// Copyright 2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* Unit tests need to have access to reliable timestamps even if CPU and APB * clock frequencies change over time. This reference clock is built upon two * peripherals: one RMT channel and one PCNT channel, plus one GPIO to connect * these peripherals. * * RMT channel is configured to use REF_TICK as clock source, which is a 1 MHz * clock derived from APB_CLK using a set of dividers. The divider is changed * automatically by hardware depending on the current clock source of APB_CLK. * For example, if APB_CLK is derived from PLL, one divider is used, and when * APB_CLK is derived from XTAL, another divider is used. RMT channel clocked * by REF_TICK is configured to generate a continuous 0.5 MHz signal, which is * connected to a GPIO. PCNT takes the input signal from this GPIO and counts * the edges (which occur at 1MHz frequency). PCNT counter is only 16 bit wide, * so an interrupt is configured to trigger when the counter reaches 30000, * incrementing a 32-bit millisecond counter maintained by software. * Together these two counters may be used at any time to obtain the timestamp. */ #include "test_utils.h" #include "soc/rmt_struct.h" #include "soc/pcnt_struct.h" #include "soc/pcnt_reg.h" #include "soc/gpio_sig_map.h" #include "soc/dport_reg.h" #include "rom/gpio.h" #include "rom/ets_sys.h" #include "driver/gpio.h" #include "esp_intr_alloc.h" #include "freertos/FreeRTOS.h" #include "driver/periph_ctrl.h" /* Select which RMT and PCNT channels, and GPIO to use */ #define REF_CLOCK_RMT_CHANNEL 7 #define REF_CLOCK_PCNT_UNIT 0 #define REF_CLOCK_GPIO 21 #define REF_CLOCK_PRESCALER_MS 30 static void IRAM_ATTR pcnt_isr(void* arg); static intr_handle_t s_intr_handle; static portMUX_TYPE s_lock = portMUX_INITIALIZER_UNLOCKED; static volatile uint32_t s_milliseconds; void ref_clock_init() { assert(s_intr_handle == NULL && "already initialized"); // Route RMT output to GPIO matrix gpio_matrix_out(REF_CLOCK_GPIO, RMT_SIG_OUT0_IDX + REF_CLOCK_RMT_CHANNEL, false, false); // Initialize RMT periph_module_enable(PERIPH_RMT_MODULE); RMT.apb_conf.fifo_mask = 1; rmt_item32_t data = { .duration0 = 1, .level0 = 1, .duration1 = 0, .level1 = 0 }; RMTMEM.chan[REF_CLOCK_RMT_CHANNEL].data32[0] = data; RMTMEM.chan[REF_CLOCK_RMT_CHANNEL].data32[1].val = 0; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.clk_en = 1; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 0; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.mem_owner = 0; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.mem_rd_rst = 1; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.apb_mem_rst = 1; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.carrier_en = 0; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.div_cnt = 1; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.mem_size = 1; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.ref_always_on = 0; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_conti_mode = 1; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 1; // Route signal to PCNT int pcnt_sig_idx = (REF_CLOCK_PCNT_UNIT < 5) ? PCNT_SIG_CH0_IN0_IDX + 4 * REF_CLOCK_PCNT_UNIT : PCNT_SIG_CH0_IN5_IDX + 4 * (REF_CLOCK_PCNT_UNIT - 5); gpio_matrix_in(REF_CLOCK_GPIO, pcnt_sig_idx, false); if (REF_CLOCK_GPIO != 20) { PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[REF_CLOCK_GPIO]); } else { PIN_INPUT_ENABLE(PERIPHS_IO_MUX_GPIO20_U); } // Initialize PCNT periph_module_enable(PERIPH_PCNT_MODULE); PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_hctrl_mode = 0; PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_lctrl_mode = 0; PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_pos_mode = 1; PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_neg_mode = 1; PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_l_lim_en = 0; PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_h_lim_en = 1; PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_zero_en = 0; PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_thres0_en = 0; PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_thres1_en = 0; PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf2.cnt_h_lim = REF_CLOCK_PRESCALER_MS * 1000; // Enable PCNT and wait for it to start counting PCNT.ctrl.val &= ~(BIT(REF_CLOCK_PCNT_UNIT * 2 + 1)); PCNT.ctrl.val |= BIT(REF_CLOCK_PCNT_UNIT * 2); PCNT.ctrl.val &= ~BIT(REF_CLOCK_PCNT_UNIT * 2); ets_delay_us(10000); // Enable interrupt s_milliseconds = 0; ESP_ERROR_CHECK(esp_intr_alloc(ETS_PCNT_INTR_SOURCE, ESP_INTR_FLAG_IRAM, pcnt_isr, NULL, &s_intr_handle)); PCNT.int_clr.val = BIT(REF_CLOCK_PCNT_UNIT); PCNT.int_ena.val = BIT(REF_CLOCK_PCNT_UNIT); } static void IRAM_ATTR pcnt_isr(void* arg) { portENTER_CRITICAL_ISR(&s_lock); PCNT.int_clr.val = BIT(REF_CLOCK_PCNT_UNIT); s_milliseconds += REF_CLOCK_PRESCALER_MS; portEXIT_CRITICAL_ISR(&s_lock); } void ref_clock_deinit() { assert(s_intr_handle && "deinit called without init"); // Disable interrupt PCNT.int_ena.val &= ~BIT(REF_CLOCK_PCNT_UNIT); esp_intr_free(s_intr_handle); s_intr_handle = NULL; // Disable RMT RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 0; RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.clk_en = 0; periph_module_disable(PERIPH_RMT_MODULE); // Disable PCNT PCNT.ctrl.val |= ~(BIT(REF_CLOCK_PCNT_UNIT * 2 + 1)); periph_module_disable(PERIPH_PCNT_MODULE); } uint64_t ref_clock_get() { portENTER_CRITICAL(&s_lock); uint32_t microseconds = PCNT.cnt_unit[REF_CLOCK_PCNT_UNIT].cnt_val; uint32_t milliseconds = s_milliseconds; if (PCNT.int_st.val & BIT(REF_CLOCK_PCNT_UNIT)) { // refresh counter value, in case the overflow has happened after reading cnt_val microseconds = PCNT.cnt_unit[REF_CLOCK_PCNT_UNIT].cnt_val; milliseconds += REF_CLOCK_PRESCALER_MS; } portEXIT_CRITICAL(&s_lock); return 1000 * (uint64_t) milliseconds + (uint64_t) microseconds; }