// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include // For MIN/MAX(a, b) #include #include #include #include #include #include #include #include "sdkconfig.h" #include "esp_ipc.h" #include "esp_attr.h" #include "esp_spi_flash.h" #include "esp_log.h" #include "cache_utils.h" /* bytes erased by SPIEraseBlock() ROM function */ #define BLOCK_ERASE_SIZE 65536 #if CONFIG_SPI_FLASH_ENABLE_COUNTERS static const char* TAG = "spi_flash"; static spi_flash_counters_t s_flash_stats; #define COUNTER_START() uint32_t ts_begin = xthal_get_ccount() #define COUNTER_STOP(counter) \ do{ \ s_flash_stats.counter.count++; \ s_flash_stats.counter.time += (xthal_get_ccount() - ts_begin) / (XT_CLOCK_FREQ / 1000000); \ } while(0) #define COUNTER_ADD_BYTES(counter, size) \ do { \ s_flash_stats.counter.bytes += size; \ } while (0) #else #define COUNTER_START() #define COUNTER_STOP(counter) #define COUNTER_ADD_BYTES(counter, size) #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS static esp_err_t spi_flash_translate_rc(SpiFlashOpResult rc); const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = { .start = spi_flash_disable_interrupts_caches_and_other_cpu, .end = spi_flash_enable_interrupts_caches_and_other_cpu }; const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = { .start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os, .end = spi_flash_enable_interrupts_caches_no_os }; static const spi_flash_guard_funcs_t *s_flash_guard_ops; void spi_flash_init() { spi_flash_init_lock(); #if CONFIG_SPI_FLASH_ENABLE_COUNTERS spi_flash_reset_counters(); #endif } void spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs) { s_flash_guard_ops = funcs; } size_t spi_flash_get_chip_size() { return g_rom_flashchip.chip_size; } SpiFlashOpResult IRAM_ATTR spi_flash_unlock() { static bool unlocked = false; if (!unlocked) { SpiFlashOpResult rc = SPIUnlock(); if (rc != SPI_FLASH_RESULT_OK) { return rc; } unlocked = true; } return SPI_FLASH_RESULT_OK; } static inline void IRAM_ATTR spi_flash_guard_start() { if (s_flash_guard_ops) { s_flash_guard_ops->start(); } } static inline void IRAM_ATTR spi_flash_guard_end() { if (s_flash_guard_ops) { s_flash_guard_ops->end(); } } esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec) { return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE); } esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size) { if (start_addr % SPI_FLASH_SEC_SIZE != 0) { return ESP_ERR_INVALID_ARG; } if (size % SPI_FLASH_SEC_SIZE != 0) { return ESP_ERR_INVALID_SIZE; } if (size + start_addr > spi_flash_get_chip_size()) { return ESP_ERR_INVALID_SIZE; } size_t start = start_addr / SPI_FLASH_SEC_SIZE; size_t end = start + size / SPI_FLASH_SEC_SIZE; const size_t sectors_per_block = BLOCK_ERASE_SIZE / SPI_FLASH_SEC_SIZE; COUNTER_START(); spi_flash_guard_start(); SpiFlashOpResult rc; rc = spi_flash_unlock(); if (rc == SPI_FLASH_RESULT_OK) { for (size_t sector = start; sector != end && rc == SPI_FLASH_RESULT_OK; ) { if (sector % sectors_per_block == 0 && end - sector > sectors_per_block) { rc = SPIEraseBlock(sector / sectors_per_block); sector += sectors_per_block; COUNTER_ADD_BYTES(erase, sectors_per_block * SPI_FLASH_SEC_SIZE); } else { rc = SPIEraseSector(sector); ++sector; COUNTER_ADD_BYTES(erase, SPI_FLASH_SEC_SIZE); } } } spi_flash_guard_end(); COUNTER_STOP(erase); return spi_flash_translate_rc(rc); } esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size) { // Out of bound writes are checked in ROM code, but we can give better // error code here if (dst + size > g_rom_flashchip.chip_size) { return ESP_ERR_INVALID_SIZE; } if (size == 0) { return ESP_OK; } SpiFlashOpResult rc = SPI_FLASH_RESULT_OK; COUNTER_START(); const char *srcc = (const char *) srcv; /* * Large