// Copyright 2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // This module implements pthread API on top of FreeRTOS. API is implemented to the level allowing // libstdcxx threading framework to operate correctly. So not all original pthread routines are supported. // #include #include #include #include #include "esp_err.h" #include "esp_attr.h" #include "rom/queue.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "pthread_internal.h" #include "esp_pthread.h" #define LOG_LOCAL_LEVEL CONFIG_LOG_DEFAULT_LEVEL #include "esp_log.h" const static char *TAG = "pthread"; /** task state */ enum esp_pthread_task_state { PTHREAD_TASK_STATE_RUN, PTHREAD_TASK_STATE_EXIT }; /** pthread thread FreeRTOS wrapper */ typedef struct esp_pthread_entry { SLIST_ENTRY(esp_pthread_entry) list_node; ///< Tasks list node struct. TaskHandle_t handle; ///< FreeRTOS task handle TaskHandle_t join_task; ///< Handle of the task waiting to join enum esp_pthread_task_state state; ///< pthread task state bool detached; ///< True if pthread is detached void *retval; ///< Value supplied to calling thread during join void *task_arg; ///< Task arguments } esp_pthread_t; /** pthread wrapper task arg */ typedef struct { void *(*func)(void *); ///< user task entry void *arg; ///< user task argument esp_pthread_cfg_t cfg; ///< pthread configuration } esp_pthread_task_arg_t; /** pthread mutex FreeRTOS wrapper */ typedef struct { SemaphoreHandle_t sem; ///< Handle of the task waiting to join int type; ///< Mutex type. Currently supported PTHREAD_MUTEX_NORMAL and PTHREAD_MUTEX_RECURSIVE } esp_pthread_mutex_t; static SemaphoreHandle_t s_threads_mux = NULL; static portMUX_TYPE s_mutex_init_lock = portMUX_INITIALIZER_UNLOCKED; static SLIST_HEAD(esp_thread_list_head, esp_pthread_entry) s_threads_list = SLIST_HEAD_INITIALIZER(s_threads_list); static pthread_key_t s_pthread_cfg_key; static int IRAM_ATTR pthread_mutex_lock_internal(esp_pthread_mutex_t *mux, TickType_t tmo); static void esp_pthread_cfg_key_destructor(void *value) { free(value); } esp_err_t esp_pthread_init(void) { if (pthread_key_create(&s_pthread_cfg_key, esp_pthread_cfg_key_destructor) != 0) { return ESP_ERR_NO_MEM; } s_threads_mux = xSemaphoreCreateMutex(); if (s_threads_mux == NULL) { pthread_key_delete(s_pthread_cfg_key); return ESP_ERR_NO_MEM; } return ESP_OK; } static void *pthread_list_find_item(void *(*item_check)(esp_pthread_t *, void *arg), void *check_arg) { esp_pthread_t *it; SLIST_FOREACH(it, &s_threads_list, list_node) { void *val = item_check(it, check_arg); if (val) { return val; } } return NULL; } static void *pthread_get_handle_by_desc(esp_pthread_t *item, void *desc) { if (item == desc) { return item->handle; } return NULL; } static void *pthread_get_desc_by_handle(esp_pthread_t *item, void *hnd) { if (hnd == item->handle) { return item; } return NULL; } static inline TaskHandle_t pthread_find_handle(pthread_t thread) { return pthread_list_find_item(pthread_get_handle_by_desc, (void *)thread); } static esp_pthread_t *pthread_find(TaskHandle_t task_handle) { return pthread_list_find_item(pthread_get_desc_by_handle, task_handle); } static void pthread_delete(esp_pthread_t *pthread) { SLIST_REMOVE(&s_threads_list, pthread, esp_pthread_entry, list_node); free(pthread); } /* Call this function to configure pthread stacks in Pthreads */ esp_err_t esp_pthread_set_cfg(const