// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "esp_slave.h" #include "esp_log.h" #include "freertos/task.h" #include "soc/host_reg.h" static const char TAG[] = "esp_slave"; #define ESP_SLAVE_CMD53_END_ADDR 0x1f800 #define TX_BUFFER_MAX 0x1000 #define TX_BUFFER_MASK 0xFFF #define RX_BYTE_MAX 0x100000 #define RX_BYTE_MASK 0xFFFFF #define FUNC1_EN_MASK (BIT(1)) esp_err_t esp_slave_init_io(esp_slave_context_t *context) { esp_err_t err; uint8_t ioe; sdmmc_card_t* card = context->card; err = sdmmc_io_read_byte(card, 0, SD_IO_CCCR_FN_ENABLE, &ioe); if (err != ESP_OK) return err; ESP_LOGD(TAG, "IOE: 0x%02x", ioe); uint8_t ior = 0; err = sdmmc_io_read_byte(card, 0, SD_IO_CCCR_FN_READY, &ior); if (err != ESP_OK) return err; ESP_LOGD(TAG, "IOR: 0x%02x", ior); // enable function 1 ioe |= FUNC1_EN_MASK; err = sdmmc_io_write_byte(card, 0, SD_IO_CCCR_FN_ENABLE, ioe, &ioe); if (err != ESP_OK) return err; ESP_LOGD(TAG, "IOE: 0x%02x", ioe); // wait for the card to become ready while ((ior & FUNC1_EN_MASK) == 0) { err = sdmmc_io_read_byte(card, 0, SD_IO_CCCR_FN_READY, &ior); if (err != ESP_OK) return err; ESP_LOGD(TAG, "IOR: 0x%02x", ior); } // get interrupt status uint8_t ie; err = sdmmc_io_read_byte(card, 0, SD_IO_CCCR_INT_ENABLE, &ie); if (err != ESP_OK) return err; ESP_LOGD(TAG,"IE: 0x%02x", ie); // enable interrupts for function 1&2 and master enable ie |= BIT(0) | FUNC1_EN_MASK; err = sdmmc_io_write_byte(card, 0, SD_IO_CCCR_INT_ENABLE, ie, &ie); if (err != ESP_OK) return err; ESP_LOGD(TAG, "IE: 0x%02x", ie); uint16_t bs = 512; const uint8_t* bs_u8 = (const uint8_t*) &bs; uint16_t bs_read = 0; uint8_t* bs_read_u8 = (uint8_t*) &bs_read; // Set block sizes for functions 0 to 512 bytes ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, SD_IO_CCCR_BLKSIZEL, &bs_read_u8[0])); ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, SD_IO_CCCR_BLKSIZEH, &bs_read_u8[1])); ESP_LOGI(TAG, "Function 0 BS: %04x", (int) bs_read); ESP_ERROR_CHECK(sdmmc_io_write_byte(card, 0, SD_IO_CCCR_BLKSIZEL, bs_u8[0], NULL)); ESP_ERROR_CHECK(sdmmc_io_write_byte(card, 0, SD_IO_CCCR_BLKSIZEH, bs_u8[1], NULL)); ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, SD_IO_CCCR_BLKSIZEL, &bs_read_u8[0])); ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, SD_IO_CCCR_BLKSIZEH, &bs_read_u8[1])); ESP_LOGI(TAG, "Function 0 BS: %04x", (int) bs_read); // Set block sizes for functions 1 to given value (default value = 512). if (context->block_size > 0 || context->block_size <= 2048) { bs = context->block_size; } else { bs = 512; } size_t offset = SD_IO_FBR_START * 1; ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEL, &bs_read_u8[0])); ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEH, &bs_read_u8[1])); ESP_LOGI(TAG, "Function 1 BS: %04x", (int) bs_read); ESP_ERROR_CHECK(sdmmc_io_write_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEL, bs_u8[0], NULL)); ESP_ERROR_CHECK(sdmmc_io_write_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEH, bs_u8[1], NULL)); ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEL, &bs_read_u8[0])); ESP_ERROR_CHECK(sdmmc_io_read_byte(card, 0, offset + SD_IO_CCCR_BLKSIZEH, &bs_read_u8[1])); ESP_LOGI(TAG, "Function 1 BS: %04x", (int) bs_read); if (bs_read != context->block_size) { ESP_LOGW(TAG, "Function1 block size %d different than set value %d", bs_read, context->block_size); context->block_size = bs_read; } return ESP_OK; } esp_err_t esp_slave_wait_for_ioready(esp_slave_context_t *context) { ESP_LOGV(TAG, "wait_for_ioready"); esp_err_t err; sdmmc_card_t *card = context->card; // wait for the card to become ready uint8_t ior = 0; while ((ior & FUNC1_EN_MASK) == 0) { err = sdmmc_io_read_byte(card, 