operations are split into (up to) 3 parts: * - Left padding: 4 bytes up to the first 4-byte aligned destination offset. * - Middle part * - Right padding: 4 bytes from the last 4-byte aligned offset covered. */ size_t left_off = dst & ~3U; size_t left_size = MIN(((dst + 3) & ~3U) - dst, size); size_t mid_off = left_size; size_t mid_size = (size - left_size) & ~3U; size_t right_off = left_size + mid_size; size_t right_size = size - mid_size - left_size; rc = spi_flash_unlock(); if (rc != SPI_FLASH_RESULT_OK) { goto out; } if (left_size > 0) { uint32_t t = 0xffffffff; memcpy(((uint8_t *) &t) + (dst - left_off), srcc, left_size); spi_flash_guard_start(); rc = SPIWrite(left_off, &t, 4); spi_flash_guard_end(); if (rc != SPI_FLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(write, 4); } if (mid_size > 0) { /* If src buffer is 4-byte aligned as well and is not in a region that * requires cache access to be enabled, we can write it all at once. */ #ifdef ESP_PLATFORM bool in_dram = ((uintptr_t) srcc >= 0x3FFAE000 && (uintptr_t) srcc < 0x40000000); #else bool in_dram = true; #endif if (in_dram && (((uintptr_t) srcc) + mid_off) % 4 == 0) { spi_flash_guard_start(); rc = SPIWrite(dst + mid_off, (const uint32_t *) (srcc + mid_off), mid_size); spi_flash_guard_end(); if (rc != SPI_FLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(write, mid_size); } else { /* * Otherwise, unlike for read, we cannot manipulate data in the * user-provided buffer, so we write in 32 byte blocks. */ while (mid_size > 0) { uint32_t t[8]; uint32_t write_size = MIN(mid_size, sizeof(t)); memcpy(t, srcc + mid_off, write_size); spi_flash_guard_start(); rc = SPIWrite(dst + mid_off, t, write_size); spi_flash_guard_end(); if (rc != SPI_FLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(write, write_size); mid_size -= write_size; mid_off += write_size; } } } if (right_size > 0) { uint32_t t = 0xffffffff; memcpy(&t, srcc + right_off, right_size); spi_flash_guard_start(); rc = SPIWrite(dst + right_off, &t, 4); spi_flash_guard_end(); if (rc != SPI_FLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(write, 4); } out: COUNTER_STOP(write); return spi_flash_translate_rc(rc); } esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size) { if ((dest_addr % 32) != 0) { return ESP_ERR_INVALID_ARG; } if ((size % 32) != 0) { return ESP_ERR_INVALID_SIZE; } if ((uint32_t) src < 0x3ff00000) { // if source address is in DROM, we won't be able to read it // from within SPIWrite // TODO: consider buffering source data using heap and writing it anyway? return ESP_ERR_INVALID_ARG; } COUNTER_START(); spi_flash_disable_interrupts_caches_and_other_cpu(); SpiFlashOpResult rc; rc = spi_flash_unlock(); if (rc == SPI_FLASH_RESULT_OK) { /* SPI_Encrypt_Write encrypts data in RAM as it writes, so copy to a temporary buffer - 32 bytes at a time. */ uint32_t encrypt_buf[32/sizeof(uint32_t)]; for (size_t i = 0; i < size; i += 32) { memcpy(encrypt_buf, ((const uint8_t *)src) + i, 32); rc = SPI_Encrypt_Write((uint32_t) dest_addr + i, encrypt_buf, 32); if (rc != SPI_FLASH_RESULT_OK) { break; } } bzero(encrypt_buf, sizeof(encrypt_buf)); } COUNTER_ADD_BYTES(write, size); return spi_flash_translate_rc(rc); } esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size) { // Out of bound reads are checked in ROM code, but we can give better // error code here if (src + size > g_rom_flashchip.chip_size) { return ESP_ERR_INVALID_SIZE; } if (size == 0) { return ESP_OK; } SpiFlashOpResult rc = SPI_FLASH_RESULT_OK; COUNTER_START(); spi_flash_guard_start(); /* To simplify boundary checks below, we handle small reads separately. */ if (size < 16) { uint32_t t[6]; /* Enough for 16 bytes + 4 on either side for padding. */ uint32_t read_src = src & ~3U; uint32_t left_off = src & 3U; uint32_t read_size = (left_off + size + 3) & ~3U; rc = SPIRead(read_src, t, read_size); if (rc != SPI_FLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(read, read_size); memcpy(dstv, ((char *) t) + left_off, size); goto out; } char *dstc = (char *) dstv; intptr_t dsti = (intptr_t) dstc; /* * Large operations are split into (up to) 3 parts: * - The middle part: from the first 4-aligned position in src to the first * 4-aligned position in dst. */ size_t src_mid_off = (src % 4 == 0 ? 