esp_pthread_cfg_t *cfg) { if (cfg->stack_size < PTHREAD_STACK_MIN) { return ESP_ERR_INVALID_ARG; } /* If a value is already set, update that value */ esp_pthread_cfg_t *p = pthread_getspecific(s_pthread_cfg_key); if (!p) { p = malloc(sizeof(esp_pthread_cfg_t)); if (!p) { return ESP_ERR_NO_MEM; } } *p = *cfg; pthread_setspecific(s_pthread_cfg_key, p); return 0; } esp_err_t esp_pthread_get_cfg(esp_pthread_cfg_t *p) { esp_pthread_cfg_t *cfg = pthread_getspecific(s_pthread_cfg_key); if (cfg) { *p = *cfg; return ESP_OK; } memset(p, 0, sizeof(*p)); return ESP_ERR_NOT_FOUND; } static void pthread_task_func(void *arg) { void *rval = NULL; esp_pthread_task_arg_t *task_arg = (esp_pthread_task_arg_t *)arg; ESP_LOGV(TAG, "%s ENTER %p", __FUNCTION__, task_arg->func); // wait for start xTaskNotifyWait(0, 0, NULL, portMAX_DELAY); if (task_arg->cfg.inherit_cfg) { /* If inherit option is set, then do a set_cfg() ourselves for future forks */ esp_pthread_set_cfg(&task_arg->cfg); } ESP_LOGV(TAG, "%s START %p", __FUNCTION__, task_arg->func); rval = task_arg->func(task_arg->arg); ESP_LOGV(TAG, "%s END %p", __FUNCTION__, task_arg->func); pthread_exit(rval); ESP_LOGV(TAG, "%s EXIT", __FUNCTION__); } int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg) { TaskHandle_t xHandle = NULL; ESP_LOGV(TAG, "%s", __FUNCTION__); esp_pthread_task_arg_t *task_arg = calloc(1, sizeof(esp_pthread_task_arg_t)); if (task_arg == NULL) { ESP_LOGE(TAG, "Failed to allocate task args!"); return ENOMEM; } esp_pthread_t *pthread = calloc(1, sizeof(esp_pthread_t)); if (pthread == NULL) { ESP_LOGE(TAG, "Failed to allocate pthread data!"); free(task_arg); return ENOMEM; } uint32_t stack_size = CONFIG_ESP32_PTHREAD_TASK_STACK_SIZE_DEFAULT; BaseType_t prio = CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT; esp_pthread_cfg_t *pthread_cfg = pthread_getspecific(s_pthread_cfg_key); if (pthread_cfg) { if (pthread_cfg->stack_size) { stack_size = pthread_cfg->stack_size; } if (pthread_cfg->prio && pthread_cfg->prio < configMAX_PRIORITIES) { prio = pthread_cfg->prio; } task_arg->cfg = *pthread_cfg; } if (attr) { /* Overwrite attributes */ stack_size = attr->stacksize; switch (attr->detachstate) { case PTHREAD_CREATE_DETACHED: pthread->detached = true; break; case PTHREAD_CREATE_JOINABLE: default: pthread->detached = false; } } task_arg->func = start_routine; task_arg->arg = arg; pthread->task_arg = task_arg; BaseType_t res = xTaskCreate(&pthread_task_func, "pthread", stack_size, task_arg, prio, &xHandle); if(res != pdPASS) { ESP_LOGE(TAG, "Failed to create task!"); free(pthread); free(task_arg); if (res == errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY) { return ENOMEM; } else { return EAGAIN; } } pthread->handle = xHandle; if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) { assert(false && "Failed to lock threads list!"); } SLIST_INSERT_HEAD(&s_threads_list, pthread, list_node); xSemaphoreGive(s_threads_mux); // start task xTaskNotify(xHandle, 0, eNoAction); *thread = (pthread_t)pthread; // pointer value fit into pthread_t (uint32_t) ESP_LOGV(TAG, "Created task %x", (uint32_t)xHandle); return 0; } int pthread_join(pthread_t thread, void **retval) { esp_pthread_t *pthread = (esp_pthread_t *)thread; int ret = 0; bool wait = false; void *child_task_retval = 0; ESP_LOGV(TAG, "%s %p", __FUNCTION__, pthread); // find task