V, RTC_IO_PDAC2_DRV_S, 7}, //26 {RTC_IO_TOUCH_PAD7_REG, RTC_IO_TOUCH_PAD7_MUX_SEL_M, RTC_IO_TOUCH_PAD7_FUN_SEL_S, RTC_IO_TOUCH_PAD7_FUN_IE_M, RTC_IO_TOUCH_PAD7_RUE_M, RTC_IO_TOUCH_PAD7_RDE_M, RTC_IO_TOUCH_PAD7_SLP_SEL_M, RTC_IO_TOUCH_PAD7_SLP_IE_M, RTC_IO_TOUCH_PAD7_HOLD_M, RTC_CNTL_TOUCH_PAD7_HOLD_FORCE_M, RTC_IO_TOUCH_PAD7_DRV_V, RTC_IO_TOUCH_PAD7_DRV_S, 17}, //27 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //28 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //29 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //30 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //31 {RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32P_MUX_SEL_M, RTC_IO_X32P_FUN_SEL_S, RTC_IO_X32P_FUN_IE_M, RTC_IO_X32P_RUE_M, RTC_IO_X32P_RDE_M, RTC_IO_X32P_SLP_SEL_M, RTC_IO_X32P_SLP_IE_M, RTC_IO_X32P_HOLD_M, RTC_CNTL_X32P_HOLD_FORCE_M, RTC_IO_X32P_DRV_V, RTC_IO_X32P_DRV_S, 9}, //32 {RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32N_MUX_SEL_M, RTC_IO_X32N_FUN_SEL_S, RTC_IO_X32N_FUN_IE_M, RTC_IO_X32N_RUE_M, RTC_IO_X32N_RDE_M, RTC_IO_X32N_SLP_SEL_M, RTC_IO_X32N_SLP_IE_M, RTC_IO_X32N_HOLD_M, RTC_CNTL_X32N_HOLD_FORCE_M, RTC_IO_X32N_DRV_V, RTC_IO_X32N_DRV_S, 8}, //33 {RTC_IO_ADC_PAD_REG, RTC_IO_ADC1_MUX_SEL_M, RTC_IO_ADC1_FUN_SEL_S, RTC_IO_ADC1_FUN_IE_M, 0, 0, RTC_IO_ADC1_SLP_SEL_M, RTC_IO_ADC1_SLP_IE_M, RTC_IO_ADC1_HOLD_M, RTC_CNTL_ADC1_HOLD_FORCE_M, 0, 0, 4}, //34 {RTC_IO_ADC_PAD_REG, RTC_IO_ADC2_MUX_SEL_M, RTC_IO_ADC2_FUN_SEL_S, RTC_IO_ADC2_FUN_IE_M, 0, 0, RTC_IO_ADC2_SLP_SEL_M, RTC_IO_ADC2_SLP_IE_M, RTC_IO_ADC1_HOLD_M, RTC_CNTL_ADC2_HOLD_FORCE_M, 0, 0, 5}, //35 {RTC_IO_SENSOR_PADS_REG, RTC_IO_SENSE1_MUX_SEL_M, RTC_IO_SENSE1_FUN_SEL_S, RTC_IO_SENSE1_FUN_IE_M, 0, 0, RTC_IO_SENSE1_SLP_SEL_M, RTC_IO_SENSE1_SLP_IE_M, RTC_IO_SENSE1_HOLD_M, RTC_CNTL_SENSE1_HOLD_FORCE_M, 0, 0, 0}, //36 {RTC_IO_SENSOR_PADS_REG, RTC_IO_SENSE2_MUX_SEL_M, RTC_IO_SENSE2_FUN_SEL_S, RTC_IO_SENSE2_FUN_IE_M, 0, 0, RTC_IO_SENSE2_SLP_SEL_M, RTC_IO_SENSE2_SLP_IE_M, RTC_IO_SENSE1_HOLD_M, RTC_CNTL_SENSE2_HOLD_FORCE_M, 0, 0, 1}, //37 {RTC_IO_SENSOR_PADS_REG, RTC_IO_SENSE3_MUX_SEL_M, RTC_IO_SENSE3_FUN_SEL_S, RTC_IO_SENSE3_FUN_IE_M, 0, 0, RTC_IO_SENSE3_SLP_SEL_M, RTC_IO_SENSE3_SLP_IE_M, RTC_IO_SENSE1_HOLD_M, RTC_CNTL_SENSE3_HOLD_FORCE_M, 0, 0, 2}, //38 {RTC_IO_SENSOR_PADS_REG, RTC_IO_SENSE4_MUX_SEL_M, RTC_IO_SENSE4_FUN_SEL_S, RTC_IO_SENSE4_FUN_IE_M, 0, 0, RTC_IO_SENSE4_SLP_SEL_M, RTC_IO_SENSE4_SLP_IE_M, RTC_IO_SENSE1_HOLD_M, RTC_CNTL_SENSE4_HOLD_FORCE_M, 0, 0, 3}, //39 }; /*--------------------------------------------------------------- RTC IO ---------------------------------------------------------------*/ esp_err_t rtc_gpio_init(gpio_num_t gpio_num) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); // 0: GPIO connected to digital GPIO module. 1: GPIO connected to analog RTC module. SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, (rtc_gpio_desc[gpio_num].mux)); //0:RTC FUNCIOTN 1,2,3:Reserved SET_PERI_REG_BITS(rtc_gpio_desc[gpio_num].reg, RTC_IO_TOUCH_PAD1_FUN_SEL_V, 0x0, rtc_gpio_desc[gpio_num].func); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_deinit(gpio_num_t gpio_num) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); //Select Gpio as Digital Gpio CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, (rtc_gpio_desc[gpio_num].mux)); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } static esp_err_t rtc_gpio_output_enable(gpio_num_t gpio_num) { int rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num; RTC_MODULE_CHECK(rtc_gpio_num != -1, "RTC_GPIO number error", ESP_ERR_INVALID_ARG); SET_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TS_REG, (1 << (rtc_gpio_num + RTC_GPIO_ENABLE_W1TS_S))); CLEAR_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TC_REG, (1 << (rtc_gpio_num + RTC_GPIO_ENABLE_W1TC_S))); return ESP_OK; } static esp_err_t rtc_gpio_output_disable(gpio_num_t gpio_num) { int rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num; RTC_MODULE_CHECK(rtc_gpio_num != -1, "RTC_GPIO number error", ESP_ERR_INVALID_ARG); CLEAR_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TS_REG, (1 << (rtc_gpio_num + RTC_GPIO_ENABLE_W1TS_S))); SET_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TC_REG, (1 << ( rtc_gpio_num + RTC_GPIO_ENABLE_W1TC_S))); return ESP_OK; } static esp_err_t rtc_gpio_input_enable(gpio_num_t gpio_num) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].ie); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } static esp_err_t rtc_gpio_input_disable(gpio_num_t gpio_num) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].ie); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_set_level(gpio_num_t gpio_num, uint32_t level) { int rtc_gpio_num = rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num;; RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); if (level) { WRITE_PERI_REG(RTC_GPIO_OUT_W1TS_REG, (1 << (rtc_gpio_num + RTC_GPIO_OUT_DATA_W1TS_S))); } else { WRITE_PERI_REG(RTC_GPIO_OUT_W1TC_REG, (1 << (rtc_gpio_num + RTC_GPIO_OUT_DATA_W1TC_S))); } return ESP_OK; } uint32_t rtc_gpio_get_level(gpio_num_t gpio_num) { uint32_t level = 0; int rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num; RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); level = READ_PERI_REG(RTC_GPIO_IN_REG); portEXIT_CRITICAL(&rtc_spinlock); return ((level >> (RTC_GPIO_IN_NEXT_S + rtc_gpio_num)) & 0x01); } esp_err_t rtc_gpio_set_drive_capability(gpio_num_t gpio_num, gpio_drive_cap_t strength) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "Output pad only", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(strength < GPIO_DRIVE_CAP_MAX, "GPIO drive capability error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_BITS(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].drv_v, strength, rtc_gpio_desc[gpio_num].drv_s); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_get_drive_capability(gpio_num_t gpio_num, gpio_drive_cap_t* strength) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "Output pad only", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(strength != NULL, "GPIO drive pointer error", ESP_ERR_INVALID_ARG); *strength = GET_PERI_REG_BITS2(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].drv_v, rtc_gpio_desc[gpio_num].drv_s); return ESP_OK; } esp_err_t rtc_gpio_set_direction(gpio_num_t gpio_num, rtc_gpio_mode_t mode) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); switch (mode) { case RTC_GPIO_MODE_INPUT_ONLY: rtc_gpio_output_disable(gpio_num); rtc_gpio_input_enable(gpio_num); break; case RTC_GPIO_MODE_OUTPUT_ONLY: rtc_gpio_output_enable(gpio_num); rtc_gpio_input_disable(gpio_num); break; case RTC_GPIO_MODE_INPUT_OUTUT: rtc_gpio_output_enable(gpio_num); rtc_gpio_input_enable(gpio_num); break; case RTC_GPIO_MODE_DISABLED: rtc_gpio_output_disable(gpio_num); rtc_gpio_input_disable(gpio_num); break; } return ESP_OK; } esp_err_t rtc_gpio_pullup_en(gpio_num_t gpio_num) { //this is a digital pad if (rtc_gpio_desc[gpio_num].pullup == 0) { return ESP_ERR_INVALID_ARG; } //this is a rtc pad portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pullup); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_pulldown_en(gpio_num_t gpio_num) { //this is a digital pad if (rtc_gpio_desc[gpio_num].pulldown == 0) { return ESP_ERR_INVALID_ARG; } //this is a rtc pad portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pulldown); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_pullup_dis(gpio_num_t gpio_num) { //this is a digital pad if ( rtc_gpio_desc[gpio_num].pullup == 0 ) { return ESP_ERR_INVALID_ARG; } //this is a rtc pad portENTER_CRITICAL(&rtc_spinlock); CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pullup); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_pulldown_dis(gpio_num_t gpio_num) { //this is a digital pad if (rtc_gpio_desc[gpio_num].pulldown == 0) { return ESP_ERR_INVALID_ARG; } //this is a rtc pad portENTER_CRITICAL(&rtc_spinlock); CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pulldown); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_hold_en(gpio_num_t gpio_num) { // check if an RTC IO if (rtc_gpio_desc[gpio_num].pullup == 0) { return ESP_ERR_INVALID_ARG; } portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].hold); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_hold_dis(gpio_num_t gpio_num) { // check if an RTC IO if (rtc_gpio_desc[gpio_num].pullup == 0) { return ESP_ERR_INVALID_ARG; } portENTER_CRITICAL(&rtc_spinlock); CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].hold); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } void rtc_gpio_force_hold_dis_all() { for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) { const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio]; if (desc->hold_force != 0) { REG_CLR_BIT(RTC_CNTL_HOLD_FORCE_REG, desc->hold_force); } } } /*--------------------------------------------------------------- Touch Pad ---------------------------------------------------------------*/ esp_err_t touch_pad_isr_handler_register(void (*fn)(void *), void *arg, int no_use, intr_handle_t *handle_no_use) { RTC_MODULE_CHECK(fn, "Touch_Pad ISR null", ESP_ERR_INVALID_ARG); return rtc_isr_register(fn, arg, RTC_CNTL_TOUCH_INT_ST_M); } esp_err_t touch_pad_isr_register(intr_handler_t fn, void* arg) { RTC_MODULE_CHECK(fn, "Touch_Pad ISR null", ESP_ERR_INVALID_ARG); return rtc_isr_register(fn, arg, RTC_CNTL_TOUCH_INT_ST_M); } esp_err_t touch_pad_isr_deregister(intr_handler_t fn, void *arg) { return rtc_isr_deregister(fn, arg); } static esp_err_t touch_pad_get_io_num(touch_pad_t touch_num, gpio_num_t *gpio_num) { switch (touch_num) { case TOUCH_PAD_NUM0: *gpio_num = 4; break; case TOUCH_PAD_NUM1: *gpio_num = 0; break; case