#include #include #include #include #include #include "unity.h" #include "esp_timer.h" #include "esp_heap_caps.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "test_utils.h" #include "../esp_timer_impl.h" #ifdef CONFIG_ESP_TIMER_PROFILING #define WITH_PROFILING 1 #endif extern uint32_t esp_timer_impl_get_overflow_val(); extern void esp_timer_impl_set_overflow_val(uint32_t overflow_val); static uint32_t s_old_overflow_val; static void setup_overflow() { s_old_overflow_val = esp_timer_impl_get_overflow_val(); esp_timer_impl_set_overflow_val(0x7fffff); /* overflow every ~0.1 sec */} static void teardown_overflow() { esp_timer_impl_set_overflow_val(s_old_overflow_val); } TEST_CASE("esp_timer orders timers correctly", "[esp_timer]") { void dummy_cb(void* arg) { } uint64_t timeouts[] = { 10000, 1000, 10000, 5000, 20000, 1000 }; size_t indices[] = { 3, 0, 4, 2, 5, 1 }; const size_t num_timers = sizeof(timeouts)/sizeof(timeouts[0]); esp_timer_handle_t handles[num_timers]; char* names[num_timers]; setup_overflow(); for (size_t i = 0; i < num_timers; ++i) { asprintf(&names[i], "timer%d", i); esp_timer_create_args_t args = { .callback = &dummy_cb, .name = names[i] }; TEST_ESP_OK(esp_timer_create(&args, &handles[i])); TEST_ESP_OK(esp_timer_start_once(handles[i], timeouts[i] * 100)); } teardown_overflow(); char* stream_str[1024]; FILE* stream = fmemopen(stream_str, sizeof(stream_str), "r+"); TEST_ESP_OK(esp_timer_dump(stream)); for (size_t i = 0; i < num_timers; ++i) { TEST_ESP_OK(esp_timer_stop(handles[i])); TEST_ESP_OK(esp_timer_delete(handles[i])); free(names[i]); } fflush(stream); fseek(stream, 0, SEEK_SET); for (size_t i = 0; i < num_timers; ++i) { char line[128]; TEST_ASSERT_NOT_NULL(fgets(line, sizeof(line), stream)); #if WITH_PROFILING int timer_id; sscanf(line, "timer%d", &timer_id); TEST_ASSERT_EQUAL(indices[timer_id], i); #else intptr_t timer_ptr; sscanf(line, "timer@0x%x", &timer_ptr); for (size_t j = 0; j < num_timers; ++j) { if (indices[j] == i) { TEST_ASSERT_EQUAL_PTR(handles[j], timer_ptr); break; } } #endif } fclose(stream); } TEST_CASE("esp_timer_impl_set_alarm stress test", "[esp_timer]") { const int test_time_sec = 10; void set_alarm_task(void* arg) { SemaphoreHandle_t done = (SemaphoreHandle_t) arg; uint64_t start = esp_timer_impl_get_time(); uint64_t now = start; int count = 0; const int delays[] = {50, 5000, 10000000}; const int delays_count = sizeof(delays)/sizeof(delays[0]); while (now - start < test_time_sec * 1000000) { now = esp_timer_impl_get_time(); esp_timer_impl_set_alarm(now + delays[count % delays_count]); ++count; } xSemaphoreGive(done); vTaskDelete(NULL); } SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0); setup_overflow(); xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_0", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 0); #if portNUM_PROCESSORS == 2 xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_1", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 1); #endif TEST_ASSERT(xSemaphoreTake(done, test_time_sec * 2 * 1000 / portTICK_PERIOD_MS)); #if portNUM_PROCESSORS == 2 TEST_ASSERT(xSemaphoreTake(done, test_time_sec * 2 * 1000 / portTICK_PERIOD_MS)); #endif teardown_overflow(); vSemaphoreDelete(done); } TEST_CASE("esp_timer produces correct delay", "[esp_timer]") { void timer_func(void* arg) { int64_t* p_end = (int64_t*) arg; *p_end = ref_clock_get(); } int64_t t_end; esp_timer_handle_t timer1; esp_timer_create_args_t args = { .callback = &timer_func, .arg = &t_end, .name = "timer1" }; TEST_ESP_OK(esp_timer_create(&args, &timer1)); const int delays_ms[] = {20, 100, 200, 250}; const size_t delays_count = sizeof(delays_ms)/sizeof(delays_ms[0]); ref_clock_init(); setup_overflow(); for (size_t i = 0; i < delays_count; ++i) { t_end = 0; int64_t t_start = ref_clock_get(); TEST_ESP_OK(esp_timer_start_once(timer1, delays_ms[i] * 1000)); vTaskDelay(delays_ms[i] * 2 / portTICK_PERIOD_MS); TEST_ASSERT(t_end != 0); int32_t ms_diff = (t_end - t_start) / 1000; printf("%d %d\n", delays_ms[i], ms_diff); TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, delays_ms[i], ms_diff); } teardown_overflow(); ref_clock_deinit(); TEST_ESP_OK( esp_timer_dump(stdout) ); esp_timer_delete(timer1); } TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]") { // no, we can't make this a const size_t (ยง6.7.5.2) #define NUM_INTERVALS 16 typedef struct { esp_timer_handle_t timer; size_t cur_interval; int intervals[NUM_INTERVALS]; int64_t t_start; SemaphoreHandle_t done; } test_args_t; void timer_func(void* arg) { test_args_t* p_args = (test_args_t*) arg; int64_t t_end = ref_clock_get(); int32_t ms_diff = (t_end - p_args->t_start) / 1000; printf("timer #%d %dms\n", p_args->cur_interval, ms_diff); p_args->intervals[p_args->cur_interval++] = ms_diff; // Deliberately make timer handler run longer. // We check that this doesn't affect the result. ets_delay_us(10*1000); if (p_args->cur_interval == NUM_INTERVALS) { printf("done\n"); TEST_ESP_OK(esp_timer_stop(p_args->timer)); xSemaphoreGive(p_args->done); } } const int delay_ms = 100; test_args_t args = {0}; esp_timer_handle_t timer1; esp_timer_create_args_t create_args = { .callback = &timer_func, .arg = &args, .name = "timer1", }; TEST_ESP_OK(esp_timer_create(&create_args, &timer1)); ref_clock_init(); setup_overflow(); args.timer = timer1; args.t_start = ref_clock_get(); args.done = xSemaphoreCreateBinary(); TEST_ESP_OK(esp_timer_start_periodic(timer1, delay_ms * 1000)); TEST_ASSERT(xSemaphoreTake(args.done, delay_ms * NUM_INTERVALS * 2)); TEST_ASSERT_EQUAL_UINT32(NUM_INTERVALS, args.cur_interval); for (size_t i = 0; i < NUM_INTERVALS; ++i) { TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]); } teardown_overflow(); ref_clock_deinit(); TEST_ESP_OK( esp_timer_dump(stdout) ); TEST_ESP_OK( esp_timer_delete(timer1) ); vSemaphoreDelete(args.done); #undef NUM_INTERVALS } TEST_CASE("multiple timers are ordered correctly", "[esp_timer]") { #define N 5 typedef struct { const int order[N * 3]; size_t count; } test_common_t; typedef struct { int timer_index; const int intervals[N]; size_t intervals_count; esp_timer_handle_t timer; test_common_t* common; bool pass; SemaphoreHandle_t done; int64_t t_start; } test_args_t; void timer_func(void* arg) { test_args_t* p_args = (test_args_t*) arg; // check order size_t count = p_args->common->count; int expected_index = p_args->common->order[count]; int ms_since_start = (ref_clock_get() - p_args->t_start) / 1000; printf("Time %dms, at count %d, expected timer %d, got timer %d\n", ms_since_start, count, expected_index, p_args->timer_index); if (expected_index != p_args->timer_index) { p_args->pass = false; esp_timer_stop(p_args->timer); xSemaphoreGive(p_args->done); return; } p_args->common->count++; if (++p_args->intervals_count == N) { esp_timer_stop(p_args->timer); xSemaphoreGive(p_args->done); return; } int next_interval = p_args->intervals[p_args->intervals_count]; printf("starting timer %d interval #%d, %d ms\n", p_args->timer_index, p_args->intervals_count, next_interval); esp_timer_start_once(p_args->timer, next_interval * 1000); } test_common_t common = { .order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2}, .count = 0 }; SemaphoreHandle_t done = xSemaphoreCreateCounting(3, 0); ref_clock_init(); int64_t now = ref_clock_get(); test_args_t