if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) { assert(false && "Failed to lock threads list!"); } TaskHandle_t handle = pthread_find_handle(thread); if (!handle) { // not found ret = ESRCH; } else if (pthread->detached) { // Thread is detached ret = EDEADLK; } else if (pthread->join_task) { // already have waiting task to join ret = EINVAL; } else if (handle == xTaskGetCurrentTaskHandle()) { // join to self not allowed ret = EDEADLK; } else { esp_pthread_t *cur_pthread = pthread_find(xTaskGetCurrentTaskHandle()); if (cur_pthread && cur_pthread->join_task == handle) { // join to each other not allowed ret = EDEADLK; } else { if (pthread->state == PTHREAD_TASK_STATE_RUN) { pthread->join_task = xTaskGetCurrentTaskHandle(); wait = true; } else { child_task_retval = pthread->retval; pthread_delete(pthread); } } } xSemaphoreGive(s_threads_mux); if (ret == 0) { if (wait) { xTaskNotifyWait(0, 0, NULL, portMAX_DELAY); if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) { assert(false && "Failed to lock threads list!"); } child_task_retval = pthread->retval; pthread_delete(pthread); xSemaphoreGive(s_threads_mux); } vTaskDelete(handle); } if (retval) { *retval = child_task_retval; } ESP_LOGV(TAG, "%s %p EXIT %d", __FUNCTION__, pthread, ret); return ret; } int pthread_detach(pthread_t thread) { esp_pthread_t *pthread = (esp_pthread_t *)thread; int ret = 0; if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) { assert(false && "Failed to lock threads list!"); } TaskHandle_t handle = pthread_find_handle(thread); if (!handle) { ret = ESRCH; } else { pthread->detached = true; } xSemaphoreGive(s_threads_mux); ESP_LOGV(TAG, "%s %p EXIT %d", __FUNCTION__, pthread, ret); return ret; } void pthread_exit(void *value_ptr) { bool detached = false; /* preemptively clean up thread local storage, rather than waiting for the idle task to clean up the thread */ pthread_internal_local_storage_destructor_callback(); if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) { assert(false && "Failed to lock threads list!"); } esp_pthread_t *pthread = pthread_find(xTaskGetCurrentTaskHandle()); if (!pthread) { assert(false && "Failed to find pthread for current task!"); } if (pthread->task_arg) { free(pthread->task_arg); } if (pthread->detached) { // auto-free for detached threads pthread_delete(pthread); detached = true; } else { // Set return value pthread->retval = value_ptr; // Remove from list, it indicates that task has exited if (pthread->join_task) { // notify join xTaskNotify(pthread->join_task, 0, eNoAction); } else { pthread->state = PTHREAD_TASK_STATE_EXIT; } } xSemaphoreGive(s_threads_mux); ESP_LOGD(TAG, "Task stk_wm = %d", uxTaskGetStackHighWaterMark(NULL)); if (detached) { vTaskDelete(NULL); } else { vTaskSuspend(NULL); } ESP_LOGV(TAG, "%s EXIT", __FUNCTION__); } int pthread_cancel(pthread_t thread) { ESP_LOGE(TAG, "%s: not supported!", __FUNCTION__); return ENOSYS; } int sched_yield( void ) { vTaskDelay(0); return 0; } pthread_t pthread_self(void) { if (xSemaphoreTake(s_threads_mux, portMAX_DELAY) != pdTRUE) { assert(false && "Failed to lock threads list!"); } esp_pthread_t *pthread = pthread_find(xTaskGetCurrentTaskHandle()); if (!pthread) { assert(false && "Failed to find current thread ID!"); } xSemaphoreGive(s_threads_mux); return (pthread_t)pthread; } int pthread_equal(pthread_t t1, pthread_t t2) { return t1 == t2 ? 