// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "driver/spi_master.h" #include "soc/dport_reg.h" #include "soc/spi_periph.h" #include "rom/ets_sys.h" #include "esp_types.h" #include "esp_attr.h" #include "esp_intr.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_err.h" #include "soc/soc.h" #include "soc/dport_reg.h" #include "rom/lldesc.h" #include "driver/gpio.h" #include "driver/periph_ctrl.h" #include "esp_heap_caps.h" #include "driver/spi_common.h" #include "stdatomic.h" static const char *SPI_TAG = "spi"; #define SPI_CHECK(a, str, ret_val) do { \ if (!(a)) { \ ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } \ } while(0) #define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \ SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \ } else { \ SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \ } typedef struct spi_device_t spi_device_t; #define FUNC_SPI 1 //all pins of HSPI and VSPI shares this function number #define FUNC_GPIO PIN_FUNC_GPIO #define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1)) //Periph 1 is 'claimed' by SPI flash code. static atomic_bool spi_periph_claimed[3] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false), ATOMIC_VAR_INIT(false)}; static const char* spi_claiming_func[3] = {NULL, NULL, NULL}; static uint8_t spi_dma_chan_enabled = 0; static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED; //Returns true if this peripheral is successfully claimed, false if otherwise. bool spicommon_periph_claim(spi_host_device_t host, const char* source) { bool false_var = false; bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &false_var, true); if (ret) { spi_claiming_func[host] = source; periph_module_enable(spi_periph_signal[host].module); } else { ESP_EARLY_LOGE(SPI_TAG, "SPI%d already claimed by %s.", host+1, spi_claiming_func[host]); } return ret; } bool spicommon_periph_in_use(spi_host_device_t host) { return atomic_load(&spi_periph_claimed[host]); } //Returns true if this peripheral is successfully freed, false if otherwise. bool spicommon_periph_free(spi_host_device_t host) { bool true_var = true; bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &true_var, false); if (ret) periph_module_disable(spi_periph_signal[host].module); return ret; } int spicommon_irqsource_for_host(spi_host_device_t host) { return spi_periph_signal[host].irq; } spi_dev_t *spicommon_hw_for_host(spi_host_device_t host) { return spi_periph_signal[host].hw; } bool spicommon_dma_chan_claim (int dma_chan) { bool ret = false; assert( dma_chan == 1 || dma_chan == 2 ); portENTER_CRITICAL(&spi_dma_spinlock); if ( !(spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan)) ) { // get the channel only when it's not claimed yet. spi_dma_chan_enabled |= DMA_CHANNEL_ENABLED(dma_chan); ret = true; } periph_module_enable( PERIPH_SPI_DMA_MODULE ); portEXIT_CRITICAL(&spi_dma_spinlock); return ret; } bool spicommon_dma_chan_in_use(int dma_chan) { assert(dma_chan==1 || dma_chan == 2); return spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan); } bool spicommon_dma_chan_free(int dma_chan) { assert( dma_chan == 1 || dma_chan == 2 ); assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) ); portENTER_CRITICAL(&spi_dma_spinlock); spi_dma_chan_enabled &= ~DMA_CHANNEL_ENABLED(dma_chan); if ( spi_dma_chan_enabled == 0 ) { //disable the DMA only when all the channels are freed. periph_module_disable( PERIPH_SPI_DMA_MODULE ); } portEXIT_CRITICAL(&spi_dma_spinlock); return true; } static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config) { if (bus_config->sclk_io_num>=0 && bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) return false; if (bus_config->quadwp_io_num>=0 && bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) return false; if (bus_config->quadhd_io_num>=0 && bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) return false; if (bus_config->mosi_io_num >= 0 && bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) return false; if (bus_config->miso_io_num>=0 && bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) return false; return true; } /* Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value, it should be able to be initialized. */ esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, uint32_t flags, uint32_t* flags_o) { uint32_t temp_flag=0; bool miso_need_output; bool mosi_need_output; bool sclk_need_output; if ((flags&SPICOMMON_BUSFLAG_MASTER) != 0) { //initial for master miso_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false; mosi_need_output = true; sclk_need_output = true; } else { //initial for slave miso_need_output = true; mosi_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false; sclk_need_output = false; } const bool wp_need_output = true; const bool hd_need_output = true; //check pin capabilities if (bus_config->sclk_io_num>=0) { temp_flag |= SPICOMMON_BUSFLAG_SCLK; SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output); } if (bus_config->quadwp_io_num>=0) { SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output); } if (bus_config->quadhd_io_num>=0) { SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output); } //set flags for QUAD mode according to the existence of wp and hd if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) temp_flag |= SPICOMMON_BUSFLAG_WPHD; if (bus_config->mosi_io_num >= 0) { temp_flag |= SPICOMMON_BUSFLAG_MOSI; SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output); } if (bus_config->miso_io_num>=0) { temp_flag |= SPICOMMON_BUSFLAG_MISO; SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output); } //set flags for DUAL mode according to output-capability of MOSI and MISO pins. if ( (bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) && (bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num)) ) { temp_flag |= SPICOMMON_BUSFLAG_DUAL; } //check if the selected pins correspond to the iomux pins of the peripheral bool use_iomux = bus_uses_iomux_pins(host, bus_config); if (use_iomux) temp_flag |= SPICOMMON_BUSFLAG_NATIVE_PINS; uint32_t missing_flag = flags & ~temp_flag; missing_flag &= ~SPICOMMON_BUSFLAG_MASTER;//don't check this flag if (missing_flag != 0) { //check pins existence if (missing_flag & SPICOMMON_BUSFLAG_SCLK) ESP_LOGE(SPI_TAG, "sclk pin required."); if (missing_flag & SPICOMMON_BUSFLAG_MOSI) ESP_LOGE(SPI_TAG, "mosi pin required."); if (missing_flag & SPICOMMON_BUSFLAG_MISO) ESP_LOGE(SPI_TAG, "miso pin required."); if (missing_flag & SPICOMMON_BUSFLAG_DUAL) ESP_LOGE(SPI_TAG, "not both mosi and miso output capable"); if (missing_flag & SPICOMMON_BUSFLAG_WPHD) ESP_LOGE(SPI_TAG, "both wp and hd required."); if (missing_flag & SPICOMMON_BUSFLAG_NATIVE_PINS) ESP_LOGE(SPI_TAG, "not using iomux pins"); SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG); } if (use_iomux) { //All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure //out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway. ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host+1); if (bus_config->mosi_io_num >= 0) { gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in); gpio_iomux_out(bus_config->mosi_io_num, FUNC_SPI, false); } if (bus_config->miso_io_num >= 0) { gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in); gpio_iomux_out(bus_config->miso_io_num, FUNC_SPI, false); } if (bus_config->quadwp_io_num >= 0) { gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in); gpio_iomux_out(bus_config->quadwp_io_num, FUNC_SPI, false); } if (bus_config->quadhd_io_num >= 0) { gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in); gpio_iomux_out(bus_config->quadhd_io_num, FUNC_SPI, false); } if (bus_config->sclk_io_num >= 0) { gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in); gpio_iomux_out(bus_config->sclk_io_num, FUNC_SPI, false); } temp_flag |= SPICOMMON_BUSFLAG_NATIVE_PINS; } else { //Use GPIO matrix ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host+1); if (bus_config->mosi_io_num >= 0) { if (mosi_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) { gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT); gpio_matrix_out(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false); } else { gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT); } gpio_matrix_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], FUNC_GPIO); } if (bus_config->miso_io_num >= 0) { if (miso_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) { gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT); gpio_matrix_out(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false); } else { gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT); } gpio_matrix_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], FUNC_GPIO); } if (bus_config->quadwp_io_num >= 0) { gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT); gpio_matrix_out(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false); gpio_matrix_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], FUNC_GPIO); } if (bus_config->quadhd_io_num >= 0) { gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT); gpio_matrix_out(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false); gpio_matrix_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], FUNC_GPIO); } if (bus_config->sclk_io_num >= 0) { if (sclk_need_output) { gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT); gpio_matrix_out(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false); } else { gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT); } gpio_matrix_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], FUNC_GPIO); } } //Select DMA channel. DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2)); if (flags_o) *flags_o = temp_flag; return ESP_OK; } //Find any pin with output muxed to ``func`` and reset it to GPIO static void reset_func_to_gpio(int func) { for (int x = 0; x < GPIO_PIN_COUNT; x++) { if (GPIO_IS_VALID_GPIO(x) && (READ_PERI_REG(GPIO_FUNC0_OUT_SEL_CFG_REG + (x * 4))&GPIO_FUNC0_OUT_SEL_M) == func) { gpio_matrix_out(x, SIG_GPIO_OUT_IDX, false, false); } } } esp_err_t