TOUCH_PAD_NUM2: *gpio_num = 2; break; case TOUCH_PAD_NUM3: *gpio_num = 15; break; case TOUCH_PAD_NUM4: *gpio_num = 13; break; case TOUCH_PAD_NUM5: *gpio_num = 12; break; case TOUCH_PAD_NUM6: *gpio_num = 14; break; case TOUCH_PAD_NUM7: *gpio_num = 27; break; case TOUCH_PAD_NUM8: *gpio_num = 32; break; case TOUCH_PAD_NUM9: *gpio_num = 33; break; default: return ESP_ERR_INVALID_ARG; } return ESP_OK; } #define TOUCH_PAD_FILTER_FACTOR_DEFAULT (16) #define TOUCH_PAD_SHIFT_DEFAULT (4) static uint32_t _touch_filter_iir(uint32_t in_now, uint32_t out_last, uint32_t k) { if (k == 0) { return in_now; } else { uint32_t out_now = (in_now + (k - 1) * out_last) / k; return out_now; } } static void touch_pad_filter_cb(void *arg) { if (s_touch_pad_filter == NULL) { return; } uint16_t val; for (int i = 0; i < TOUCH_PAD_MAX; i++) { touch_pad_read(i, &val); s_touch_pad_filter->filtered_val[i] = s_touch_pad_filter->filtered_val[i] == 0 ? (val << TOUCH_PAD_SHIFT_DEFAULT) : s_touch_pad_filter->filtered_val[i]; s_touch_pad_filter->filtered_val[i] = _touch_filter_iir((val << TOUCH_PAD_SHIFT_DEFAULT), s_touch_pad_filter->filtered_val[i], TOUCH_PAD_FILTER_FACTOR_DEFAULT); } } esp_err_t touch_pad_set_meas_time(uint16_t sleep_cycle, uint16_t meas_cycle) { xSemaphoreTake(rtc_touch_mux, portMAX_DELAY); portENTER_CRITICAL(&rtc_spinlock); //touch sensor sleep cycle Time = sleep_cycle / RTC_SLOW_CLK( can be 150k or 32k depending on the options) SENS.sar_touch_ctrl2.touch_sleep_cycles = sleep_cycle; //touch sensor measure time= meas_cycle / 8Mhz SENS.sar_touch_ctrl1.touch_meas_delay = meas_cycle; portEXIT_CRITICAL(&rtc_spinlock); xSemaphoreGive(rtc_touch_mux); return ESP_OK; } esp_err_t touch_pad_get_meas_time(uint16_t *sleep_cycle, uint16_t *meas_cycle) { portENTER_CRITICAL(&rtc_spinlock); if (sleep_cycle) { *sleep_cycle = SENS.sar_touch_ctrl2.touch_sleep_cycles; } if (meas_cycle) { *meas_cycle = SENS.sar_touch_ctrl1.touch_meas_delay; } portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_set_voltage(touch_high_volt_t refh, touch_low_volt_t refl, touch_volt_atten_t atten) { RTC_MODULE_CHECK(((refh < TOUCH_HVOLT_MAX) && (refh >= (int )TOUCH_HVOLT_KEEP)), "touch refh error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(((refl < TOUCH_LVOLT_MAX) && (refh >= (int )TOUCH_LVOLT_KEEP)), "touch refl error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(((atten < TOUCH_HVOLT_ATTEN_MAX) && (refh >= (int )TOUCH_HVOLT_ATTEN_KEEP)), "touch atten error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); if (refh > TOUCH_HVOLT_KEEP) { RTCIO.touch_cfg.drefh = refh; } if (refl > TOUCH_LVOLT_KEEP) { RTCIO.touch_cfg.drefl = refl; } if (atten > TOUCH_HVOLT_ATTEN_KEEP) { RTCIO.touch_cfg.drange = atten; } portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_get_voltage(touch_high_volt_t *refh, touch_low_volt_t *refl, touch_volt_atten_t *atten) { portENTER_CRITICAL(&rtc_spinlock); if (refh) { *refh = RTCIO.touch_cfg.drefh; } if (refl) { *refl = RTCIO.touch_cfg.drefl; } if (atten) { *atten = RTCIO.touch_cfg.drange; } portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_set_cnt_mode(touch_pad_t touch_num, touch_cnt_slope_t slope, touch_tie_opt_t opt) { RTC_MODULE_CHECK((slope < TOUCH_PAD_SLOPE_MAX), "touch slope error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK((opt < TOUCH_PAD_TIE_OPT_MAX), "touch opt error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); //set tie opt value, high or low level seem no difference for counter RTCIO.touch_pad[touch_num].tie_opt = opt; //touch sensor set slope for charging and discharging. RTCIO.touch_pad[touch_num].dac = slope; portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_get_cnt_mode(touch_pad_t touch_num, touch_cnt_slope_t *slope, touch_tie_opt_t *opt) { RTC_MODULE_CHECK((touch_num < TOUCH_PAD_MAX), "touch IO error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); if (slope) { *slope = RTCIO.touch_pad[touch_num].dac; } if (opt) { *opt = RTCIO.touch_pad[touch_num].tie_opt; } portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_io_init(touch_pad_t touch_num) { RTC_MODULE_CHECK((touch_num < TOUCH_PAD_MAX), "touch IO error", ESP_ERR_INVALID_ARG); gpio_num_t gpio_num = GPIO_NUM_0; touch_pad_get_io_num(touch_num, &gpio_num); rtc_gpio_init(gpio_num); rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED); rtc_gpio_pulldown_dis(gpio_num); rtc_gpio_pullup_dis(gpio_num); return ESP_OK; } esp_err_t touch_pad_set_fsm_mode(touch_fsm_mode_t mode) { RTC_MODULE_CHECK((mode < TOUCH_FSM_MODE_MAX), "touch fsm mode error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); SENS.sar_touch_ctrl2.touch_start_en = 0; SENS.sar_touch_ctrl2.touch_start_force = mode; RTCCNTL.state0.touch_slp_timer_en = (mode == TOUCH_FSM_MODE_TIMER ? 