// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "driver/spi_master.h" #include "soc/gpio_sig_map.h" #include "soc/spi_reg.h" #include "soc/dport_reg.h" #include "soc/spi_struct.h" #include "rom/ets_sys.h" #include "esp_types.h" #include "esp_attr.h" #include "esp_intr.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_err.h" #include "soc/soc.h" #include "soc/dport_reg.h" #include "rom/lldesc.h" #include "driver/gpio.h" #include "driver/periph_ctrl.h" #include "esp_heap_alloc_caps.h" #include "driver/spi_common.h" static const char *SPI_TAG = "spi"; #define SPI_CHECK(a, str, ret_val) \ if (!(a)) { \ ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } typedef struct spi_device_t spi_device_t; /* Stores a bunch of per-spi-peripheral data. */ typedef struct { const uint8_t spiclk_out; //GPIO mux output signals const uint8_t spiclk_in; const uint8_t spid_out; const uint8_t spiq_out; const uint8_t spiwp_out; const uint8_t spihd_out; const uint8_t spid_in; //GPIO mux input signals const uint8_t spiq_in; const uint8_t spiwp_in; const uint8_t spihd_in; const uint8_t spics_out[3]; // /CS GPIO output mux signals const uint8_t spics_in; const uint8_t spiclk_native; //IO pins of IO_MUX muxed signals const uint8_t spid_native; const uint8_t spiq_native; const uint8_t spiwp_native; const uint8_t spihd_native; const uint8_t spics0_native; const uint8_t irq; //irq source for interrupt mux const uint8_t irq_dma; //dma irq source for interrupt mux const periph_module_t module; //peripheral module, for enabling clock etc spi_dev_t *hw; //Pointer to the hardware registers } spi_signal_conn_t; /* Bunch of constants for every SPI peripheral: GPIO signals, irqs, hw addr of registers etc */ static const spi_signal_conn_t io_signal[3]={ { .spiclk_out=SPICLK_OUT_IDX, .spiclk_in=SPICLK_IN_IDX, .spid_out=SPID_OUT_IDX, .spiq_out=SPIQ_OUT_IDX, .spiwp_out=SPIWP_OUT_IDX, .spihd_out=SPIHD_OUT_IDX, .spid_in=SPID_IN_IDX, .spiq_in=SPIQ_IN_IDX, .spiwp_in=SPIWP_IN_IDX, .spihd_in=SPIHD_IN_IDX, .spics_out={SPICS0_OUT_IDX, SPICS1_OUT_IDX, SPICS2_OUT_IDX}, .spics_in=SPICS0_IN_IDX, .spiclk_native=6, .spid_native=8, .spiq_native=7, .spiwp_native=10, .spihd_native=9, .spics0_native=11, .irq=ETS_SPI1_INTR_SOURCE, .irq_dma=ETS_SPI1_DMA_INTR_SOURCE, .module=PERIPH_SPI_MODULE, .hw=&SPI1 }, { .spiclk_out=HSPICLK_OUT_IDX, .spiclk_in=HSPICLK_IN_IDX, .spid_out=HSPID_OUT_IDX, .spiq_out=HSPIQ_OUT_IDX, .spiwp_out=HSPIWP_OUT_IDX, .spihd_out=HSPIHD_OUT_IDX, .spid_in=HSPID_IN_IDX, .spiq_in=HSPIQ_IN_IDX, .spiwp_in=HSPIWP_IN_IDX, .spihd_in=HSPIHD_IN_IDX, .spics_out={HSPICS0_OUT_IDX, HSPICS1_OUT_IDX, HSPICS2_OUT_IDX}, .spics_in=HSPICS0_IN_IDX, .spiclk_native=14, .spid_native=13, .spiq_native=12, .spiwp_native=2, .spihd_native=4, .spics0_native=15, .irq=ETS_SPI2_INTR_SOURCE, .irq_dma=ETS_SPI2_DMA_INTR_SOURCE, .module=PERIPH_HSPI_MODULE, .hw=&SPI2 }, { .spiclk_out=VSPICLK_OUT_IDX, .spiclk_in=VSPICLK_IN_IDX, .spid_out=VSPID_OUT_IDX, .spiq_out=VSPIQ_OUT_IDX, .spiwp_out=VSPIWP_OUT_IDX, .spihd_out=VSPIHD_OUT_IDX, .spid_in=VSPID_IN_IDX, .spiq_in=VSPIQ_IN_IDX, .spiwp_in=VSPIWP_IN_IDX, .spihd_in=VSPIHD_IN_IDX, .spics_out={VSPICS0_OUT_IDX, VSPICS1_OUT_IDX, VSPICS2_OUT_IDX}, .spics_in=VSPICS0_IN_IDX, .spiclk_native=18, .spid_native=23, .spiq_native=19, .spiwp_native=22, .spihd_native=21, .spics0_native=5, .irq=ETS_SPI3_INTR_SOURCE, .irq_dma=ETS_SPI3_DMA_INTR_SOURCE, .module=PERIPH_VSPI_MODULE, .hw=&SPI3 } }; //Periph 1 is 'claimed' by SPI flash code. static bool spi_periph_claimed[3]={true, false, false}; //Returns true