// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "sdkconfig.h" #include "driver/spi_master.h" #include "soc/spi_periph.h" #include "esp_types.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_err.h" #include "soc/soc.h" #include "soc/dport_reg.h" #include "soc/lldesc.h" #include "driver/gpio.h" #include "driver/periph_ctrl.h" #include "esp_heap_caps.h" #include "driver/spi_common_internal.h" #include "stdatomic.h" #include "hal/spi_hal.h" #include "esp_rom_gpio.h" static const char *SPI_TAG = "spi"; #define SPI_CHECK(a, str, ret_val) do { \ if (!(a)) { \ ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } \ } while(0) #define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \ SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \ } else { \ SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \ } typedef struct spi_device_t spi_device_t; #define FUNC_GPIO PIN_FUNC_GPIO #define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1)) typedef struct { int host_id; spi_destroy_func_t destroy_func; void* destroy_arg; spi_bus_attr_t bus_attr; } spicommon_bus_context_t; #define MAIN_BUS_DEFAULT() { \ .host_id = 0, \ .bus_attr = { \ .dma_chan = 0, \ .max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE, \ .dma_desc_num= 0, \ }, \ } //Periph 1 is 'claimed' by SPI flash code. static atomic_bool spi_periph_claimed[SOC_SPI_PERIPH_NUM] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false), ATOMIC_VAR_INIT(false), #if SOC_SPI_PERIPH_NUM >= 4 ATOMIC_VAR_INIT(false), #endif }; static const char* spi_claiming_func[3] = {NULL, NULL, NULL}; static uint8_t spi_dma_chan_enabled = 0; static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED; static spicommon_bus_context_t s_mainbus = MAIN_BUS_DEFAULT(); static spicommon_bus_context_t* bus_ctx[SOC_SPI_PERIPH_NUM] = {&s_mainbus}; //Returns true if this peripheral is successfully claimed, false if otherwise. bool spicommon_periph_claim(spi_host_device_t host, const char* source) { bool false_var = false; bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &false_var, true); if (ret) { spi_claiming_func[host] = source; periph_module_enable(spi_periph_signal[host].module); } else { ESP_EARLY_LOGE(SPI_TAG, "SPI%d already claimed by %s.", host+1, spi_claiming_func[host]); } return ret; } bool spicommon_periph_in_use(spi_host_device_t host) { return atomic_load(&spi_periph_claimed[host]); } //Returns true if this peripheral is successfully freed, false if otherwise. bool spicommon_periph_free(spi_host_device_t host) { bool true_var = true; bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &true_var, false); if (ret) periph_module_disable(spi_periph_signal[host].module); return ret; } int spicommon_irqsource_for_host(spi_host_device_t host) { return spi_periph_signal[host].irq; } int spicommon_irqdma_source_for_host(spi_host_device_t host) { return spi_periph_signal[host].irq_dma; } static inline uint32_t get_dma_periph(int dma_chan) { #if CONFIG_IDF_TARGET_ESP32S2 if (dma_chan == 1) { return PERIPH_SPI2_DMA_MODULE; } else if (dma_chan==2) { return PERIPH_SPI3_DMA_MODULE; } else { abort(); return -1; } #elif CONFIG_IDF_TARGET_ESP32 return PERIPH_SPI_DMA_MODULE; #endif } bool spicommon_dma_chan_claim (int dma_chan) { bool ret = false; assert(dma_chan >= 1 && dma_chan <= SOC_SPI_DMA_CHAN_NUM); portENTER_CRITICAL(&spi_dma_spinlock); if ( !(spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan)) ) { // get the channel only when it's not claimed yet. spi_dma_chan_enabled |= DMA_CHANNEL_ENABLED(dma_chan); ret = true; } #if CONFIG_IDF_TARGET_ESP32 periph_module_enable(get_dma_periph(dma_chan)); #elif CONFIG_IDF_TARGET_ESP32S2 if (dma_chan==1) { periph_module_enable(PERIPH_SPI2_DMA_MODULE); } else if (dma_chan==2) { periph_module_enable(PERIPH_SPI3_DMA_MODULE); } #endif portEXIT_CRITICAL(&spi_dma_spinlock); return ret; } bool spicommon_dma_chan_in_use(int dma_chan) { assert(dma_chan==1 || dma_chan == 2); return spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan); } bool spicommon_dma_chan_free(int dma_chan) { assert( dma_chan == 1 || dma_chan == 2 ); assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) ); portENTER_CRITICAL(&spi_dma_spinlock); spi_dma_chan_enabled &= ~DMA_CHANNEL_ENABLED(dma_chan); #if CONFIG_IDF_TARGET_ESP32 if ( spi_dma_chan_enabled == 0 ) { //disable the DMA only when all the channels are freed. periph_module_disable(get_dma_periph(dma_chan)); } #elif CONFIG_IDF_TARGET_ESP32S2 if (dma_chan==1) { periph_module_disable(PERIPH_SPI2_DMA_MODULE); } else if (dma_chan==2) { periph_module_disable(PERIPH_SPI3_DMA_MODULE); } #endif portEXIT_CRITICAL(&spi_dma_spinlock); return true; } static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config) { if (bus_config->sclk_io_num>=0 && bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) return false; if (bus_config->quadwp_io_num>=0 && bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) return false; if (bus_config->quadhd_io_num>=0 && bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) return false; if (bus_config->mosi_io_num >= 0 && bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) return false; if (bus_config->miso_io_num>=0 && bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) return false; return true; } /* Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value, it should be able to be initialized. */ esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, uint32_t flags, uint32_t* flags_o) { uint32_t temp_flag=0; bool miso_need_output; bool mosi_need_output; bool sclk_need_output; if ((flags&SPICOMMON_BUSFLAG_MASTER) != 0) { //initial for master miso_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false; mosi_need_output = true; sclk_need_output = true; } else { //initial for slave miso_need_output = true; mosi_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false; sclk_need_output = false; } const bool wp_need_output = true; const bool hd_need_output = true; //check pin capabilities if (bus_config->sclk_io_num>=0) { temp_flag |= SPICOMMON_BUSFLAG_SCLK; SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output); } if (bus_config->quadwp_io_num>=0) { SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output); } if (bus_config->quadhd_io_num>=0) { SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output); } //set flags for QUAD mode according to the existence of wp and hd if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) temp_flag |= SPICOMMON_BUSFLAG_WPHD; if (bus_config->mosi_io_num >= 0) { temp_flag |= SPICOMMON_BUSFLAG_MOSI; SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output); } if (bus_config->miso_io_num>=0) { temp_flag |= SPICOMMON_BUSFLAG_MISO; SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output); } //set flags for DUAL mode according to output-capability of MOSI and MISO pins. if ( (bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) && (bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num)) ) { temp_flag |= SPICOMMON_BUSFLAG_DUAL; } //check if the selected pins correspond to the iomux pins of the peripheral bool use_iomux = bus_uses_iomux_pins(host, bus_config); if (use_iomux) temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS; uint32_t missing_flag = flags & ~temp_flag; missing_flag &= ~SPICOMMON_BUSFLAG_MASTER;//don't check this flag if (missing_flag != 0) { //check pins existence if (missing_flag & SPICOMMON_BUSFLAG_SCLK) ESP_LOGE(SPI_TAG, "sclk pin required."); if (missing_flag & SPICOMMON_BUSFLAG_MOSI) ESP_LOGE(SPI_TAG, "mosi pin required."); if (missing_flag & SPICOMMON_BUSFLAG_MISO) ESP_LOGE(SPI_TAG, "miso pin required."); if (missing_flag & SPICOMMON_BUSFLAG_DUAL) ESP_LOGE(SPI_TAG, "not both mosi and miso output capable"); if (missing_flag & SPICOMMON_BUSFLAG_WPHD) ESP_LOGE(SPI_TAG, "both wp and hd required."); if (missing_flag & SPICOMMON_BUSFLAG_IOMUX_PINS) ESP_LOGE(SPI_TAG, "not using iomux pins"); SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG); } if (use_iomux) { //All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure //out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway. ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host+1); if (bus_config->mosi_io_num >= 0) { gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in); gpio_iomux_out(bus_config->mosi_io_num, spi_periph_signal[host].func, false); } if (bus_config->miso_io_num >= 0) { gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in); gpio_iomux_out(bus_config->miso_io_num, spi_periph_signal[host].func, false); } if (bus_config->quadwp_io_num >= 0) { gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in); gpio_iomux_out(bus_config->quadwp_io_num, spi_periph_signal[host].func, false); } if (bus_config->quadhd_io_num >= 0) { gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in); gpio_iomux_out(bus_config->quadhd_io_num, spi_periph_signal[host].func, false); } if (bus_config->sclk_io_num >= 0) { gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in); gpio_iomux_out(bus_config->sclk_io_num, spi_periph_signal[host].func, false); } temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS; } else { //Use GPIO matrix ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host+1); if (bus_config->mosi_io_num >= 0) { if (mosi_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) { gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false); } else { gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT); } esp_rom_gpio_connect_in_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->mosi_io_num]); #endif PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], FUNC_GPIO); } if (bus_config->miso_io_num >= 0) { if (miso_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) { gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false); } else { gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT); } esp_rom_gpio_connect_in_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->miso_io_num]); #endif PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], FUNC_GPIO); } if (bus_config->quadwp_io_num >= 0) { gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false); esp_rom_gpio_connect_in_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num]); #endif PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], FUNC_GPIO); } if (bus_config->quadhd_io_num >= 0) { gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false); esp_rom_gpio_connect_in_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num]); #endif PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], FUNC_GPIO); } if (bus_config->sclk_io_num >= 0) { if (sclk_need_output) { gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false); } else { gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT); } esp_rom_gpio_connect_in_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->sclk_io_num]); #endif PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], FUNC_GPIO); } } //Select DMA channel. #if CONFIG_IDF_TARGET_ESP32 DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2)); #endif if (flags_o) *flags_o = temp_flag; return ESP_OK; } esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg) { int pin_array[] = { bus_cfg->mosi_io_num, bus_cfg->miso_io_num, bus_cfg->sclk_io_num, bus_cfg->quadwp_io_num, bus_cfg->quadhd_io_num, }; for (int i = 0; i < sizeof(pin_array)/sizeof(int); i ++) { const int io = pin_array[i]; if (io >= 0 && GPIO_IS_VALID_GPIO(io)) gpio_reset_pin(io); } return