// Copyright 2010-2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * DPORT access is used for do protection when dual core access DPORT internal register and APB register via DPORT simultaneously * This function will be initialize after FreeRTOS startup. * When cpu0 want to access DPORT register, it should notify cpu1 enter in high-priority interrupt for be mute. When cpu1 already in high-priority interrupt, * cpu0 can access DPORT register. Currently, cpu1 will wait for cpu0 finish access and exit high-priority interrupt. */ #include #include #include #include "esp_attr.h" #include "esp_err.h" #include "esp_intr.h" #include "rom/ets_sys.h" #include "rom/uart.h" #include "soc/cpu.h" #include "soc/dport_reg.h" #include "soc/spi_reg.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "freertos/queue.h" #include "freertos/portmacro.h" #include "xtensa/core-macros.h" static portMUX_TYPE g_dport_mux = portMUX_INITIALIZER_UNLOCKED; #define DPORT_CORE_STATE_IDLE 0 #define DPORT_CORE_STATE_RUNNING 1 static uint32_t volatile dport_core_state[portNUM_PROCESSORS]; //cpu is already run /* these global variables are accessed from interrupt vector, hence not declared as static */ uint32_t volatile dport_access_start[portNUM_PROCESSORS]; //dport register could be accessed uint32_t volatile dport_access_end[portNUM_PROCESSORS]; //dport register is accessed over static uint32_t volatile dport_access_ref[portNUM_PROCESSORS]; //dport access reference #ifdef DPORT_ACCESS_BENCHMARK #define DPORT_ACCESS_BENCHMARK_STORE_NUM static uint32_t ccount_start[portNUM_PROCESSORS]; static uint32_t ccount_end[portNUM_PROCESSORS]; static uint32_t ccount_margin[portNUM_PROCESSORS][DPORT_ACCESS_BENCHMARK_STORE_NUM]; static uint32_t ccount_margin_cnt; #endif #ifndef CONFIG_FREERTOS_UNICORE static BaseType_t oldInterruptLevel[2]; #endif /* stall other cpu that this cpu is pending to access dport register start */ void IRAM_ATTR esp_dport_access_stall_other_cpu_start(void) { #ifndef CONFIG_FREERTOS_UNICORE int cpu_id = xPortGetCoreID(); if (dport_core_state[0] == DPORT_CORE_STATE_IDLE || dport_core_state[1] == DPORT_CORE_STATE_IDLE) { return; } #ifdef DPORT_ACCESS_BENCHMARK ccount_start[cpu_id] = XTHAL_GET_CCOUNT(); #endif BaseType_t intLvl=portENTER_CRITICAL_NESTED(); oldInterruptLevel[cpu_id]=intLvl; if (dport_access_ref[cpu_id] == 0) { portENTER_CRITICAL_ISR(&g_dport_mux); dport_access_start[cpu_id] = 0; dport_access_end[cpu_id] = 0; if (cpu_id == 0) { _DPORT_REG_WRITE(DPORT_CPU_INTR_FROM_CPU_3_REG, DPORT_CPU_INTR_FROM_CPU_3); //interrupt on cpu1 } else { _DPORT_REG_WRITE(DPORT_CPU_INTR_FROM_CPU_2_REG, DPORT_CPU_INTR_FROM_CPU_2); //interrupt on cpu0 } while (!dport_access_start[cpu_id]) {}; REG_READ(SPI_DATE_REG(3)); //just read a APB register sure that the APB-bus is idle } dport_access_ref[cpu_id]++; #endif /* CONFIG_FREERTOS_UNICORE */ } /* stall other cpu that this cpu is pending to access dport register end */ void IRAM_ATTR esp_dport_access_stall_other_cpu_end(void) { #ifndef CONFIG_FREERTOS_UNICORE int cpu_id = xPortGetCoreID(); if (dport_core_state[0] == DPORT_CORE_STATE_IDLE || dport_core_state[1] == DPORT_CORE_STATE_IDLE) { return; } if (dport_access_ref[cpu_id] == 0) { assert(0); } dport_access_ref[cpu_id]--; if (dport_access_ref[cpu_id] == 0) { dport_access_end[cpu_id] = 1; portEXIT_CRITICAL_ISR(&g_dport_mux); } portEXIT_CRITICAL_NESTED(oldInterruptLevel[cpu_id]); #ifdef DPORT_ACCESS_BENCHMARK ccount_end[cpu_id] = XTHAL_GET_CCOUNT(); ccount_margin[cpu_id][ccount_margin_cnt] = ccount_end[cpu_id] - ccount_start[cpu_id]; ccount_margin_cnt = (ccount_margin_cnt + 1)&(DPORT_ACCESS_BENCHMARK_STORE_NUM - 1); #endif #endif /* CONFIG_FREERTOS_UNICORE */ } void IRAM_ATTR esp_dport_access_stall_other_cpu_start_wrap(void) { DPORT_STALL_OTHER_CPU_START(); } void IRAM_ATTR esp_dport_access_stall_other_cpu_end_wrap(void) { DPORT_STALL_OTHER_CPU_END(); } static void dport_access_init_core(void *arg) { int core_id = 0; uint32_t intr_source = ETS_FROM_CPU_INTR2_SOURCE; #ifndef CONFIG_FREERTOS_UNICORE core_id = xPortGetCoreID(); if (core_id == 1) { intr_source = ETS_FROM_CPU_INTR3_SOURCE; } #endif ESP_INTR_DISABLE(ETS_DPORT_INUM); intr_matrix_set(core_id, intr_source, ETS_DPORT_INUM); ESP_INTR_ENABLE(ETS_DPORT_INUM); dport_access_ref[core_id] = 0; dport_access_start[core_id] = 0; dport_access_end[core_id] = 0; dport_core_state[core_id] = DPORT_CORE_STATE_RUNNING; vTaskDelete(NULL); } /* Defer initialisation until after scheduler is running */ void esp_dport_access_int_init(void) { xTaskCreatePinnedToCore(&dport_access_init_core, "dport", configMINIMAL_STACK_SIZE, NULL, 5, NULL, xPortGetCoreID()); } void esp_dport_access_int_deinit(void) { portENTER_CRITICAL_ISR(&g_dport_mux); dport_core_state[0] = DPORT_CORE_STATE_IDLE; #ifndef CONFIG_FREERTOS_UNICORE dport_core_state[1] = DPORT_CORE_STATE_IDLE; #endif portEXIT_CRITICAL_ISR(&g_dport_mux); } void esp_dport_access_int_abort(void) { dport_core_state[0] = DPORT_CORE_STATE_IDLE; #ifndef CONFIG_FREERTOS_UNICORE dport_core_state[1] = DPORT_CORE_STATE_IDLE; #endif }