// Copyright 2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #ifdef __cplusplus extern "C" { #endif #include #include "soc/rmt_struct.h" #include "soc/rmt_caps.h" #define RMT_LL_HW_BASE (&RMT) #define RMT_LL_MEM_BASE (&RMTMEM) static inline void rmt_ll_enable_drive_clock(rmt_dev_t *dev, bool enable) { dev->conf_ch[0].conf0.clk_en = enable; } static inline void rmt_ll_reset_counter_clock_div(rmt_dev_t *dev, uint32_t channel) { dev->conf_ch[channel].conf1.ref_cnt_rst = 1; dev->conf_ch[channel].conf1.ref_cnt_rst = 0; } static inline void rmt_ll_reset_tx_pointer(rmt_dev_t *dev, uint32_t channel) { dev->conf_ch[channel].conf1.mem_rd_rst = 1; dev->conf_ch[channel].conf1.mem_rd_rst = 0; } static inline void rmt_ll_reset_rx_pointer(rmt_dev_t *dev, uint32_t channel) { dev->conf_ch[channel].conf1.mem_wr_rst = 1; dev->conf_ch[channel].conf1.mem_wr_rst = 0; } static inline void rmt_ll_start_tx(rmt_dev_t *dev, uint32_t channel) { dev->conf_ch[channel].conf1.tx_start = 1; } static inline void rmt_ll_stop_tx(rmt_dev_t *dev, uint32_t channel) { RMTMEM.chan[channel].data32[0].val = 0; dev->conf_ch[channel].conf1.tx_start = 0; dev->conf_ch[channel].conf1.mem_rd_rst = 1; dev->conf_ch[channel].conf1.mem_rd_rst = 0; } static inline void rmt_ll_enable_rx(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->conf_ch[channel].conf1.rx_en = enable; } static inline void rmt_ll_power_down_mem(rmt_dev_t *dev, bool enable) { dev->conf_ch[0].conf0.mem_pd = enable; // Only conf0 register of channel0 has `mem_pd` } static inline bool rmt_ll_is_mem_power_down(rmt_dev_t *dev) { return dev->conf_ch[0].conf0.mem_pd; // Only conf0 register of channel0 has `mem_pd` } static inline void rmt_ll_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num) { dev->conf_ch[channel].conf0.mem_size = block_num; } static inline uint32_t rmt_ll_get_mem_blocks(rmt_dev_t *dev, uint32_t channel) { return dev->conf_ch[channel].conf0.mem_size; } static inline void rmt_ll_set_counter_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div) { dev->conf_ch[channel].conf0.div_cnt = div; } static inline uint32_t rmt_ll_get_counter_clock_div(rmt_dev_t *dev, uint32_t channel) { uint32_t div = dev->conf_ch[channel].conf0.div_cnt; return div == 0 ? 256 : div; } static inline void rmt_ll_enable_tx_pingpong(rmt_dev_t *dev, bool enable) { dev->apb_conf.mem_tx_wrap_en = enable; } static inline void rmt_ll_enable_mem_access(rmt_dev_t *dev, bool enable) { dev->apb_conf.fifo_mask = enable; } static inline void rmt_ll_set_rx_idle_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres) { dev->conf_ch[channel].conf0.idle_thres = thres; } static inline uint32_t rmt_ll_get_rx_idle_thres(rmt_dev_t *dev, uint32_t channel) { return dev->conf_ch[channel].conf0.idle_thres; } static inline void rmt_ll_set_mem_owner(rmt_dev_t *dev, uint32_t channel, uint8_t owner) { dev->conf_ch[channel].conf1.mem_owner = owner; } static inline uint32_t rmt_ll_get_mem_owner(rmt_dev_t *dev, uint32_t channel) { return dev->conf_ch[channel].conf1.mem_owner; } static inline void rmt_ll_enable_tx_loop(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->conf_ch[channel].conf1.tx_conti_mode = enable; } static inline bool rmt_ll_is_tx_loop_enabled(rmt_dev_t *dev, uint32_t channel) { return dev->conf_ch[channel].conf1.tx_conti_mode; } static inline void rmt_ll_enable_rx_filter(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->conf_ch[channel].conf1.rx_filter_en = enable; } static inline void rmt_ll_set_rx_filter_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres) { dev->conf_ch[channel].conf1.rx_filter_thres = thres; } static inline void rmt_ll_set_counter_clock_src(rmt_dev_t *dev, uint32_t channel, uint8_t src) { dev->conf_ch[channel].conf1.ref_always_on = src; } static inline uint32_t rmt_ll_get_counter_clock_src(rmt_dev_t *dev, uint32_t channel) { return dev->conf_ch[channel].conf1.ref_always_on; } static inline void rmt_ll_enable_tx_idle(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->conf_ch[channel].conf1.idle_out_en = enable; } static inline bool rmt_ll_is_tx_idle_enabled(rmt_dev_t *dev, uint32_t channel) { return dev->conf_ch[channel].conf1.idle_out_en; } static inline void rmt_ll_set_tx_idle_level(rmt_dev_t *dev, uint32_t channel, uint8_t level) { dev->conf_ch[channel].conf1.idle_out_lv = level; } static inline uint32_t rmt_ll_get_tx_idle_level(rmt_dev_t *dev, uint32_t channel) { return dev->conf_ch[channel].conf1.idle_out_lv; } static inline uint32_t rmt_ll_get_channel_status(rmt_dev_t *dev, uint32_t channel) { return dev->status_ch[channel]; } static inline void rmt_ll_set_tx_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit) { dev->tx_lim_ch[channel].limit = limit; } static inline void rmt_ll_enable_tx_end_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->int_ena.val &= ~(1 << (channel * 3)); dev->int_ena.val |= (enable << (channel * 3)); } static inline void rmt_ll_enable_rx_end_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->int_ena.val &= ~(1 << (channel * 3 + 1)); dev->int_ena.val |= (enable << (channel * 3 + 1)); } static inline void rmt_ll_enable_err_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->int_ena.val &= ~(1 << (channel * 3 + 2)); dev->int_ena.val |= (enable << (channel * 3 + 2)); } static inline void rmt_ll_enable_tx_thres_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->int_ena.val &= ~(1 << (channel + 24)); dev->int_ena.val |= (enable << (channel + 24)); } static inline void rmt_ll_clear_tx_end_interrupt(rmt_dev_t *dev, uint32_t channel) { dev->int_clr.val = (1 << (channel * 3)); } static inline void rmt_ll_clear_rx_end_interrupt(rmt_dev_t *dev, uint32_t channel) { dev->int_clr.val = (1 << (channel * 3 + 1)); } static inline void rmt_ll_clear_err_interrupt(rmt_dev_t *dev, uint32_t channel) { dev->int_clr.val = (1 << (channel * 3 + 2)); } static inline void rmt_ll_clear_tx_thres_interrupt(rmt_dev_t *dev, uint32_t channel) { dev->int_clr.val = (1 << (channel + 24)); } static inline uint32_t rmt_ll_get_tx_end_interrupt_status(rmt_dev_t *dev) { uint32_t status = dev->int_st.val; return ((status & 0x01) >> 0) | ((status & 0x08) >> 2) | ((status & 0x40) >> 4) | ((status & 0x200) >> 6) | ((status & 0x1000) >> 8) | ((status & 0x8000) >> 10) | ((status & 0x40000) >> 12) | ((status & 0x200000) >> 14); } static inline uint32_t rmt_ll_get_rx_end_interrupt_status(rmt_dev_t *dev) { uint32_t status = dev->int_st.val; return ((status & 0x02) >> 1) | ((status & 0x10) >> 3) | ((status & 0x80) >> 5) | ((status & 0x400) >> 7) | ((status & 0x2000) >> 9) | ((status & 0x10000) >> 11) | ((status & 0x80000) >> 13) | ((status & 0x400000) >> 15); } static inline uint32_t rmt_ll_get_err_interrupt_status(rmt_dev_t *dev) { uint32_t status = dev->int_st.val; return ((status & 0x04) >> 2) | ((status & 0x20) >> 4) | ((status & 0x100) >> 6) | ((status & 0x800) >> 8) | ((status & 0x4000) >> 10) | ((status & 0x20000) >> 12) | ((status & 0x100000) >> 14) | ((status & 0x800000) >> 16); } static inline uint32_t rmt_ll_get_tx_thres_interrupt_status(rmt_dev_t *dev) { uint32_t status = dev->int_st.val; return (status & 0xFF000000) >> 24; } static inline void rmt_ll_set_tx_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks) { dev->carrier_duty_ch[channel].high = high_ticks; dev->carrier_duty_ch[channel].low = low_ticks; } static inline void rmt_ll_get_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t *high_ticks, uint32_t *low_ticks) { *high_ticks = dev->carrier_duty_ch[channel].high; *low_ticks = dev->carrier_duty_ch[channel].low; } static inline void rmt_ll_enable_carrier(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->conf_ch[channel].conf0.carrier_en = enable; } static inline void rmt_ll_set_carrier_on_level(rmt_dev_t *dev, uint32_t channel, uint8_t level) { dev->conf_ch[channel].conf0.carrier_out_lv = level; } //Writes items to the specified TX channel memory with the given offset and writen length. //the caller should ensure that (length + off) <= (memory block * SOC_RMT_CHANNEL_MEM_WORDS) static inline void rmt_ll_write_memory(rmt_mem_t *mem, uint32_t channel, const rmt_item32_t *data, uint32_t length, uint32_t off) { for (uint32_t i = 0; i < length; i++) { mem->chan[channel].data32[i + off].val = data[i].val; } } /************************************************************************************************ * Following Low Level APIs only used for backward compatible, will be deprecated in the future! ***********************************************************************************************/ static inline void rmt_ll_set_intr_enable_mask(uint32_t mask) { RMT.int_ena.val |= mask; } static inline void rmt_ll_clr_intr_enable_mask(uint32_t mask) { RMT.int_ena.val &= (~mask); } #ifdef __cplusplus } #endif