1 : 0); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_get_fsm_mode(touch_fsm_mode_t *mode) { if (mode) { *mode = SENS.sar_touch_ctrl2.touch_start_force; } return ESP_OK; } esp_err_t touch_pad_sw_start() { portENTER_CRITICAL(&rtc_spinlock); SENS.sar_touch_ctrl2.touch_start_en = 0; SENS.sar_touch_ctrl2.touch_start_en = 1; portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_set_thresh(touch_pad_t touch_num, uint16_t threshold) { RTC_MODULE_CHECK((touch_num < TOUCH_PAD_MAX), "touch IO error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); if (touch_num & 0x1) { SENS.touch_thresh[touch_num / 2].l_thresh = threshold; } else { SENS.touch_thresh[touch_num / 2].h_thresh = threshold; } portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_get_thresh(touch_pad_t touch_num, uint16_t *threshold) { RTC_MODULE_CHECK((touch_num < TOUCH_PAD_MAX), "touch IO error", ESP_ERR_INVALID_ARG); if (threshold) { *threshold = (touch_num & 0x1 )? \ SENS.touch_thresh[touch_num / 2].l_thresh : \ SENS.touch_thresh[touch_num / 2].h_thresh; } return ESP_OK; } esp_err_t touch_pad_set_trigger_mode(touch_trigger_mode_t mode) { RTC_MODULE_CHECK((mode < TOUCH_TRIGGER_MAX), "touch trigger mode error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); SENS.sar_touch_ctrl1.touch_out_sel = mode; portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_get_trigger_mode(touch_trigger_mode_t *mode) { if (mode) { *mode = SENS.sar_touch_ctrl1.touch_out_sel; } return ESP_OK; } esp_err_t touch_pad_set_trigger_source(touch_trigger_src_t src) { RTC_MODULE_CHECK((src < TOUCH_TRIGGER_SOURCE_MAX), "touch trigger source error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); SENS.sar_touch_ctrl1.touch_out_1en = src; portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_get_trigger_source(touch_trigger_src_t *src) { if (src) { *src = SENS.sar_touch_ctrl1.touch_out_1en; } return ESP_OK; } esp_err_t touch_pad_set_group_mask(uint16_t set1_mask, uint16_t set2_mask, uint16_t en_mask) { RTC_MODULE_CHECK((set1_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch set1 bitmask error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK((set2_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch set2 bitmask error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK((en_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch work_en bitmask error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); SENS.sar_touch_enable.touch_pad_outen1 |= set1_mask; SENS.sar_touch_enable.touch_pad_outen2 |= set2_mask; SENS.sar_touch_enable.touch_pad_worken |= en_mask; portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_get_group_mask(uint16_t *set1_mask, uint16_t *set2_mask, uint16_t *en_mask) { portENTER_CRITICAL(&rtc_spinlock); if (set1_mask) { *set1_mask = SENS.sar_touch_enable.touch_pad_outen1; } if (set2_mask) { *set2_mask = SENS.sar_touch_enable.touch_pad_outen2; } if (en_mask) { *en_mask = SENS.sar_touch_enable.touch_pad_worken; } portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_clear_group_mask(uint16_t set1_mask, uint16_t set2_mask, uint16_t en_mask) { RTC_MODULE_CHECK((set1_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch set1 bitmask error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK((set2_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch set2 bitmask error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK((en_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch work_en bitmask error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); SENS.sar_touch_enable.touch_pad_outen1 &= (~set1_mask); SENS.sar_touch_enable.touch_pad_outen2 &= (~set2_mask); SENS.sar_touch_enable.touch_pad_worken &= (~en_mask); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } uint32_t IRAM_ATTR touch_pad_get_status() { return SENS.sar_touch_ctrl2.touch_meas_en; } esp_err_t IRAM_ATTR touch_pad_clear_status() { portENTER_CRITICAL(&rtc_spinlock); SENS.sar_touch_ctrl2.touch_meas_en_clr = 1; portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_intr_enable() { portENTER_CRITICAL(&rtc_spinlock); RTCCNTL.int_ena.rtc_touch = 1; portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_intr_disable() { portENTER_CRITICAL(&rtc_spinlock); RTCCNTL.int_ena.rtc_touch = 0; portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_config(touch_pad_t touch_num, uint16_t threshold) { RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_FAIL); RTC_MODULE_CHECK(touch_num < TOUCH_PAD_MAX, "Touch_Pad Num Err", ESP_ERR_INVALID_ARG); touch_pad_set_thresh(touch_num, threshold); touch_pad_io_init(touch_num); touch_pad_set_cnt_mode(touch_num, TOUCH_PAD_SLOPE_7, TOUCH_PAD_TIE_OPT_HIGH); touch_pad_set_group_mask((1 << touch_num), (1 << touch_num), (1 << touch_num)); return ESP_OK; } esp_err_t touch_pad_init() { if (rtc_touch_mux == NULL) { rtc_touch_mux = xSemaphoreCreateMutex(); } if (rtc_touch_mux == NULL) { return