args1 = { .timer_index = 1, .intervals = {10, 40, 20, 40, 30}, .common = &common, .pass = true, .done = done, .t_start = now }; test_args_t args2 = { .timer_index = 2, .intervals = {20, 20, 60, 30, 40}, .common = &common, .pass = true, .done = done, .t_start = now }; test_args_t args3 = { .timer_index = 3, .intervals = {30, 30, 60, 30, 10}, .common = &common, .pass = true, .done = done, .t_start = now }; esp_timer_create_args_t create_args = { .callback = &timer_func, .arg = &args1, .name = "1" }; TEST_ESP_OK(esp_timer_create(&create_args, &args1.timer)); create_args.name = "2"; create_args.arg = &args2; TEST_ESP_OK(esp_timer_create(&create_args, &args2.timer)); create_args.name = "3"; create_args.arg = &args3; TEST_ESP_OK(esp_timer_create(&create_args, &args3.timer)); esp_timer_start_once(args1.timer, args1.intervals[0] * 1000); esp_timer_start_once(args2.timer, args2.intervals[0] * 1000); esp_timer_start_once(args3.timer, args3.intervals[0] * 1000); for (int i = 0; i < 3; ++i) { int result = xSemaphoreTake(done, 1000 / portTICK_PERIOD_MS); TEST_ASSERT_TRUE(result == pdPASS); } TEST_ASSERT_TRUE(args1.pass); TEST_ASSERT_TRUE(args2.pass); TEST_ASSERT_TRUE(args3.pass); ref_clock_deinit(); TEST_ESP_OK( esp_timer_dump(stdout) ); TEST_ESP_OK( esp_timer_delete(args1.timer) ); TEST_ESP_OK( esp_timer_delete(args2.timer) ); TEST_ESP_OK( esp_timer_delete(args3.timer) ); #undef N } /* Create two timers, start them around the same time, and search through * timeout delta values to reproduce the case when timeouts occur close to * each other, testing the "multiple timers triggered" code path in timer_process_alarm. */ TEST_CASE("esp_timer for very short intervals", "[esp_timer]") { SemaphoreHandle_t semaphore = xSemaphoreCreateCounting(2, 0); void timer_func(void* arg) { SemaphoreHandle_t done = (SemaphoreHandle_t) arg; xSemaphoreGive(done); printf("."); } esp_timer_create_args_t timer_args = { .callback = &timer_func, .arg = (void*) semaphore, .name = "foo" }; esp_timer_handle_t timer1, timer2; ESP_ERROR_CHECK( esp_timer_create(&timer_args, &timer1) ); ESP_ERROR_CHECK( esp_timer_create(&timer_args, &timer2) ); setup_overflow(); const int timeout_ms = 10; for (int timeout_delta_us = -150; timeout_delta_us < 150; timeout_delta_us++) { printf("delta=%d", timeout_delta_us); ESP_ERROR_CHECK( esp_timer_start_once(timer1, timeout_ms * 1000) ); ESP_ERROR_CHECK( esp_timer_start_once(timer2, timeout_ms * 1000 + timeout_delta_us) ); TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2)); TEST_ASSERT_EQUAL(pdPASS, xSemaphoreTake(semaphore, timeout_ms * 2)); printf("\n"); TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer1)); TEST_ESP_ERR(ESP_ERR_INVALID_STATE, esp_timer_stop(timer2)); } teardown_overflow(); vSemaphoreDelete(semaphore); } TEST_CASE("esp_timer_get_time call takes less than 1us", "[esp_timer]") { int64_t begin = esp_timer_get_time(); volatile int64_t end; const int iter_count = 10000; for (int i = 0; i < iter_count; ++i) { end = esp_timer_get_time(); } int ns_per_call = (int) ((end - begin) * 1000 / iter_count); TEST_PERFORMANCE_LESS_THAN(ESP_TIMER_GET_TIME_PER_CALL, "%dns", ns_per_call); } TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer]") { typedef struct { SemaphoreHandle_t done; bool pass; int test_cnt; int error_cnt; int64_t total_sq_error; int64_t max_error; } test_state_t; void timer_test_task(void* arg) { test_state_t* state = (test_state_t*) arg; state->pass = true; int64_t start_time = ref_clock_get(); int64_t delta = esp_timer_get_time() - start_time; int64_t now = start_time; int error_repeat_cnt = 0; while (now - start_time < 10000000) { /* 10 seconds */ int64_t