0, SD_IO_CCCR_FN_READY, &ior); if (err != ESP_OK) return err; ESP_LOGI(TAG, "IOR: 0x%02x", ior); } return ESP_OK; } static inline esp_err_t esp_slave_write_byte(esp_slave_context_t *context, uint32_t addr, uint8_t val, uint8_t *val_o) { return sdmmc_io_write_byte(context->card, 1, addr&0x3FF, val, val_o); } static inline esp_err_t esp_slave_write_bytes(esp_slave_context_t *context, uint32_t addr, uint8_t *val, int len) { return sdmmc_io_write_bytes(context->card, 1, addr&0x3FF, val, len); } static inline esp_err_t esp_slave_read_byte(esp_slave_context_t *context, uint32_t addr, uint8_t *val_o) { return sdmmc_io_read_byte(context->card, 1, addr&0x3FF, val_o); } static inline esp_err_t esp_slave_read_bytes(esp_slave_context_t *context, uint32_t addr, uint8_t *val_o, int len) { return sdmmc_io_read_bytes(context->card, 1, addr&0x3FF, val_o, len); } esp_err_t esp_slave_send_packet(esp_slave_context_t *context, const void* start, size_t length, uint32_t wait_ms) { sdmmc_card_t *card = context->card; uint16_t buffer_size = context->buffer_size; int buffer_used = (length + buffer_size - 1)/buffer_size; esp_err_t err; const uint32_t wait_ticks = wait_ms/portTICK_PERIOD_MS; uint32_t pre = xTaskGetTickCount(); assert(length>0); for(;;) { uint32_t num = 0; err = esp_slave_get_tx_buffer_num(context, &num); if (err == ESP_OK && num * buffer_size >= length) break; if (err != ESP_OK && err != ESP_ERR_TIMEOUT) return err; //not error and buffer not enough, retry ``timeout_cnt`` times uint32_t now = xTaskGetTickCount(); if (now-pre >= wait_ticks) { ESP_LOGD(TAG, "buffer is not enough: %d, %d required.", num, buffer_used); return ESP_ERR_TIMEOUT; } else { ESP_LOGV(TAG, "buffer is not enough: %d, %d required. Retry...", num, buffer_used); } vTaskDelay(1); } ESP_LOGV(TAG, "send_packet: len: %d", length); uint8_t *start_ptr = (uint8_t*)start; uint32_t len_remain = length; do { const int block_size = 512; /* Though the driver supports to split packet of unaligned size into * length of 4x and 1~3, we still send aligned size of data to get * higher effeciency. The length is determined by the SDIO address, and * the remainning will be discard by the slave hardware. */ int block_n = len_remain/block_size; int len_to_send; if (block_n) { len_to_send = block_n * block_size; err = sdmmc_io_write_blocks(card, 1, ESP_SLAVE_CMD53_END_ADDR - len_remain, start_ptr, len_to_send); } else { len_to_send = len_remain; err = sdmmc_io_write_bytes(card, 1, ESP_SLAVE_CMD53_END_ADDR - len_remain, start_ptr, (len_to_send + 3) & (~3)); } if (err != ESP_OK) return err; start_ptr += len_to_send; len_remain -= len_to_send; } while (len_remain); context->tx_sent_buffers += buffer_used; return ESP_OK; } esp_err_t esp_slave_get_packet(esp_slave_context_t *context, void* out_data, size_t size, size_t *out_length, uint32_t wait_ms) { sdmmc_card_t *card = context->card; esp_err_t err; esp_err_t ret = ESP_OK; uint32_t len; const uint32_t wait_ticks = wait_ms/portTICK_PERIOD_MS; uint32_t pre = xTaskGetTickCount(); assert (size>0); for (;;) { err = esp_slave_get_rx_data_size(context, &len); if (err == ESP_OK && len > 0) break; if (err != ESP_OK && err != ESP_ERR_TIMEOUT) return err; //not error and no data, retry ``timeout_cnt`` times. uint32_t now = xTaskGetTickCount(); if (now-pre >= wait_ticks) return ESP_ERR_NOT_FOUND; vTaskDelay(1); } ESP_LOGV(TAG, "get_packet: slave len=%d, max read size=%d", len, size); if (len > size) { len = size; ret = ESP_ERR_NOT_FINISHED; } uint8_t *start = out_data; uint32_t len_remain = len; do { const int block_size = 512; //currently our driver don't support block size other than 512 int len_to_send; int block_n = len_remain/block_size; if (block_n != 