// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "bootloader_flash.h" #include "esp_image_format.h" #include "esp_flash_encrypt.h" #include "esp_flash_partitions.h" #include "esp_flash_data_types.h" #include "esp_secure_boot.h" #include "esp_efuse.h" #include "esp_log.h" #include "rom/secure_boot.h" #include "soc/rtc_wdt.h" #include "rom/cache.h" #include "rom/spi_flash.h" /* TODO: Remove this */ static const char *TAG = "flash_encrypt"; /* Static functions for stages of flash encryption */ static esp_err_t initialise_flash_encryption(void); static esp_err_t encrypt_flash_contents(uint32_t flash_crypt_cnt, bool flash_crypt_wr_dis); static esp_err_t encrypt_bootloader(); static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions); static esp_err_t encrypt_partition(int index, const esp_partition_info_t *partition); esp_err_t esp_flash_encrypt_check_and_update(void) { uint32_t efuse_blk0 = REG_READ(EFUSE_BLK0_RDATA0_REG); ESP_LOGV(TAG, "efuse_blk0 raw value %08x", efuse_blk0); uint32_t flash_crypt_cnt = (efuse_blk0 & EFUSE_RD_FLASH_CRYPT_CNT_M) >> EFUSE_RD_FLASH_CRYPT_CNT_S; bool flash_crypt_wr_dis = efuse_blk0 & EFUSE_WR_DIS_FLASH_CRYPT_CNT; ESP_LOGV(TAG, "efuse FLASH_CRYPT_CNT 0x%x WR_DIS_FLASH_CRYPT_CNT 0x%x", flash_crypt_cnt, flash_crypt_wr_dis); if (__builtin_parity(flash_crypt_cnt) == 1) { /* Flash is already encrypted */ int left = (7 - __builtin_popcount(flash_crypt_cnt)) / 2; if (flash_crypt_wr_dis) { left = 0; /* can't update FLASH_CRYPT_CNT, no more flashes */ } ESP_LOGI(TAG, "flash encryption is enabled (%d plaintext flashes left)", left); return ESP_OK; } else { /* Flash is not encrypted, so encrypt it! */ return encrypt_flash_contents(flash_crypt_cnt, flash_crypt_wr_dis); } } static esp_err_t initialise_flash_encryption(void) { uint32_t coding_scheme = REG_GET_FIELD(EFUSE_BLK0_RDATA6_REG, EFUSE_CODING_SCHEME); if (coding_scheme != EFUSE_CODING_SCHEME_VAL_NONE && coding_scheme != EFUSE_CODING_SCHEME_VAL_34) { ESP_LOGE(TAG, "Unknown/unsupported CODING_SCHEME value 0x%x", coding_scheme); return ESP_ERR_NOT_SUPPORTED; } /* Before first flash encryption pass, need to initialise key & crypto config */ /* Generate key */ uint32_t dis_reg = REG_READ(EFUSE_BLK0_RDATA0_REG); bool efuse_key_read_protected = dis_reg & EFUSE_RD_DIS_BLK1; bool efuse_key_write_protected = dis_reg & EFUSE_WR_DIS_BLK1; if (efuse_key_read_protected == false && efuse_key_write_protected == false && REG_READ(EFUSE_BLK1_RDATA0_REG) == 0 && REG_READ(EFUSE_BLK1_RDATA1_REG) == 0 && REG_READ(EFUSE_BLK1_RDATA2_REG) == 0 && REG_READ(EFUSE_BLK1_RDATA3_REG) == 0 && REG_READ(EFUSE_BLK1_RDATA4_REG) == 0 && REG_READ(EFUSE_BLK1_RDATA5_REG) == 0 && REG_READ(EFUSE_BLK1_RDATA6_REG) == 0 && REG_READ(EFUSE_BLK1_RDATA7_REG) == 0) { ESP_LOGI(TAG, "Generating new flash encryption key..."); esp_efuse_write_random_key(EFUSE_BLK1_WDATA0_REG); esp_efuse_burn_new_values(); ESP_LOGI(TAG, "Read & write protecting new key..."); REG_WRITE(EFUSE_BLK0_WDATA0_REG, EFUSE_WR_DIS_BLK1 | EFUSE_RD_DIS_BLK1); esp_efuse_burn_new_values(); } else { if(!(efuse_key_read_protected && efuse_key_write_protected)) { ESP_LOGE(TAG, "Flash encryption key has to be either unset or both read and write protected"); return ESP_ERR_INVALID_STATE; } ESP_LOGW(TAG, "Using pre-loaded flash encryption key in EFUSE block 1"); } /* CRYPT_CONFIG determines which bits of the AES block key are XORed with bits from the flash address, to provide the key tweak. CRYPT_CONFIG == 0 is effectively AES ECB mode (NOT SUPPORTED) For now this is hardcoded to XOR all 256 bits of the key. If you need to override it, you can pre-burn this efuse to the desired value and then write-protect it, in which case this operation does nothing. Please note this is not recommended! */ ESP_LOGI(TAG, "Setting CRYPT_CONFIG efuse to 0xF"); REG_WRITE(EFUSE_BLK0_WDATA5_REG, EFUSE_FLASH_CRYPT_CONFIG_M); esp_efuse_burn_new_values(); uint32_t new_wdata6 = 0; #ifndef CONFIG_FLASH_ENCRYPTION_UART_BOOTLOADER_ALLOW_ENCRYPT ESP_LOGI(TAG, "Disable UART bootloader encryption..."); new_wdata6 |= EFUSE_DISABLE_DL_ENCRYPT; #else ESP_LOGW(TAG, "Not disabling UART bootloader encryption"); #endif #ifndef CONFIG_FLASH_ENCRYPTION_UART_BOOTLOADER_ALLOW_DECRYPT ESP_LOGI(TAG, "Disable UART bootloader decryption..."); new_wdata6 |= EFUSE_DISABLE_DL_DECRYPT; #else ESP_LOGW(TAG, "Not disabling UART bootloader decryption - SECURITY COMPROMISED"); #endif #ifndef CONFIG_FLASH_ENCRYPTION_UART_BOOTLOADER_ALLOW_CACHE ESP_LOGI(TAG, "Disable UART bootloader MMU cache..."); new_wdata6 |= EFUSE_DISABLE_DL_CACHE; #else ESP_LOGW(TAG, "Not disabling UART bootloader MMU cache - SECURITY COMPROMISED"); #endif #ifndef CONFIG_SECURE_BOOT_ALLOW_JTAG ESP_LOGI(TAG, "Disable JTAG..."); new_wdata6 |= EFUSE_RD_DISABLE_JTAG; #else ESP_LOGW(TAG, "Not disabling JTAG - SECURITY COMPROMISED"); #endif #ifndef CONFIG_SECURE_BOOT_ALLOW_ROM_BASIC ESP_LOGI(TAG, "Disable ROM BASIC interpreter fallback..."); new_wdata6 |= EFUSE_RD_CONSOLE_DEBUG_DISABLE; #else ESP_LOGW(TAG, "Not disabling ROM BASIC fallback - SECURITY COMPROMISED"); #endif if (new_wdata6 != 0) { REG_WRITE(EFUSE_BLK0_WDATA6_REG, new_wdata6); esp_efuse_burn_new_values(); } return ESP_OK; } /* Encrypt all flash data that should be encrypted */ static esp_err_t encrypt_flash_contents(uint32_t flash_crypt_cnt, bool flash_crypt_wr_dis) { esp_err_t err; esp_partition_info_t partition_table[ESP_PARTITION_TABLE_MAX_ENTRIES]; int num_partitions; /* If the last flash_crypt_cnt bit is burned or write-disabled, the device can't re-encrypt itself. */ if (flash_crypt_wr_dis || flash_crypt_cnt == 0xFF) { ESP_LOGE(TAG, "Cannot re-encrypt data (FLASH_CRYPT_CNT 0x%02x write disabled %d", flash_crypt_cnt, flash_crypt_wr_dis); return ESP_FAIL; } if (flash_crypt_cnt == 0) { /* Very first flash of encrypted data: generate keys, etc. */ err = initialise_flash_encryption(); if (err != ESP_OK) { return err; } } err = encrypt_bootloader(); if (err != ESP_OK) { return err; } err = encrypt_and_load_partition_table(partition_table, &num_partitions); if (err != ESP_OK) { return err; } /* Now iterate the just-loaded partition table, looking for entries to encrypt */ /* Go through each partition and encrypt if necessary */ for (int i = 0; i < num_partitions; i++) { err = encrypt_partition(i, &partition_table[i]); if (err != ESP_OK) { return err; } } ESP_LOGD(TAG, "All flash regions checked for encryption pass"); /* Set least significant 0-bit in flash_crypt_cnt */ int ffs_inv = __builtin_ffs((~flash_crypt_cnt) & 0xFF); /* ffs_inv shouldn't be zero, as zero implies flash_crypt_cnt == 0xFF */ uint32_t new_flash_crypt_cnt = flash_crypt_cnt + (1 << (ffs_inv - 1)); ESP_LOGD(TAG, "FLASH_CRYPT_CNT 0x%x -> 0x%x", flash_crypt_cnt, new_flash_crypt_cnt); REG_SET_FIELD(EFUSE_BLK0_WDATA0_REG, EFUSE_FLASH_CRYPT_CNT, new_flash_crypt_cnt); esp_efuse_burn_new_values(); ESP_LOGI(TAG, "Flash encryption completed"); return ESP_OK; } static esp_err_t encrypt_bootloader() { esp_err_t err; uint32_t image_length; /* Check for plaintext bootloader (verification will fail if it's already encrypted) */ if (esp_image_verify_bootloader(&image_length) == ESP_OK) { ESP_LOGD(TAG, "bootloader is plaintext. Encrypting..."); err = esp_flash_encrypt_region(ESP_BOOTLOADER_OFFSET, image_length); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to encrypt bootloader in place: 0x%x", err); return err; } if (esp_secure_boot_enabled()) { /* If secure boot is enabled and bootloader was plaintext, also need to encrypt secure boot IV+digest. */ ESP_LOGD(TAG, "Encrypting secure bootloader IV & digest..."); err = esp_flash_encrypt_region(FLASH_OFFS_SECURE_BOOT_IV_DIGEST, FLASH_SECTOR_SIZE); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to encrypt bootloader IV & digest in place: 0x%x", err); return err; } } } else { ESP_LOGW(TAG, "no valid bootloader was found"); } return ESP_OK; } static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions) { esp_err_t err; /* Check for plaintext partition table */ err = bootloader_flash_read(ESP_PARTITION_TABLE_OFFSET, partition_table, ESP_PARTITION_TABLE_MAX_LEN, false); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to read partition table data"); return err; } if (esp_partition_table_verify(partition_table, false, num_partitions) == ESP_OK) { ESP_LOGD(TAG, "partition table is plaintext. Encrypting..."); esp_err_t err = esp_flash_encrypt_region(ESP_PARTITION_TABLE_OFFSET, FLASH_SECTOR_SIZE); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to encrypt partition table in place. %x", err); return err; } } else { ESP_LOGE(TAG, "Failed to read partition table data - not plaintext?"); return ESP_ERR_INVALID_STATE; } /* Valid partition table loded */ return ESP_OK; } static esp_err_t encrypt_partition(int index, const esp_partition_info_t *partition) { esp_err_t err; bool should_encrypt = (partition->flags & PART_FLAG_ENCRYPTED); if (partition->type == PART_TYPE_APP) { /* check if the partition holds a valid unencrypted app */ esp_image_metadata_t data_ignored; err = esp_image_verify(ESP_IMAGE_VERIFY, &partition->pos, &data_ignored); should_encrypt = (err == ESP_OK); } else if ((partition->type == PART_TYPE_DATA && partition->subtype == PART_SUBTYPE_DATA_OTA) || (partition->type == PART_TYPE_DATA && partition->subtype == PART_SUBTYPE_DATA_NVS_KEYS)) { /* check if we have ota data partition and the partition should be encrypted unconditionally */ should_encrypt = true; } if (!should_encrypt) { return ESP_OK; } else { /* should_encrypt */ ESP_LOGI(TAG, "Encrypting partition %d at offset 0x%x...", index, partition->pos.offset); err = esp_flash_encrypt_region(partition->pos.offset, partition->pos.size); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to encrypt partition %d", index); } return err; } } esp_err_t esp_flash_encrypt_region(uint32_t src_addr, size_t data_length) { esp_err_t err; uint32_t buf[FLASH_SECTOR_SIZE / sizeof(uint32_t)]; if (src_addr % FLASH_SECTOR_SIZE != 0) { ESP_LOGE(TAG, "esp_flash_encrypt_region bad src_addr 0x%x",src_addr); return ESP_FAIL; } for (size_t i = 0; i < data_length; i += FLASH_SECTOR_SIZE) { rtc_wdt_feed(); uint32_t sec_start = i + src_addr; err = bootloader_flash_read(sec_start, buf, FLASH_SECTOR_SIZE, false); if (err != ESP_OK) { goto flash_failed; } err = bootloader_flash_erase_sector(sec_start / FLASH_SECTOR_SIZE); if (err != ESP_OK) { goto flash_failed; } err = bootloader_flash_write(sec_start, buf, FLASH_SECTOR_SIZE, true); if (err != ESP_OK) { goto flash_failed; } } return ESP_OK; flash_failed: ESP_LOGE(TAG, "flash operation failed: 0x%x", err); return err; } void esp_flash_write_protect_crypt_cnt() { uint32_t efuse_blk0 = REG_READ(EFUSE_BLK0_RDATA0_REG); bool flash_crypt_wr_dis = efuse_blk0 & EFUSE_WR_DIS_FLASH_CRYPT_CNT; if(!flash_crypt_wr_dis) { REG_WRITE(EFUSE_BLK0_WDATA0_REG, EFUSE_WR_DIS_FLASH_CRYPT_CNT); esp_efuse_burn_new_values(); } }