/*-----------------------------------------------------------------------*/ /* Low level disk I/O module skeleton for FatFs (C)ChaN, 2016 */ /* ESP-IDF port Copyright 2016 Espressif Systems (Shanghai) PTE LTD */ /*-----------------------------------------------------------------------*/ /* If a working storage control module is available, it should be */ /* attached to the FatFs via a glue function rather than modifying it. */ /* This is an example of glue functions to attach various exsisting */ /* storage control modules to the FatFs module with a defined API. */ /*-----------------------------------------------------------------------*/ #include #include "diskio.h" /* FatFs lower layer API */ #include "ffconf.h" #include "ff.h" #include "sdmmc_cmd.h" #include "esp_log.h" #include #include static const char* TAG = "ff_diskio"; static ff_diskio_impl_t * s_impls[_VOLUMES]; static sdmmc_card_t* s_cards[_VOLUMES] = { NULL }; static bool s_impls_initialized = false; PARTITION VolToPart[] = { {0, 1}, /* Logical drive 0 ==> Physical drive 0, 1st partition */ {1, 0} /* Logical drive 1 ==> Physical drive 1, auto detection */ }; BYTE ff_disk_getpdrv() { BYTE i; for(i=0; i<_VOLUMES; i++) { if (!s_impls[i]) { return i; } } return 0xFF; } void ff_diskio_register(BYTE pdrv, const ff_diskio_impl_t* discio_impl) { assert(pdrv < _VOLUMES); if (!s_impls_initialized) { s_impls_initialized = true; memset(s_impls, 0, _VOLUMES * sizeof(ff_diskio_impl_t*)); } if (s_impls[pdrv]) { ff_diskio_impl_t* im = s_impls[pdrv]; s_impls[pdrv] = NULL; free(im); } if (!discio_impl) { return; } ff_diskio_impl_t * impl = (ff_diskio_impl_t *)malloc(sizeof(ff_diskio_impl_t)); assert(impl != NULL); memcpy(impl, discio_impl, sizeof(ff_diskio_impl_t)); s_impls[pdrv] = impl; } DSTATUS ff_disk_initialize (BYTE pdrv) { return s_impls[pdrv]->init(pdrv); } DSTATUS ff_disk_status (BYTE pdrv) { return s_impls[pdrv]->status(pdrv); } DRESULT ff_disk_read (BYTE pdrv, BYTE* buff, DWORD sector, UINT count) { return s_impls[pdrv]->read(pdrv, buff, sector, count); } DRESULT ff_disk_write (BYTE pdrv, const BYTE* buff, DWORD sector, UINT count) { return s_impls[pdrv]->write(pdrv, buff, sector, count); } DRESULT ff_disk_ioctl (BYTE pdrv, BYTE cmd, void* buff) { return s_impls[pdrv]->ioctl(pdrv, cmd, buff); } DWORD get_fattime(void) { time_t t = time(NULL); struct tm *tmr = gmtime(&t); int year = tmr->tm_year < 80 ? 0 : tmr->tm_year - 80; return ((DWORD)(year) << 25) | ((DWORD)(tmr->tm_mon + 1) << 21) | ((DWORD)tmr->tm_mday << 16) | (WORD)(tmr->tm_hour << 11) | (WORD)(tmr->tm_min << 5) | (WORD)(tmr->tm_sec >> 1); } DSTATUS ff_sdmmc_initialize (BYTE pdrv) { return 0; } DSTATUS ff_sdmmc_status (BYTE pdrv) { return 0; } DRESULT ff_sdmmc_read (BYTE pdrv, BYTE* buff, DWORD sector, UINT count) { sdmmc_card_t* card = s_cards[pdrv]; assert(card); esp_err_t err = sdmmc_read_sectors(card, buff, sector, count); if (err != ESP_OK) { ESP_LOGE(TAG, "sdmmc_read_blocks failed (%d)", err); return RES_ERROR; } return RES_OK; } DRESULT ff_sdmmc_write (BYTE pdrv, const BYTE* buff, DWORD sector, UINT count) { sdmmc_card_t* card = s_cards[pdrv]; assert(card); esp_err_t err = sdmmc_write_sectors(card, buff, sector, count); if (err != ESP_OK) { ESP_LOGE(TAG, "sdmmc_write_blocks failed (%d)", err); return RES_ERROR; } return RES_OK; } DRESULT ff_sdmmc_ioctl (BYTE pdrv, BYTE cmd, void* buff) { sdmmc_card_t* card = s_cards[pdrv]; assert(card); switch(cmd) { case CTRL_SYNC: return RES_OK; case GET_SECTOR_COUNT: *((uint32_t*) buff) = card->csd.capacity; return RES_OK; case GET_SECTOR_SIZE: *((uint32_t*) buff) = card->csd.sector_size; return RES_OK; case GET_BLOCK_SIZE: return RES_ERROR; } return RES_ERROR; } void ff_diskio_register_sdmmc(BYTE pdrv, sdmmc_card_t* card) { static const ff_diskio_impl_t sdmmc_impl = { .init = &ff_sdmmc_initialize, .status = &ff_sdmmc_status, .read = &ff_sdmmc_read, .write = &ff_sdmmc_write, .ioctl = &ff_sdmmc_ioctl }; s_cards[pdrv] = card; ff_diskio_register(pdrv, &sdmmc_impl); }