spicommon_bus_free_io(spi_host_device_t host) { if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spid_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spid_iomux_pin], PIN_FUNC_GPIO); if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiq_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiq_iomux_pin], PIN_FUNC_GPIO); if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiclk_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiclk_iomux_pin], PIN_FUNC_GPIO); if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiwp_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiwp_iomux_pin], PIN_FUNC_GPIO); if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spihd_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spihd_iomux_pin], PIN_FUNC_GPIO); reset_func_to_gpio(spi_periph_signal[host].spid_out); reset_func_to_gpio(spi_periph_signal[host].spiq_out); reset_func_to_gpio(spi_periph_signal[host].spiclk_out); reset_func_to_gpio(spi_periph_signal[host].spiwp_out); reset_func_to_gpio(spi_periph_signal[host].spihd_out); return ESP_OK; } esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg) { int pin_array[] = { bus_cfg->mosi_io_num, bus_cfg->miso_io_num, bus_cfg->sclk_io_num, bus_cfg->quadwp_io_num, bus_cfg->quadhd_io_num, }; for (int i = 0; i < sizeof(pin_array)/sizeof(int); i ++) { const int io = pin_array[i]; if (io >= 0 && GPIO_IS_VALID_GPIO(io)) gpio_reset_pin(io); } return ESP_OK; } void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix) { if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) { //The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define. gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in); gpio_iomux_out(cs_io_num, FUNC_SPI, false); } else { //Use GPIO matrix if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) { gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT); gpio_matrix_out(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false); } else { gpio_set_direction(cs_io_num, GPIO_MODE_INPUT); } if (cs_num == 0) gpio_matrix_in(cs_io_num, spi_periph_signal[host].spics_in, false); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], FUNC_GPIO); } } void spicommon_cs_free(spi_host_device_t host, int cs_io_num) { if (cs_io_num == 0 && REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spics0_iomux_pin], MCU_SEL) == 1) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spics0_iomux_pin], PIN_FUNC_GPIO); } reset_func_to_gpio(spi_periph_signal[host].spics_out[cs_io_num]); } void spicommon_cs_free_io(int cs_gpio_num) { assert(cs_gpio_num>=0 && GPIO_IS_VALID_GPIO(cs_gpio_num)); gpio_reset_pin(cs_gpio_num); } //Set up a list of dma descriptors. dmadesc is an array of descriptors. Data is the buffer to point to. void IRAM_ATTR spicommon_setup_dma_desc_links(lldesc_t *dmadesc, int len, const uint8_t *data, bool isrx) { int n = 0; while (len) { int dmachunklen = len; if (dmachunklen > SPI_MAX_DMA_LEN) dmachunklen = SPI_MAX_DMA_LEN; if (isrx) { //Receive needs DMA length rounded to next 32-bit boundary dmadesc[n].size = (dmachunklen + 3) & (~3); dmadesc[n].length = (dmachunklen + 3) & (~3); } else { dmadesc[n].size = dmachunklen; dmadesc[n].length = dmachunklen; } dmadesc[n].buf = (uint8_t *)data; dmadesc[n].eof = 0; dmadesc[n].sosf = 0; dmadesc[n].owner = 1; dmadesc[n].qe.stqe_next = &dmadesc[n + 1]; len -= dmachunklen; data += dmachunklen; n++; } dmadesc[n - 1].eof = 1; //Mark last DMA desc as end of stream. dmadesc[n - 1].qe.stqe_next = NULL; } /* Code for workaround for DMA issue in ESP32 v0/v1 silicon */ static volatile int dmaworkaround_channels_busy[2] = {0, 0}; static dmaworkaround_cb_t dmaworkaround_cb; static void *dmaworkaround_cb_arg; static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED; static int dmaworkaround_waiting_for_chan = 0; bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg) { int otherchan = (dmachan == 1) ? 2 : 1; bool ret; portENTER_CRITICAL_ISR(&dmaworkaround_mux); if (dmaworkaround_channels_busy[otherchan-1]) { //Other channel is busy. Call back when it's done. dmaworkaround_cb = cb; dmaworkaround_cb_arg = arg; dmaworkaround_waiting_for_chan = otherchan; ret = false; } else { //Reset DMA periph_module_reset( PERIPH_SPI_DMA_MODULE ); ret = true; } portEXIT_CRITICAL_ISR(&dmaworkaround_mux); return ret; } bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress() { return (dmaworkaround_waiting_for_chan != 0); } void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan) { portENTER_CRITICAL_ISR(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan-1] = 0; if (dmaworkaround_waiting_for_chan == dmachan) { //Reset DMA periph_module_reset( PERIPH_SPI_DMA_MODULE ); dmaworkaround_waiting_for_chan = 0; //Call callback dmaworkaround_cb(dmaworkaround_cb_arg); } portEXIT_CRITICAL_ISR(&dmaworkaround_mux); } void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan) { portENTER_CRITICAL_ISR(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan-1] = 1; portEXIT_CRITICAL_ISR(&dmaworkaround_mux); }