ESP_FAIL; } touch_pad_intr_disable(); touch_pad_set_fsm_mode(TOUCH_FSM_MODE_DEFAULT); touch_pad_set_trigger_mode(TOUCH_TRIGGER_MODE_DEFAULT); touch_pad_set_trigger_source(TOUCH_TRIGGER_SOURCE_DEFAULT); touch_pad_clear_status(); touch_pad_set_meas_time(TOUCH_PAD_SLEEP_CYCLE_DEFAULT, TOUCH_PAD_MEASURE_CYCLE_DEFAULT); return ESP_OK; } esp_err_t touch_pad_deinit() { if (rtc_touch_mux == NULL) { return ESP_FAIL; } touch_pad_filter_delete(); touch_pad_set_fsm_mode(TOUCH_FSM_MODE_SW); touch_pad_clear_status(); touch_pad_intr_disable(); vSemaphoreDelete(rtc_touch_mux); rtc_touch_mux = NULL; return ESP_OK; } esp_err_t touch_pad_read(touch_pad_t touch_num, uint16_t *touch_value) { RTC_MODULE_CHECK(touch_num < TOUCH_PAD_MAX, "Touch_Pad Num Err", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(touch_value != NULL, "touch_value", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_FAIL); xSemaphoreTake(rtc_touch_mux, portMAX_DELAY); while (SENS.sar_touch_ctrl2.touch_meas_done == 0) {}; *touch_value = (touch_num & 0x1) ? \ SENS.touch_meas[touch_num / 2].l_val: \ SENS.touch_meas[touch_num / 2].h_val; xSemaphoreGive(rtc_touch_mux); return ESP_OK; } IRAM_ATTR esp_err_t touch_pad_read_filtered(touch_pad_t touch_num, uint16_t *touch_value) { RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_FAIL); RTC_MODULE_CHECK(touch_num < TOUCH_PAD_MAX, "Touch_Pad Num Err", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(touch_value != NULL, "touch_value", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(s_touch_pad_filter != NULL, "Touch pad filter not initialized", ESP_ERR_INVALID_STATE); *touch_value = (s_touch_pad_filter->filtered_val[touch_num] >> TOUCH_PAD_SHIFT_DEFAULT); return ESP_OK; } esp_err_t touch_pad_set_filter_period(uint32_t new_period_ms) { RTC_MODULE_CHECK(s_touch_pad_filter != NULL, "Touch pad filter not initialized", ESP_ERR_INVALID_STATE); RTC_MODULE_CHECK(new_period_ms > 0, "Touch pad filter period error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_ERR_INVALID_STATE); esp_err_t ret = ESP_OK; xSemaphoreTake(rtc_touch_mux, portMAX_DELAY); if (s_touch_pad_filter != NULL) { xTimerChangePeriod(s_touch_pad_filter->timer, new_period_ms / portTICK_PERIOD_MS, portMAX_DELAY); s_touch_pad_filter->period = new_period_ms; } else { ESP_LOGE(RTC_MODULE_TAG, "Touch pad filter deleted"); ret = ESP_ERR_INVALID_STATE; } xSemaphoreGive(rtc_touch_mux); return ret; } esp_err_t touch_pad_get_filter_period(uint32_t* p_period_ms) { RTC_MODULE_CHECK(s_touch_pad_filter != NULL, "Touch pad filter not initialized", ESP_ERR_INVALID_STATE); RTC_MODULE_CHECK(p_period_ms != NULL, "Touch pad period pointer error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_ERR_INVALID_STATE); esp_err_t ret = ESP_OK; xSemaphoreTake(rtc_touch_mux, portMAX_DELAY); if (s_touch_pad_filter != NULL) { *p_period_ms = s_touch_pad_filter->period; } else { ESP_LOGE(RTC_MODULE_TAG, "Touch pad filter deleted"); ret = ESP_ERR_INVALID_STATE; } xSemaphoreGive(rtc_touch_mux); return ret; } esp_err_t touch_pad_filter_start(uint32_t filter_period_ms) { RTC_MODULE_CHECK(filter_period_ms >= portTICK_PERIOD_MS, "Touch pad filter period error", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_ERR_INVALID_STATE); esp_err_t ret = ESP_OK; xSemaphoreTake(rtc_touch_mux, portMAX_DELAY); if (s_touch_pad_filter == NULL) { s_touch_pad_filter = (touch_pad_filter_t *) calloc(1, sizeof(touch_pad_filter_t)); if (s_touch_pad_filter == NULL) { ret = ESP_ERR_NO_MEM; } } if (s_touch_pad_filter->timer == NULL) { s_touch_pad_filter->timer = xTimerCreate("filter_tmr", filter_period_ms / portTICK_PERIOD_MS, pdTRUE, NULL, touch_pad_filter_cb); if (s_touch_pad_filter->timer == NULL) { ret = ESP_ERR_NO_MEM; } xTimerStart(s_touch_pad_filter->timer, portMAX_DELAY); s_touch_pad_filter->enable = true; } else { xTimerChangePeriod(s_touch_pad_filter->timer, filter_period_ms / portTICK_PERIOD_MS, portMAX_DELAY); s_touch_pad_filter->period = filter_period_ms; xTimerStart(s_touch_pad_filter->timer, portMAX_DELAY); } xSemaphoreGive(rtc_touch_mux); return ret; } esp_err_t touch_pad_filter_stop() { RTC_MODULE_CHECK(s_touch_pad_filter != NULL, "Touch pad filter not initialized", ESP_ERR_INVALID_STATE); esp_err_t ret = ESP_OK; xSemaphoreTake(rtc_touch_mux, portMAX_DELAY); if (s_touch_pad_filter != NULL) { xTimerStop(s_touch_pad_filter->timer, portMAX_DELAY); s_touch_pad_filter->enable = false; } else { ESP_LOGE(RTC_MODULE_TAG, "Touch pad filter deleted"); ret = ESP_ERR_INVALID_STATE; } xSemaphoreGive(rtc_touch_mux); return ret; } esp_err_t touch_pad_filter_delete() { RTC_MODULE_CHECK(s_touch_pad_filter != NULL, "Touch pad filter not initialized", ESP_ERR_INVALID_STATE); xSemaphoreTake(rtc_touch_mux, portMAX_DELAY); if (s_touch_pad_filter != NULL) { if (s_touch_pad_filter->timer != NULL) { xTimerStop(s_touch_pad_filter->timer, portMAX_DELAY); xTimerDelete(s_touch_pad_filter->timer, portMAX_DELAY); s_touch_pad_filter->timer = NULL; } free(s_touch_pad_filter); s_touch_pad_filter = NULL; } xSemaphoreGive(rtc_touch_mux); return ESP_OK; } /*--------------------------------------------------------------- ADC ---------------------------------------------------------------*/ static esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num) { RTC_MODULE_CHECK(channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG); switch (channel) { case ADC1_CHANNEL_0: *gpio_num = 36; break; case ADC1_CHANNEL_1: *gpio_num = 37; break; case ADC1_CHANNEL_2: *gpio_num = 38; break; case ADC1_CHANNEL_3: *gpio_num = 39; break; case ADC1_CHANNEL_4: *gpio_num = 32; break; case ADC1_CHANNEL_5: *gpio_num = 33; break; case ADC1_CHANNEL_6: *gpio_num = 34; break; case ADC1_CHANNEL_7: *gpio_num = 35; break; default: return ESP_ERR_INVALID_ARG; } return ESP_OK; } static esp_err_t adc1_pad_init(adc1_channel_t channel) { gpio_num_t gpio_num = 0; ADC1_CHECK_FUNCTION_RET(adc1_pad_get_io_num(channel, &gpio_num)); ADC1_CHECK_FUNCTION_RET(rtc_gpio_init(gpio_num)); ADC1_CHECK_FUNCTION_RET(rtc_gpio_output_disable(gpio_num)); ADC1_CHECK_FUNCTION_RET(rtc_gpio_input_disable(gpio_num)); ADC1_CHECK_FUNCTION_RET(gpio_set_pull_mode(gpio_num, GPIO_FLOATING)); return ESP_OK; } esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten) { RTC_MODULE_CHECK(channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(atten <= ADC_ATTEN_11db, "ADC Atten Err", ESP_ERR_INVALID_ARG); adc1_pad_init(channel); portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, 3, atten, (channel * 2)); //SAR1_atten portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t adc1_config_width(adc_bits_width_t width_bit) { portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR1_BIT_WIDTH_V, width_bit, SENS_SAR1_BIT_WIDTH_S); //SAR2_BIT_WIDTH[1:0]=0x3, SAR1_BIT_WIDTH[1:0]=0x3 //Invert the adc value,the Output value is invert SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR1_DATA_INV); //Set The adc sample width,invert adc value,must SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_BIT_V, width_bit, SENS_SAR1_SAMPLE_BIT_S); //digital sar1_bit_width[1:0]=3 portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } int adc1_get_raw(adc1_channel_t channel) { uint16_t adc_value; RTC_MODULE_CHECK(channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); //Adc Controler is Rtc module,not ulp coprocessor SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 1, SENS_MEAS1_START_FORCE_S); //force pad mux and force start //Bit1=0:Fsm Bit1=1(Bit0=0:PownDown Bit10=1:Powerup) SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S); //force XPD_SAR=0, use XPD_FSM //Disable Amp Bit1=0:Fsm Bit1=1(Bit0=0:PownDown Bit10=1:Powerup) SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 0x2, SENS_FORCE_XPD_AMP_S); //force XPD_AMP=0 //Open the ADC1 Data port Not ulp coprocessor SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 1, SENS_SAR1_EN_PAD_FORCE_S); //open the ADC1 data port //Select channel SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD, (1 << channel), SENS_SAR1_EN_PAD_S); //pad enable SET_PERI_REG_BITS(SENS_SAR_MEAS_CTRL_REG, 0xfff, 0x0, SENS_AMP_RST_FB_FSM_S); //[11:8]:short ref ground, [7:4]:short ref, [3:0]:rst fb SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT1, 0x1, SENS_SAR_AMP_WAIT1_S); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT2, 0x1, SENS_SAR_AMP_WAIT2_S); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_SAR_AMP_WAIT3, 0x1, SENS_SAR_AMP_WAIT3_S); while (GET_PERI_REG_BITS2(SENS_SAR_SLAVE_ADDR1_REG, 0x7, SENS_MEAS_STATUS_S) != 0); //wait det_fsm==0 SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 0, SENS_MEAS1_START_SAR_S); //start force 0 SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 1, SENS_MEAS1_START_SAR_S); //start force 1 while (GET_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_DONE_SAR) == 0) {}; //read done adc_value = GET_PERI_REG_BITS2(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_DATA_SAR, SENS_MEAS1_DATA_SAR_S); portEXIT_CRITICAL(&rtc_spinlock); return adc_value; } int adc1_get_voltage(adc1_channel_t channel) //Deprecated. Use adc1_get_raw() instead { return adc1_get_raw(channel); } void adc1_ulp_enable(void) { portENTER_CRITICAL(&rtc_spinlock); CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_START_FORCE); CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD_FORCE_M); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 0x2, SENS_FORCE_XPD_AMP_S); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S); SET_PERI_REG_BITS(SENS_SAR_MEAS_CTRL_REG, 0xfff, 0x0, SENS_AMP_RST_FB_FSM_S); //[11:8]:short ref ground, [7:4]:short ref, [3:0]:rst fb SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT1, 0x1, SENS_SAR_AMP_WAIT1_S); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT2, 