ESP_OK; } void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix) { if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) { //The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define. gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in); #if CONFIG_IDF_TARGET_ESP32 gpio_iomux_out(cs_io_num, spi_periph_signal[host].func, false); #elif CONFIG_IDF_TARGET_ESP32S2 gpio_iomux_out(cs_io_num, spi_periph_signal[host].func, false); #endif } else { //Use GPIO matrix if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) { gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false); } else { gpio_set_direction(cs_io_num, GPIO_MODE_INPUT); } if (cs_num == 0) esp_rom_gpio_connect_in_signal(cs_io_num, spi_periph_signal[host].spics_in, false); PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[cs_io_num]); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], FUNC_GPIO); } } void spicommon_cs_free_io(int cs_gpio_num) { assert(cs_gpio_num>=0 && GPIO_IS_VALID_GPIO(cs_gpio_num)); gpio_reset_pin(cs_gpio_num); } bool spicommon_bus_using_iomux(spi_host_device_t host) { #define CHECK_IOMUX_PIN(HOST, PIN_NAME) if (GPIO.func_in_sel_cfg[spi_periph_signal[(HOST)].PIN_NAME##_in].sig_in_sel) return false CHECK_IOMUX_PIN(host, spid); CHECK_IOMUX_PIN(host, spiq); CHECK_IOMUX_PIN(host, spiwp); CHECK_IOMUX_PIN(host, spihd); return true; } void spi_bus_main_set_lock(spi_bus_lock_handle_t lock) { bus_ctx[0]->bus_attr.lock = lock; } spi_bus_lock_handle_t spi_bus_lock_get_by_id(spi_host_device_t host_id) { return bus_ctx[host_id]->bus_attr.lock; } static inline bool is_valid_host(spi_host_device_t host) { return host >= SPI1_HOST && host <= SPI3_HOST; } esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *bus_config, int dma_chan) { esp_err_t err = ESP_OK; spicommon_bus_context_t *ctx = NULL; spi_bus_attr_t *bus_attr = NULL; SPI_CHECK(is_valid_host(host_id), "invalid host_id", ESP_ERR_INVALID_ARG); SPI_CHECK(bus_ctx[host_id] == NULL, "SPI bus already initialized.", ESP_ERR_INVALID_STATE); #ifdef CONFIG_IDF_TARGET_ESP32 SPI_CHECK( dma_chan >= 0 && dma_chan <= 2, "invalid dma channel", ESP_ERR_INVALID_ARG ); #elif CONFIG_IDF_TARGET_ESP32S2 SPI_CHECK( dma_chan == 0 || dma_chan == host_id, "invalid dma channel", ESP_ERR_INVALID_ARG ); #endif SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH|ESP_INTR_FLAG_EDGE|ESP_INTR_FLAG_INTRDISABLED))==0, "intr flag not allowed", ESP_ERR_INVALID_ARG); #ifndef CONFIG_SPI_MASTER_ISR_IN_IRAM SPI_CHECK((bus_config->intr_flags & ESP_INTR_FLAG_IRAM)==0, "ESP_INTR_FLAG_IRAM should be disabled when CONFIG_SPI_MASTER_ISR_IN_IRAM is not set.", ESP_ERR_INVALID_ARG); #endif bool spi_chan_claimed = spicommon_periph_claim(host_id, "spi master"); SPI_CHECK(spi_chan_claimed, "host_id already in use", ESP_ERR_INVALID_STATE); if (dma_chan != 0) { bool dma_chan_claimed=spicommon_dma_chan_claim(dma_chan); if (!dma_chan_claimed) { spicommon_periph_free(host_id); SPI_CHECK(false, "dma channel already in use", ESP_ERR_INVALID_STATE); } } //clean and initialize the context ctx = (spicommon_bus_context_t*)malloc(sizeof(spicommon_bus_context_t)); if (!ctx) { err = ESP_ERR_NO_MEM; goto cleanup; } *ctx = (spicommon_bus_context_t) { .host_id = host_id, .bus_attr = { .bus_cfg = *bus_config, .dma_chan = dma_chan, }, }; bus_attr = &ctx->bus_attr; if (dma_chan == 0) { bus_attr->max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE; bus_attr->dma_desc_num = 0; } else { //See how many dma descriptors we need and allocate them int dma_desc_ct = lldesc_get_required_num(bus_config->max_transfer_sz); if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given bus_attr->max_transfer_sz = dma_desc_ct * LLDESC_MAX_NUM_PER_DESC; bus_attr->dmadesc_tx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA); bus_attr->dmadesc_rx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA); if (bus_attr->dmadesc_tx == NULL || bus_attr->dmadesc_rx == NULL) { err = ESP_ERR_NO_MEM; goto cleanup; } bus_attr->dma_desc_num = dma_desc_ct; } spi_bus_lock_config_t lock_config = { .host_id = host_id, .cs_num = SOC_SPI_PERIPH_CS_NUM(host_id), }; err = spi_bus_init_lock(&bus_attr->lock, &lock_config); if (err != ESP_OK) { goto cleanup; } #ifdef CONFIG_PM_ENABLE err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master", &bus_attr->pm_lock); if (err != ESP_OK) { goto cleanup; } #endif //CONFIG_PM_ENABLE err = spicommon_bus_initialize_io(host_id, bus_config, dma_chan, SPICOMMON_BUSFLAG_MASTER | bus_config->flags, &bus_attr->flags); if (err != ESP_OK) { goto cleanup; } bus_ctx[host_id] = ctx; return ESP_OK; cleanup: if (bus_attr) { #ifdef CONFIG_PM_ENABLE esp_pm_lock_delete(bus_attr->pm_lock); #endif if (bus_attr->lock) { spi_bus_deinit_lock(bus_attr->lock); } free(bus_attr->dmadesc_tx); free(bus_attr->dmadesc_rx); } free(ctx); if (dma_chan) { spicommon_dma_chan_free(dma_chan); } spicommon_periph_free(host_id); return err; } const spi_bus_attr_t* spi_bus_get_attr(spi_host_device_t host_id) { if (bus_ctx[host_id] == NULL) return NULL; return &bus_ctx[host_id]->bus_attr; } esp_err_t spi_bus_free(spi_host_device_t host_id) { esp_err_t err = ESP_OK; spicommon_bus_context_t* ctx = bus_ctx[host_id]; spi_bus_attr_t* bus_attr = &ctx->bus_attr; if (ctx->destroy_func) { err = ctx->destroy_func(ctx->destroy_arg); } spicommon_bus_free_io_cfg(&bus_attr->bus_cfg); #ifdef CONFIG_PM_ENABLE esp_pm_lock_delete(bus_attr->pm_lock); #endif spi_bus_deinit_lock(bus_attr->lock); free(bus_attr->dmadesc_rx); free(bus_attr->dmadesc_tx); if (bus_attr->dma_chan > 0) { spicommon_dma_chan_free (bus_attr->dma_chan); } spicommon_periph_free(host_id); free(ctx); bus_ctx[host_id] = NULL; return err; } esp_err_t spi_bus_register_destroy_func(spi_host_device_t host_id, spi_destroy_func_t f, void *arg) { bus_ctx[host_id]->destroy_func = f; bus_ctx[host_id]->destroy_arg = arg; return ESP_OK; } /* Code for workaround for DMA issue in ESP32 v0/v1 silicon */ #if CONFIG_IDF_TARGET_ESP32 static volatile int dmaworkaround_channels_busy[2] = {0, 0}; static dmaworkaround_cb_t dmaworkaround_cb; static void *dmaworkaround_cb_arg; static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED; static int dmaworkaround_waiting_for_chan = 0; #endif bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg) { #if CONFIG_IDF_TARGET_ESP32 int otherchan = (dmachan == 1) ? 2 : 1; bool ret; portENTER_CRITICAL_ISR(&dmaworkaround_mux); if (dmaworkaround_channels_busy[otherchan-1]) { //Other channel is busy. Call back when it's done. dmaworkaround_cb = cb; dmaworkaround_cb_arg = arg; dmaworkaround_waiting_for_chan = otherchan; ret = false; } else { //Reset DMA periph_module_reset( PERIPH_SPI_DMA_MODULE ); ret = true; } portEXIT_CRITICAL_ISR(&dmaworkaround_mux); return ret; #else //no need to reset return true; #endif } bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress(void) { #if CONFIG_IDF_TARGET_ESP32 return (dmaworkaround_waiting_for_chan != 0); #else return false; #endif } void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan) { #if CONFIG_IDF_TARGET_ESP32 portENTER_CRITICAL_ISR(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan-1] = 0; if (dmaworkaround_waiting_for_chan == dmachan) { //Reset DMA periph_module_reset( PERIPH_SPI_DMA_MODULE ); dmaworkaround_waiting_for_chan = 0; //Call callback dmaworkaround_cb(dmaworkaround_cb_arg); } portEXIT_CRITICAL_ISR(&dmaworkaround_mux); #endif } void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan) { #if CONFIG_IDF_TARGET_ESP32 portENTER_CRITICAL_ISR(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan-1] = 1; portEXIT_CRITICAL_ISR(&dmaworkaround_mux); #endif }