0) { len_to_send = block_n * block_size; err = sdmmc_io_read_blocks(card, 1, ESP_SLAVE_CMD53_END_ADDR - len_remain, start, len_to_send); } else { len_to_send = len_remain; /* though the driver supports to split packet of unaligned size into length * of 4x and 1~3, we still get aligned size of data to get higher * effeciency. The length is determined by the SDIO address, and the * remainning will be ignored by the slave hardware. */ err = sdmmc_io_read_bytes(card, 1, ESP_SLAVE_CMD53_END_ADDR - len_remain, start, (len_to_send + 3) & (~3)); } if (err != ESP_OK) return err; start += len_to_send; len_remain -= len_to_send; } while(len_remain!=0); context->rx_got_bytes += len; *out_length = len; return ret; } esp_err_t esp_slave_get_tx_buffer_num(esp_slave_context_t *context, uint32_t* tx_num) { uint32_t len; esp_err_t err; ESP_LOGV(TAG, "get_tx_buffer_num"); err = esp_slave_read_bytes(context, HOST_SLC0HOST_TOKEN_RDATA_REG, (uint8_t*)&len, 4); if (err != ESP_OK) return err; len = (len>>16)&TX_BUFFER_MASK; len = (len + TX_BUFFER_MAX - context->tx_sent_buffers)%TX_BUFFER_MAX; *tx_num = len; return ESP_OK; } esp_err_t esp_slave_get_rx_data_size(esp_slave_context_t *context, uint32_t* rx_size) { uint32_t len; esp_err_t err; ESP_LOGV(TAG, "get_rx_data_size: got_bytes: %d", context->rx_got_bytes); err = esp_slave_read_bytes(context, HOST_SLCHOST_PKT_LEN_REG, (uint8_t*)&len, 4); if (err != ESP_OK) return err; len &= RX_BYTE_MASK; len = (len + RX_BYTE_MAX - context->rx_got_bytes)%RX_BYTE_MAX; *rx_size = len; return ESP_OK; } esp_err_t esp_slave_clear_intr(esp_slave_context_t *context, uint32_t intr_mask) { ESP_LOGV(TAG, "clear_intr: %08X", intr_mask); return esp_slave_write_bytes(context, HOST_SLC0HOST_INT_CLR_REG, (uint8_t*)&intr_mask, 4); } esp_err_t esp_slave_get_intr(esp_slave_context_t *context, uint32_t *intr_raw, uint32_t *intr_st) { esp_err_t r; ESP_LOGV(TAG, "get_intr"); if (intr_raw == NULL && intr_st == NULL) return ESP_ERR_INVALID_ARG; if (intr_raw != NULL) { r= esp_slave_read_bytes(context, HOST_SLC0HOST_INT_RAW_REG, (uint8_t*)intr_raw, 4); if (r != ESP_OK) return r; } if (intr_st != NULL) { r = esp_slave_read_bytes(context, HOST_SLC0HOST_INT_ST_REG, (uint8_t*)intr_st, 4); if (r != ESP_OK) return r; } return ESP_OK; } esp_err_t esp_slave_set_intr_ena(esp_slave_context_t *context, uint32_t ena_mask) { ESP_LOGV(TAG, "set_intr_ena: %08X", ena_mask); return esp_slave_write_bytes(context, HOST_SLC0HOST_INT_ENA_REG, (uint8_t*)&ena_mask, 4); } esp_err_t esp_slave_get_intr_ena(esp_slave_context_t *context, uint32_t *ena_mask_o) { ESP_LOGV(TAG, "get_intr_ena"); esp_err_t ret = esp_slave_read_bytes(context, HOST_SLC0HOST_INT_ENA_REG, (uint8_t*)ena_mask_o, 4); ESP_LOGV(TAG, "ena: %08X", *ena_mask_o); return ret; } esp_err_t esp_slave_write_reg(esp_slave_context_t *context, uint8_t addr, uint8_t value, uint8_t* value_o) { ESP_LOGV(TAG, "write_reg: %08X", value); // addrress over range if (addr >= 64) return ESP_ERR_INVALID_ARG; // reserved for interrupts if (addr >= 28 && addr <= 31) return ESP_ERR_INVALID_ARG; return esp_slave_write_byte(context, HOST_SLCHOST_CONF_W_REG(addr), value, value_o); } esp_err_t esp_slave_read_reg(esp_slave_context_t *context, uint8_t add, uint8_t *value_o) { ESP_LOGV(TAG, "read_reg"); // address over range if (add >= 64) return ESP_ERR_INVALID_ARG; esp_err_t ret = esp_slave_read_byte(context, HOST_SLCHOST_CONF_W_REG(add), value_o); ESP_LOGV(TAG, "reg: %08X", *value_o); return ret; } esp_err_t esp_slave_send_slave_intr(esp_slave_context_t *context, uint8_t intr_mask) { ESP_LOGV(TAG, "send_slave_intr: %02x", intr_mask); return esp_slave_write_byte(context, HOST_SLCHOST_CONF_W7_REG+0, intr_mask, NULL); }