if this peripheral is successfully claimed, false if otherwise. bool spicommon_periph_claim(spi_host_device_t host) { bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], false, true); if (ret) periph_module_enable(io_signal[host].module); return ret; } //Returns true if this peripheral is successfully freed, false if otherwise. bool spicommon_periph_free(spi_host_device_t host) { bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], true, false); if (ret) periph_module_disable(io_signal[host].module); return ret; } int spicommon_irqsource_for_host(spi_host_device_t host) { return io_signal[host].irq; } spi_dev_t *spicommon_hw_for_host(spi_host_device_t host) { return io_signal[host].hw; } /* Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a bus config struct and it'll set up the GPIO matrix and enable the device. It will set is_native to 1 if the bus config can be done using the IOMUX instead of using the GPIO matrix. */ esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, int flags, bool *is_native) { bool native=true; bool use_quad=(flags&SPICOMMON_BUSFLAG_QUAD)?true:false; SPI_CHECK(bus_config->mosi_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num), "spid pin invalid", ESP_ERR_INVALID_ARG); SPI_CHECK(bus_config->sclk_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->sclk_io_num), "spiclk pin invalid", ESP_ERR_INVALID_ARG); SPI_CHECK(bus_config->miso_io_num<0 || GPIO_IS_VALID_GPIO(bus_config->miso_io_num), "spiq pin invalid", ESP_ERR_INVALID_ARG); if (use_quad) { SPI_CHECK(bus_config->quadwp_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadwp_io_num), "spiwp pin invalid", ESP_ERR_INVALID_ARG); SPI_CHECK(bus_config->quadhd_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadhd_io_num), "spihd pin invalid", ESP_ERR_INVALID_ARG); } //Check if the selected pins correspond to the native pins of the peripheral if (bus_config->mosi_io_num >= 0 && bus_config->mosi_io_num!=io_signal[host].spid_native) native=false; if (bus_config->miso_io_num >= 0 && bus_config->miso_io_num!=io_signal[host].spiq_native) native=false; if (bus_config->sclk_io_num >= 0 && bus_config->sclk_io_num!=io_signal[host].spiclk_native) native=false; if (use_quad) { if (bus_config->quadwp_io_num >= 0 && bus_config->quadwp_io_num!=io_signal[host].spiwp_native) native=false; if (bus_config->quadhd_io_num >= 0 && bus_config->quadhd_io_num!=io_signal[host].spihd_native) native=false; } *is_native=native; if (native) { //All SPI native pin selections resolve to 1, so we put that here instead of trying to figure //out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway. if (bus_config->mosi_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], 1); if (bus_config->miso_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], 1); if (use_quad && bus_config->quadwp_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], 1); if (use_quad && bus_config->quadhd_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], 1); if (bus_config->sclk_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], 1); } else { //Use GPIO if (bus_config->mosi_io_num>0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], PIN_FUNC_GPIO); gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT); gpio_matrix_out(bus_config->mosi_io_num, io_signal[host].spid_out, false, false); gpio_matrix_in(bus_config->mosi_io_num, io_signal[host].spid_in, false); } if (bus_config->miso_io_num>0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], PIN_FUNC_GPIO); gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT); gpio_matrix_out(bus_config->miso_io_num, io_signal[host].spiq_out, false, false); gpio_matrix_in(bus_config->miso_io_num, io_signal[host].spiq_in, false); } if (use_quad && bus_config->quadwp_io_num>0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], PIN_FUNC_GPIO); gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT); gpio_matrix_out(bus_config->quadwp_io_num, io_signal[host].spiwp_out, false, false); gpio_matrix_in(bus_config->quadwp_io_num, io_signal[host].spiwp_in, false); } if (use_quad && bus_config->quadhd_io_num>0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], PIN_FUNC_GPIO); gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT); gpio_matrix_out(bus_config->quadhd_io_num, io_signal[host].spihd_out, false, false); gpio_matrix_in(bus_config->quadhd_io_num, io_signal[host].spihd_in, false); } if (bus_config->sclk_io_num>0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], PIN_FUNC_GPIO); gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT); gpio_matrix_out(bus_config->sclk_io_num, io_signal[host].spiclk_out, false, false); gpio_matrix_in(bus_config->sclk_io_num, io_signal[host].spiclk_in, false); } } //Select DMA channel. SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2)); return ESP_OK; } //Find any pin with output muxed to ``func`` and reset it to GPIO static void reset_func_to_gpio(int func) { for (int x=0; x SPI_MAX_DMA_LEN) dmachunklen=SPI_MAX_DMA_LEN; if (isrx) { //Receive needs DMA length rounded to next 32-bit boundary dmadesc[n].size=(dmachunklen+3)&(~3); dmadesc[n].length=(dmachunklen+3)&(~3); } else { dmadesc[n].size=dmachunklen; dmadesc[n].length=dmachunklen; } dmadesc[n].buf=(uint8_t*)data; dmadesc[n].eof=0; dmadesc[n].sosf=0; dmadesc[n].owner=1; dmadesc[n].qe.stqe_next=&dmadesc[n+1]; len-=dmachunklen; data+=dmachunklen; n++; } dmadesc[n-1].eof=1; //Mark last DMA desc as end of stream. dmadesc[n-1].qe.stqe_next=NULL; } /* Code for workaround for DMA issue in ESP32 v0/v1 silicon */ static volatile int dmaworkaround_channels_busy[2]={0,0}; static dmaworkaround_cb_t dmaworkaround_cb; static void *dmaworkaround_cb_arg; static portMUX_TYPE dmaworkaround_mux=portMUX_INITIALIZER_UNLOCKED; static int dmaworkaround_waiting_for_chan=0; bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg) { int otherchan=(dmachan==1)?2:1; bool ret; portENTER_CRITICAL(&dmaworkaround_mux); if (dmaworkaround_channels_busy[otherchan]) { //Other channel is busy. Call back when it's done. dmaworkaround_cb=cb; dmaworkaround_cb_arg=arg; dmaworkaround_waiting_for_chan=otherchan; ret=false; } else { //Reset DMA SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST); CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST); ret=true; } portEXIT_CRITICAL(&dmaworkaround_mux); return ret; } bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress() { return (dmaworkaround_waiting_for_chan!=0); } void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan) { portENTER_CRITICAL(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan]=0; if (dmaworkaround_waiting_for_chan == dmachan) { //Reset DMA SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST); CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST); dmaworkaround_waiting_for_chan=0; //Call callback dmaworkaround_cb(dmaworkaround_cb_arg); } portEXIT_CRITICAL(&dmaworkaround_mux); } void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan) { portENTER_CRITICAL(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan]=1; portEXIT_CRITICAL(&dmaworkaround_mux); }