0x1, SENS_SAR_AMP_WAIT2_S); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_SAR_AMP_WAIT3, 0x1, SENS_SAR_AMP_WAIT3_S); portEXIT_CRITICAL(&rtc_spinlock); } esp_err_t adc2_vref_to_gpio(gpio_num_t gpio) { int channel; if(gpio == GPIO_NUM_25){ channel = 8; //Channel 8 bit }else if (gpio == GPIO_NUM_26){ channel = 9; //Channel 9 bit }else if (gpio == GPIO_NUM_27){ channel = 7; //Channel 7 bit }else{ return ESP_ERR_INVALID_ARG; } //Configure RTC gpio rtc_gpio_init(gpio); rtc_gpio_output_disable(gpio); rtc_gpio_input_disable(gpio); rtc_gpio_pullup_dis(gpio); rtc_gpio_pulldown_dis(gpio); SET_PERI_REG_BITS(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DBG_ATTEN, 0, RTC_CNTL_DBG_ATTEN_S); //Check DBG effect outside sleep mode //set dtest (MUX_SEL : 0 -> RTC; 1-> vdd_sar2) SET_PERI_REG_BITS(RTC_CNTL_TEST_MUX_REG, RTC_CNTL_DTEST_RTC, 1, RTC_CNTL_DTEST_RTC_S); //Config test mux to route v_ref to ADC2 Channels //set ent SET_PERI_REG_MASK(RTC_CNTL_TEST_MUX_REG, RTC_CNTL_ENT_RTC_M); //set sar2_en_test SET_PERI_REG_MASK(SENS_SAR_START_FORCE_REG, SENS_SAR2_EN_TEST_M); //force fsm SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 3, SENS_FORCE_XPD_SAR_S); //Select power source of ADC //set sar2 en force SET_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_SAR2_EN_PAD_FORCE_M); //Pad bitmap controlled by SW //set en_pad for channels 7,8,9 (bits 0x380) SET_PERI_REG_BITS(SENS_SAR_MEAS_START2_REG, SENS_SAR2_EN_PAD, 1<= DAC_CHANNEL_1) && (channel < DAC_CHANNEL_MAX), DAC_ERR_STR_CHANNEL_ERROR, ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(gpio_num, "Param null", ESP_ERR_INVALID_ARG); switch (channel) { case DAC_CHANNEL_1: *gpio_num = 25; break; case DAC_CHANNEL_2: *gpio_num = 26; break; default: return ESP_ERR_INVALID_ARG; } return ESP_OK; } static esp_err_t dac_rtc_pad_init(dac_channel_t channel) { RTC_MODULE_CHECK((channel >= DAC_CHANNEL_1) && (channel < DAC_CHANNEL_MAX), DAC_ERR_STR_CHANNEL_ERROR, ESP_ERR_INVALID_ARG); gpio_num_t gpio_num = 0; dac_pad_get_io_num(channel, &gpio_num); rtc_gpio_init(gpio_num); rtc_gpio_output_disable(gpio_num); rtc_gpio_input_disable(gpio_num); rtc_gpio_pullup_dis(gpio_num); rtc_gpio_pulldown_dis(gpio_num); return ESP_OK; } esp_err_t dac_output_enable(dac_channel_t channel) { RTC_MODULE_CHECK((channel >= DAC_CHANNEL_1) && (channel < DAC_CHANNEL_MAX), DAC_ERR_STR_CHANNEL_ERROR, ESP_ERR_INVALID_ARG); dac_rtc_pad_init(channel); portENTER_CRITICAL(&rtc_spinlock); if (channel == DAC_CHANNEL_1) { SET_PERI_REG_MASK(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_XPD_DAC | RTC_IO_PDAC1_DAC_XPD_FORCE); } else if (channel == DAC_CHANNEL_2) { SET_PERI_REG_MASK(RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_XPD_DAC | RTC_IO_PDAC2_DAC_XPD_FORCE); } portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t dac_output_disable(dac_channel_t channel) { RTC_MODULE_CHECK((channel >= DAC_CHANNEL_1) && (channel < DAC_CHANNEL_MAX), DAC_ERR_STR_CHANNEL_ERROR, ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); if (channel == DAC_CHANNEL_1) { CLEAR_PERI_REG_MASK(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_XPD_DAC | RTC_IO_PDAC1_DAC_XPD_FORCE); } else if (channel == DAC_CHANNEL_2) { CLEAR_PERI_REG_MASK(RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_XPD_DAC | RTC_IO_PDAC2_DAC_XPD_FORCE); } portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t dac_output_voltage(dac_channel_t channel, uint8_t dac_value) { RTC_MODULE_CHECK((channel >= DAC_CHANNEL_1) && (channel < DAC_CHANNEL_MAX), DAC_ERR_STR_CHANNEL_ERROR, ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); //Disable Tone CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL1_REG, SENS_SW_TONE_EN); //Disable Channel Tone if (channel == DAC_CHANNEL_1) { CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN1_M); } else if (channel == DAC_CHANNEL_2) { CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN2_M); } //Set the Dac value if (channel == DAC_CHANNEL_1) { SET_PERI_REG_BITS(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_DAC, dac_value, RTC_IO_PDAC1_DAC_S); //dac_output } else if (channel == DAC_CHANNEL_2) { SET_PERI_REG_BITS(RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_DAC, dac_value, RTC_IO_PDAC2_DAC_S); //dac_output } portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t dac_out_voltage(dac_channel_t channel, uint8_t dac_value) { RTC_MODULE_CHECK((channel >= DAC_CHANNEL_1) && (channel < DAC_CHANNEL_MAX), DAC_ERR_STR_CHANNEL_ERROR, ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); //Disable Tone CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL1_REG, SENS_SW_TONE_EN); //Disable Channel Tone if (channel == DAC_CHANNEL_1) { CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN1_M); } else if (channel == DAC_CHANNEL_2) { CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN2_M); } //Set