hs_now = esp_timer_get_time(); now = ref_clock_get(); int64_t diff = hs_now - (now + delta); /* Allow some difference due to rtos tick interrupting task between * getting 'now' and 'ref_now'. */ if (abs(diff) > 100) { error_repeat_cnt++; state->error_cnt++; } else { error_repeat_cnt = 0; } if (error_repeat_cnt > 2) { printf("diff=%lld\n", diff); state->pass = false; } state->max_error = MAX(state->max_error, abs(diff)); state->test_cnt++; state->total_sq_error += diff * diff; } xSemaphoreGive(state->done); vTaskDelete(NULL); } ref_clock_init(); setup_overflow(); test_state_t states[portNUM_PROCESSORS] = {0}; SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0); for (int i = 0; i < portNUM_PROCESSORS; ++i) { states[i].done = done; xTaskCreatePinnedToCore(&timer_test_task, "test", 4096, &states[i], 6, NULL, i); } for (int i = 0; i < portNUM_PROCESSORS; ++i) { TEST_ASSERT_TRUE( xSemaphoreTake(done, portMAX_DELAY) ); printf("CPU%d: %s test_cnt=%d error_cnt=%d std_error=%d |max_error|=%d\n", i, states[i].pass ? "PASS" : "FAIL", states[i].test_cnt, states[i].error_cnt, (int) sqrt(states[i].total_sq_error / states[i].test_cnt), (int) states[i].max_error); } vSemaphoreDelete(done); teardown_overflow(); ref_clock_deinit(); for (int i = 0; i < portNUM_PROCESSORS; ++i) { TEST_ASSERT(states[i].pass); } } TEST_CASE("Can dump esp_timer stats", "[esp_timer]") { esp_timer_dump(stdout); } TEST_CASE("Can delete timer from callback", "[esp_timer]") { typedef struct { SemaphoreHandle_t notify_from_timer_cb; esp_timer_handle_t timer; } test_arg_t; void timer_func(void* varg) { test_arg_t arg = *(test_arg_t*) varg; esp_timer_delete(arg.timer); printf("Timer %p is deleted\n", arg.timer); xSemaphoreGive(arg.notify_from_timer_cb); } test_arg_t args = { .notify_from_timer_cb = xSemaphoreCreateBinary(), }; esp_timer_create_args_t timer_args = { .callback = &timer_func, .arg = &args, .name = "self_deleter" }; esp_timer_create(&timer_args, &args.timer); esp_timer_start_once(args.timer, 10000); TEST_ASSERT_TRUE(xSemaphoreTake(args.notify_from_timer_cb, 1000 / portTICK_PERIOD_MS)); printf("Checking heap at %p\n", args.timer); TEST_ASSERT_TRUE(heap_caps_check_integrity_addr((intptr_t) args.timer, true)); vSemaphoreDelete(args.notify_from_timer_cb); } TEST_CASE("esp_timer_impl_advance moves time base correctly", "[esp_timer]") { ref_clock_init(); int64_t t0 = esp_timer_get_time(); const int64_t diff_us = 1000000; esp_timer_impl_advance(diff_us); int64_t t1 = esp_timer_get_time(); int64_t t_delta = t1 - t0; printf("diff_us=%lld t1-t0=%lld\n", diff_us, t_delta); TEST_ASSERT_INT_WITHIN(1000, diff_us, (int) t_delta); ref_clock_deinit(); } TEST_CASE("after esp_timer_impl_advance, timers run when expected", "[esp_timer]") { typedef struct { int64_t cb_time; } test_state_t; void timer_func(void* varg) { test_state_t* arg = (test_state_t*) varg; arg->cb_time = ref_clock_get(); } ref_clock_init(); test_state_t state = { 0 }; esp_timer_create_args_t timer_args = { .callback = &timer_func, .arg = &state }; esp_timer_handle_t timer; TEST_ESP_OK(esp_timer_create(&timer_args, &timer)); const int64_t interval = 10000; const int64_t advance = 2000; printf("test 1\n"); int64_t t_start = ref_clock_get(); esp_timer_start_once(timer, interval); esp_timer_impl_advance(advance); vTaskDelay(2 * interval / 1000 / portTICK_PERIOD_MS); TEST_ASSERT_INT_WITHIN(portTICK_PERIOD_MS * 1000, interval - advance, state.cb_time - t_start); printf("test 2\n"); state.cb_time = 0; t_start = ref_clock_get(); esp_timer_start_once(timer, interval); esp_timer_impl_advance(interval); vTaskDelay(1); TEST_ASSERT(state.cb_time > t_start); ref_clock_deinit(); }