0 : 4 - (src % 4)); size_t dst_mid_off = (dsti % 4 == 0 ? 0 : 4 - (dsti % 4)); size_t mid_size = (size - MAX(src_mid_off, dst_mid_off)) & ~3U; /* * - Once the middle part is in place, src_mid_off bytes from the preceding * 4-aligned source location are added on the left. */ size_t pad_left_src = src & ~3U; size_t pad_left_size = src_mid_off; /* * - Finally, the right part is added: from the end of the middle part to * the end. Depending on the alignment of source and destination, this may * be a 4 or 8 byte read from pad_right_src. */ size_t pad_right_src = (src + pad_left_size + mid_size) & ~3U; size_t pad_right_off = (pad_right_src - src); size_t pad_right_size = (size - pad_right_off); if (mid_size > 0) { rc = SPIRead(src + src_mid_off, (uint32_t *) (dstc + dst_mid_off), mid_size); if (rc != SPI_FLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(read, mid_size); /* * If offsets in src and dst are different, perform an in-place shift * to put destination data into its final position. * Note that the shift can be left (src_mid_off < dst_mid_off) or right. */ if (src_mid_off != dst_mid_off) { memmove(dstc + src_mid_off, dstc + dst_mid_off, mid_size); } } if (pad_left_size > 0) { uint32_t t; rc = SPIRead(pad_left_src, &t, 4); if (rc != SPI_FLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(read, 4); memcpy(dstc, ((uint8_t *) &t) + (4 - pad_left_size), pad_left_size); } if (pad_right_size > 0) { uint32_t t[2]; int32_t read_size = (pad_right_size <= 4 ? 4 : 8); rc = SPIRead(pad_right_src, t, read_size); if (rc != SPI_FLASH_RESULT_OK) { goto out; } COUNTER_ADD_BYTES(read, read_size); memcpy(dstc + pad_right_off, t, pad_right_size); } out: spi_flash_guard_end(); COUNTER_STOP(read); return spi_flash_translate_rc(rc); } #define FLASH_PAGE_SIZE 0x10000 esp_err_t IRAM_ATTR spi_flash_read_encrypted(size_t src, void *dstv, size_t size) { if (src + size > g_rom_flashchip.chip_size) { return ESP_ERR_INVALID_SIZE; } if (size == 0) { return ESP_OK; } esp_err_t err; const uint8_t *map; spi_flash_mmap_handle_t map_handle; size_t map_src = src & ~(FLASH_PAGE_SIZE-1); size_t map_size = size + (src - map_src); err = spi_flash_mmap(map_src, map_size, SPI_FLASH_MMAP_DATA, (const void **)&map, &map_handle); if (err != ESP_OK) { return err; } memcpy(dstv, map + (src - map_src), size); spi_flash_munmap(map_handle); return err; } static esp_err_t spi_flash_translate_rc(SpiFlashOpResult rc) { switch (rc) { case SPI_FLASH_RESULT_OK: return ESP_OK; case SPI_FLASH_RESULT_TIMEOUT: return ESP_ERR_FLASH_OP_TIMEOUT; case SPI_FLASH_RESULT_ERR: default: return ESP_ERR_FLASH_OP_FAIL; } } #if CONFIG_SPI_FLASH_ENABLE_COUNTERS static inline void dump_counter(spi_flash_counter_t* counter, const char* name) { ESP_LOGI(TAG, "%s count=%8d time=%8dms bytes=%8d\n", name, counter->count, counter->time, counter->bytes); } const spi_flash_counters_t* spi_flash_get_counters() { return &s_flash_stats; } void spi_flash_reset_counters() { memset(&s_flash_stats, 0, sizeof(s_flash_stats)); } void spi_flash_dump_counters() { dump_counter(&s_flash_stats.read, "read "); dump_counter(&s_flash_stats.write, "write"); dump_counter(&s_flash_stats.erase, "erase"); } #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS