#include #include #include "unity.h" #include "driver/adc.h" #include #include #include "soc/rtc_cntl_reg.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "sdkconfig.h" #include "soc/rtc.h" #include "esp_clk.h" #include "esp_system.h" #include "test_utils.h" #if portNUM_PROCESSORS == 2 // https://github.com/espressif/arduino-esp32/issues/120 TEST_CASE("Reading RTC registers on APP CPU doesn't affect clock", "[newlib]") { // This runs on APP CPU: void time_adc_test_task(void* arg) { for (int i = 0; i < 200000; ++i) { // wait for 20us, reading one of RTC registers uint32_t ccount = xthal_get_ccount(); while (xthal_get_ccount() - ccount < 20 * CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ) { volatile uint32_t val = REG_READ(RTC_CNTL_STATE0_REG); (void) val; } } SemaphoreHandle_t * p_done = (SemaphoreHandle_t *) arg; xSemaphoreGive(*p_done); vTaskDelay(1); vTaskDelete(NULL); } SemaphoreHandle_t done = xSemaphoreCreateBinary(); xTaskCreatePinnedToCore(&time_adc_test_task, "time_adc", 4096, &done, 5, NULL, 1); // This runs on PRO CPU: for (int i = 0; i < 4; ++i) { struct timeval tv_start; gettimeofday(&tv_start, NULL); vTaskDelay(1000/portTICK_PERIOD_MS); struct timeval tv_stop; gettimeofday(&tv_stop, NULL); float time_sec = tv_stop.tv_sec - tv_start.tv_sec + 1e-6f * (tv_stop.tv_usec - tv_start.tv_usec); printf("(0) time taken: %f sec\n", time_sec); TEST_ASSERT_TRUE(fabs(time_sec - 1.0f) < 0.1); } TEST_ASSERT_TRUE(xSemaphoreTake(done, 5000 / portTICK_RATE_MS)); } #endif // portNUM_PROCESSORS == 2 TEST_CASE("test adjtime function", "[newlib]") { struct timeval tv_time; struct timeval tv_delta; struct timeval tv_outdelta; TEST_ASSERT_EQUAL(adjtime(NULL, NULL), 0); tv_time.tv_sec = 5000; tv_time.tv_usec = 5000; TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0); tv_outdelta.tv_sec = 5; tv_outdelta.tv_usec = 5; TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0); TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0); TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0); tv_delta.tv_sec = INT_MAX / 1000000L; TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1); tv_delta.tv_sec = INT_MIN / 1000000L; TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), -1); tv_delta.tv_sec = 0; tv_delta.tv_usec = -900000; TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0); TEST_ASSERT_TRUE(tv_outdelta.tv_usec <= 0); tv_delta.tv_sec = 0; tv_delta.tv_usec = 900000; TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0); TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0); tv_delta.tv_sec = -4; tv_delta.tv_usec = -900000; TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0); TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, -4); TEST_ASSERT_TRUE(tv_outdelta.tv_usec <= 0); // after settimeofday() adjtime() is stopped tv_delta.tv_sec = 15; tv_delta.tv_usec = 900000; TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0); TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15); TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0); TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0); TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0); TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0); TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 0); TEST_ASSERT_EQUAL(tv_outdelta.tv_usec, 0); // after gettimeofday() adjtime() is not stopped tv_delta.tv_sec = 15; tv_delta.tv_usec = 900000; TEST_ASSERT_EQUAL(adjtime(&tv_delta, &tv_outdelta), 0); TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15); TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0); TEST_ASSERT_EQUAL(gettimeofday(&tv_time, NULL), 0); TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0); TEST_ASSERT_EQUAL(tv_outdelta.tv_sec, 15); TEST_ASSERT_TRUE(tv_outdelta.tv_usec >= 0); tv_delta.tv_sec = 1; tv_delta.tv_usec = 0; TEST_ASSERT_EQUAL(adjtime(&tv_delta, NULL), 0); vTaskDelay(1000 / portTICK_PERIOD_MS); TEST_ASSERT_EQUAL(adjtime(NULL, &tv_outdelta), 0); TEST_ASSERT_TRUE(tv_outdelta.tv_sec == 0); // the correction will be equal to (1_000_000us >> 6) = 15_625 us. TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec >= 15600); TEST_ASSERT_TRUE(1000000L - tv_outdelta.tv_usec <= 15650); } static volatile bool exit_flag; static void adjtimeTask2(void *pvParameters) { xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters; struct timeval delta = {.tv_sec = 0, .tv_usec = 0}; struct timeval outdelta; // although exit flag is set in another task, checking (exit_flag == false) is safe while (exit_flag == false) { delta.tv_sec += 1; delta.tv_usec = 900000; if (delta.tv_sec >= 2146) delta.tv_sec = 1; adjtime(&delta, &outdelta); } xSemaphoreGive(*sema); vTaskDelete(NULL); } static void timeTask(void *pvParameters) { xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters; struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 }; // although exit flag is set in another task, checking (exit_flag == false) is safe while (exit_flag == false) { tv_time.tv_sec += 1; settimeofday(&tv_time, NULL); gettimeofday(&tv_time, NULL); } xSemaphoreGive(*sema); vTaskDelete(NULL); } TEST_CASE("test for no interlocking adjtime, gettimeofday and settimeofday functions", "[newlib]") { TaskHandle_t th[4]; exit_flag = false; struct timeval tv_time = { .tv_sec = 1520000000, .tv_usec = 900000 }; TEST_ASSERT_EQUAL(settimeofday(&tv_time, NULL), 0); const int max_tasks = 2; xSemaphoreHandle exit_sema[max_tasks]; for (int i = 0; i < max_tasks; ++i) { exit_sema[i] = xSemaphoreCreateBinary(); } #ifndef CONFIG_FREERTOS_UNICORE printf("CPU0 and CPU1. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask \n"); xTaskCreatePinnedToCore(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0], 0); xTaskCreatePinnedToCore(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1], 1); #else printf("Only one CPU. Tasks run: 1 - adjtimeTask, 2 - gettimeofdayTask, 3 - settimeofdayTask\n"); xTaskCreate(adjtimeTask2, "adjtimeTask2", 2048, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, &th[0]); xTaskCreate(timeTask, "timeTask", 2048, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, &th[1]); #endif printf("start wait for 5 seconds\n"); vTaskDelay(5000 / portTICK_PERIOD_MS); // set exit flag to let thread exit exit_flag = true; for (int i = 0; i < max_tasks; ++i) { if (!xSemaphoreTake(exit_sema[i], 2000/portTICK_PERIOD_MS)) { TEST_FAIL_MESSAGE("exit_sema not released by test task"); } vSemaphoreDelete(exit_sema[i]); } } #ifndef CONFIG_FREERTOS_UNICORE #define ADJTIME_CORRECTION_FACTOR 6 static int64_t result_adjtime_correction_us[2]; static void get_time_task(void *pvParameters) { xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters; struct timeval tv_time; // although exit flag is set in another task, checking (exit_flag == false) is safe while (exit_flag == false) { gettimeofday(&tv_time, NULL); } xSemaphoreGive(*sema); vTaskDelete(NULL); } static void start_measure(int64_t* sys_time, int64_t* real_time) { struct timeval tv_time; int64_t t1, t2; do { t1 = esp_timer_get_time(); gettimeofday(&tv_time, NULL); t2 = esp_timer_get_time(); } while (t2 - t1 > 40); *real_time = t2; *sys_time = (int64_t)tv_time.tv_sec * 1000000L + tv_time.tv_usec; } static void end_measure(int64_t* sys_time, int64_t* real_time) { struct timeval tv_time; int64_t t1, t2; do { t1 = esp_timer_get_time(); gettimeofday(&tv_time, NULL); t2 = esp_timer_get_time(); } while (t2 - t1 > 40); *real_time = t2; *sys_time = (int64_t)tv_time.tv_sec * 1000000L + tv_time.tv_usec; } static int64_t calc_correction(const char* tag, int64_t* sys_time, int64_t* real_time) { int64_t dt_real_time_us = real_time[1] - real_time[0]; int64_t dt_sys_time_us = sys_time[1] - sys_time[0]; int64_t calc_correction_us = dt_real_time_us >> ADJTIME_CORRECTION_FACTOR; int64_t real_correction_us = dt_sys_time_us - dt_real_time_us; int64_t error_us = calc_correction_us - real_correction_us; printf("%s: dt_real_time = %lli us, dt_sys_time = %lli us, calc_correction = %lli us, error = %lli us\n", tag, dt_real_time_us, dt_sys_time_us, calc_correction_us, error_us); TEST_ASSERT_TRUE(dt_sys_time_us > 0 && dt_real_time_us > 0); TEST_ASSERT_INT_WITHIN(100, 0, error_us); return real_correction_us; } static void measure_time_task(void *pvParameters) { xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters; int64_t main_real_time_us[2]; int64_t main_sys_time_us[2]; struct timeval tv_time = {.tv_sec = 1550000000, .tv_usec = 0}; TEST_ASSERT_EQUAL(0, settimeofday(&tv_time, NULL)); struct timeval delta = {.tv_sec = 2000, .tv_usec = 900000}; adjtime(&delta, NULL); gettimeofday(&tv_time, NULL); start_measure(&main_sys_time_us[0], &main_real_time_us[0]); { int64_t real_time_us[2]; int64_t sys_time_us[2]; int64_t delay_us = 2 * 1000000; // 2 sec start_measure(&sys_time_us[0], &real_time_us[0]); // although exit flag is set in another task, checking (exit_flag == false) is safe while (exit_flag == false) { ets_delay_us(delay_us); end_measure(&sys_time_us[1], &real_time_us[1]); result_adjtime_correction_us[1] += calc_correction("measure", sys_time_us, real_time_us); sys_time_us[0] = sys_time_us[1]; real_time_us[0] = real_time_us[1]; } } end_measure(&main_sys_time_us[1], &main_real_time_us[1]); result_adjtime_correction_us[0] = calc_correction("main", main_sys_time_us, main_real_time_us); int64_t delta_us = result_adjtime_correction_us[0] - result_adjtime_correction_us[1]; printf("\nresult of adjtime correction: %lli us, %lli us. delta = %lli us\n", result_adjtime_correction_us[0], result_adjtime_correction_us[1], delta_us); TEST_ASSERT_INT_WITHIN(100, 0, delta_us); xSemaphoreGive(*sema); vTaskDelete(NULL); } TEST_CASE("test time adjustment happens linearly", "[newlib][timeout=35]") { exit_flag = false; xSemaphoreHandle exit_sema[2]; for (int i = 0; i < 2; ++i) { exit_sema[i] = xSemaphoreCreateBinary(); result_adjtime_correction_us[i] = 0; } xTaskCreatePinnedToCore(get_time_task, "get_time_task", 4096, &exit_sema[0], UNITY_FREERTOS_PRIORITY - 1, NULL, 0); xTaskCreatePinnedToCore(measure_time_task, "measure_time_task", 4096, &exit_sema[1], UNITY_FREERTOS_PRIORITY - 1, NULL, 1); printf("start waiting for 30 seconds\n"); vTaskDelay(30000 / portTICK_PERIOD_MS); // set exit flag to let thread exit exit_flag = true; for (int i = 0; i < 2; ++i) { if (!xSemaphoreTake(exit_sema[i], 2100/portTICK_PERIOD_MS)) { TEST_FAIL_MESSAGE("exit_sema not released by test task"); } } for (int i = 0; i < 2; ++i) { vSemaphoreDelete(exit_sema[i]); } } #endif #if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) #define WITH_RTC 1 #endif #if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) #define WITH_FRC 1 #endif void test_posix_timers_clock (void) { #ifndef _POSIX_TIMERS TEST_ASSERT_MESSAGE(false, "_POSIX_TIMERS - is not defined"); #endif #if defined( WITH_FRC ) printf("WITH_FRC "); #endif #if defined( WITH_RTC ) printf("WITH_RTC "); #endif #ifdef CONFIG_ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL printf("External (crystal) Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz()); #else printf("Internal Frequency = %d Hz\n", rtc_clk_slow_freq_get_hz()); #endif TEST_ASSERT(clock_settime(CLOCK_REALTIME, NULL) == -1); TEST_ASSERT(clock_gettime(CLOCK_REALTIME, NULL) == -1); TEST_ASSERT(clock_getres(CLOCK_REALTIME, NULL) == -1); TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, NULL) == -1); TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, NULL) == -1); TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, NULL) == -1); #if defined( WITH_FRC ) || defined( WITH_RTC ) struct timeval now = {0}; now.tv_sec = 10L; now.tv_usec = 100000L; TEST_ASSERT(settimeofday(&now, NULL) == 0); TEST_ASSERT(gettimeofday(&now, NULL) == 0); struct timespec ts = {0}; TEST_ASSERT(clock_settime(0xFFFFFFFF, &ts) == -1); TEST_ASSERT(clock_gettime(0xFFFFFFFF, &ts) == -1); TEST_ASSERT(clock_getres(0xFFFFFFFF, &ts) == 0); TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == 0); TEST_ASSERT(now.tv_sec == ts.tv_sec); TEST_ASSERT_INT_WITHIN(5000000L, ts.tv_nsec, now.tv_usec * 1000L); ts.tv_sec = 20; ts.tv_nsec = 100000000L; TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == 0); TEST_ASSERT(gettimeofday(&now, NULL) == 0); TEST_ASSERT(now.tv_sec == ts.tv_sec); TEST_ASSERT_INT_WITHIN(5000L, now.tv_usec, ts.tv_nsec / 1000L); TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1); uint64_t delta_monotonic_us = 0; #if defined( WITH_FRC ) TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0); TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec); TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0); TEST_ASSERT_EQUAL_INT(1000, ts.tv_nsec); TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0); delta_monotonic_us = esp_timer_get_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L); TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0); TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us); #elif defined( WITH_RTC ) TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == 0); TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec); TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == 0); TEST_ASSERT_EQUAL_INT(1000000000L / rtc_clk_slow_freq_get_hz(), ts.tv_nsec); TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == 0); delta_monotonic_us = esp_clk_rtc_time() - (ts.tv_sec * 1000000L + ts.tv_nsec / 1000L); TEST_ASSERT(delta_monotonic_us > 0 || delta_monotonic_us == 0); TEST_ASSERT_INT_WITHIN(5000L, 0, delta_monotonic_us); #endif // WITH_FRC #else struct timespec ts = {0}; TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == -1); TEST_ASSERT(clock_gettime(CLOCK_REALTIME, &ts) == -1); TEST_ASSERT(clock_getres(CLOCK_REALTIME, &ts) == -1); TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1); TEST_ASSERT(clock_gettime(CLOCK_MONOTONIC, &ts) == -1); TEST_ASSERT(clock_getres(CLOCK_MONOTONIC, &ts) == -1); #endif // defined( WITH_FRC ) || defined( WITH_RTC ) } TEST_CASE("test posix_timers clock_... functions", "[newlib]") { test_posix_timers_clock(); }