the Dac value if (channel == DAC_CHANNEL_1) { SET_PERI_REG_BITS(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_DAC, dac_value, RTC_IO_PDAC1_DAC_S); //dac_output } else if (channel == DAC_CHANNEL_2) { SET_PERI_REG_BITS(RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_DAC, dac_value, RTC_IO_PDAC2_DAC_S); //dac_output } portEXIT_CRITICAL(&rtc_spinlock); //dac pad init dac_rtc_pad_init(channel); dac_output_enable(channel); return ESP_OK; } esp_err_t dac_i2s_enable() { portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL1_REG, SENS_DAC_DIG_FORCE_M | SENS_DAC_CLK_INV_M); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t dac_i2s_disable() { portENTER_CRITICAL(&rtc_spinlock); CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL1_REG, SENS_DAC_DIG_FORCE_M | SENS_DAC_CLK_INV_M); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } /*--------------------------------------------------------------- HALL SENSOR ---------------------------------------------------------------*/ static int hall_sensor_get_value() //hall sensor without LNA { int Sens_Vp0; int Sens_Vn0; int Sens_Vp1; int Sens_Vn1; int hall_value; portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_XPD_HALL_FORCE_M); // hall sens force enable SET_PERI_REG_MASK(RTC_IO_HALL_SENS_REG, RTC_IO_XPD_HALL); // xpd hall SET_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_HALL_PHASE_FORCE_M); // phase force CLEAR_PERI_REG_MASK(RTC_IO_HALL_SENS_REG, RTC_IO_HALL_PHASE); // hall phase Sens_Vp0 = adc1_get_raw(ADC1_CHANNEL_0); Sens_Vn0 = adc1_get_raw(ADC1_CHANNEL_3); SET_PERI_REG_MASK(RTC_IO_HALL_SENS_REG, RTC_IO_HALL_PHASE); Sens_Vp1 = adc1_get_raw(ADC1_CHANNEL_0); Sens_Vn1 = adc1_get_raw(ADC1_CHANNEL_3); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S); CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_XPD_HALL_FORCE); CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_HALL_PHASE_FORCE); portEXIT_CRITICAL(&rtc_spinlock); hall_value = (Sens_Vp1 - Sens_Vp0) - (Sens_Vn1 - Sens_Vn0); return hall_value; } int hall_sensor_read() { adc1_pad_init(ADC1_CHANNEL_0); adc1_pad_init(ADC1_CHANNEL_3); adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_0db); adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_0db); return hall_sensor_get_value(); } /*--------------------------------------------------------------- INTERRUPT HANDLER ---------------------------------------------------------------*/ typedef struct rtc_isr_handler_ { uint32_t mask; intr_handler_t handler; void* handler_arg; SLIST_ENTRY(rtc_isr_handler_) next; } rtc_isr_handler_t; static SLIST_HEAD(rtc_isr_handler_list_, rtc_isr_handler_) s_rtc_isr_handler_list = SLIST_HEAD_INITIALIZER(s_rtc_isr_handler_list); portMUX_TYPE s_rtc_isr_handler_list_lock = portMUX_INITIALIZER_UNLOCKED; static intr_handle_t s_rtc_isr_handle; static void rtc_isr(void* arg) { uint32_t status = REG_READ(RTC_CNTL_INT_ST_REG); rtc_isr_handler_t* it; portENTER_CRITICAL(&s_rtc_isr_handler_list_lock); SLIST_FOREACH(it, &s_rtc_isr_handler_list, next) { if (it->mask & status) { portEXIT_CRITICAL(&s_rtc_isr_handler_list_lock); (*it->handler)(it->handler_arg); portENTER_CRITICAL(&s_rtc_isr_handler_list_lock); } } portEXIT_CRITICAL(&s_rtc_isr_handler_list_lock); REG_WRITE(RTC_CNTL_INT_CLR_REG, status); } static esp_err_t rtc_isr_ensure_installed() { esp_err_t err = ESP_OK; portENTER_CRITICAL(&s_rtc_isr_handler_list_lock); if (s_rtc_isr_handle) { goto out; } REG_WRITE(RTC_CNTL_INT_ENA_REG, 0); REG_WRITE(RTC_CNTL_INT_CLR_REG, UINT32_MAX); err = esp_intr_alloc(ETS_RTC_CORE_INTR_SOURCE, 0, &rtc_isr, NULL, &s_rtc_isr_handle); if (err != ESP_OK) { goto out; } out: portEXIT_CRITICAL(&s_rtc_isr_handler_list_lock); return err; } esp_err_t rtc_isr_register(intr_handler_t handler, void* handler_arg, uint32_t rtc_intr_mask) { esp_err_t err = rtc_isr_ensure_installed(); if (err != ESP_OK) { return err; } rtc_isr_handler_t* item = malloc(sizeof(*item)); if (item == NULL) { return ESP_ERR_NO_MEM; } item->handler = handler; item->handler_arg = handler_arg; item->mask = rtc_intr_mask; portENTER_CRITICAL(&s_rtc_isr_handler_list_lock); SLIST_INSERT_HEAD(&s_rtc_isr_handler_list, item, next); portEXIT_CRITICAL(&s_rtc_isr_handler_list_lock); return ESP_OK; } esp_err_t rtc_isr_deregister(intr_handler_t handler, void* handler_arg) { rtc_isr_handler_t* it; rtc_isr_handler_t* prev = NULL; bool found = false; portENTER_CRITICAL(&s_rtc_isr_handler_list_lock); SLIST_FOREACH(it, &s_rtc_isr_handler_list, next) { if (it->handler == handler && it->handler_arg == handler_arg) { if (it == SLIST_FIRST(&s_rtc_isr_handler_list)) { SLIST_REMOVE_HEAD(&s_rtc_isr_handler_list, next); } else { SLIST_REMOVE_AFTER(prev, next); } found = true; break; } prev = it; } portEXIT_CRITICAL(&s_rtc_isr_handler_list_lock); return found ? ESP_OK : ESP_ERR_INVALID_STATE; }