1 : 0; } /***************** ONCE ******************/ int pthread_once(pthread_once_t *once_control, void (*init_routine)(void)) { if (once_control == NULL || init_routine == NULL || !once_control->is_initialized) { ESP_LOGE(TAG, "%s: Invalid args!", __FUNCTION__); return EINVAL; } uint32_t res = 1; #if defined(CONFIG_SPIRAM_SUPPORT) if (esp_ptr_external_ram(once_control)) { uxPortCompareSetExtram((uint32_t *) &once_control->init_executed, 0, &res); } else { #endif uxPortCompareSet((uint32_t *) &once_control->init_executed, 0, &res); #if defined(CONFIG_SPIRAM_SUPPORT) } #endif // Check if compare and set was successful if (res == 0) { ESP_LOGV(TAG, "%s: call init_routine %p", __FUNCTION__, once_control); init_routine(); } return 0; } /***************** MUTEX ******************/ static int mutexattr_check(const pthread_mutexattr_t *attr) { if (attr->type != PTHREAD_MUTEX_NORMAL && attr->type != PTHREAD_MUTEX_RECURSIVE && attr->type != PTHREAD_MUTEX_ERRORCHECK) { return EINVAL; } return 0; } int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr) { int type = PTHREAD_MUTEX_NORMAL; if (!mutex) { return EINVAL; } if (attr) { if (!attr->is_initialized) { return EINVAL; } int res = mutexattr_check(attr); if (res) { return res; } type = attr->type; } esp_pthread_mutex_t *mux = (esp_pthread_mutex_t *)malloc(sizeof(esp_pthread_mutex_t)); if (!mux) { return ENOMEM; } mux->type = type; if (mux->type == PTHREAD_MUTEX_RECURSIVE) { mux->sem = xSemaphoreCreateRecursiveMutex(); } else { mux->sem = xSemaphoreCreateMutex(); } if (!mux->sem) { free(mux); return EAGAIN; } *mutex = (pthread_mutex_t)mux; // pointer value fit into pthread_mutex_t (uint32_t) return 0; } int pthread_mutex_destroy(pthread_mutex_t *mutex) { esp_pthread_mutex_t *mux; ESP_LOGV(TAG, "%s %p", __FUNCTION__, mutex); if (!mutex) { return EINVAL; } mux = (esp_pthread_mutex_t *)*mutex; if (!mux) { return EINVAL; } // check if mux is busy int res = pthread_mutex_lock_internal(mux, 0); if (res == EBUSY) { return EBUSY; } vSemaphoreDelete(mux->sem); free(mux); return 0; } static int IRAM_ATTR pthread_mutex_lock_internal(esp_pthread_mutex_t *mux, TickType_t tmo) { if (!mux) { return EINVAL; } if ((mux->type == PTHREAD_MUTEX_ERRORCHECK) && (xSemaphoreGetMutexHolder(mux->sem) == xTaskGetCurrentTaskHandle())) { return EDEADLK; } if (mux->type == PTHREAD_MUTEX_RECURSIVE) { if (xSemaphoreTakeRecursive(mux->sem, tmo) != pdTRUE) { return EBUSY; } } else { if (xSemaphoreTake(mux->sem, tmo) != pdTRUE) { return EBUSY; } } return 0; } static int pthread_mutex_init_if_static(pthread_mutex_t *mutex) { int res = 0; if ((intptr_t) *mutex == PTHREAD_MUTEX_INITIALIZER) { portENTER_CRITICAL(&s_mutex_init_lock); if ((intptr_t) *mutex == PTHREAD_MUTEX_INITIALIZER) { res = pthread_mutex_init(mutex, NULL); } portEXIT_CRITICAL(&s_mutex_init_lock); } return res; } int IRAM_ATTR pthread_mutex_lock(pthread_mutex_t *mutex) { if (!mutex) { return EINVAL; } int res = pthread_mutex_init_if_static(mutex); if (res != 0) { return res; } return pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, portMAX_DELAY); } int IRAM_ATTR pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *timeout) { if (!mutex) { return EINVAL; } int res = pthread_mutex_init_if_static(mutex); if (res != 0) { return res; } struct timespec currtime; clock_gettime(CLOCK_REALTIME, &currtime); TickType_t tmo = ((timeout->tv_sec - currtime.tv_sec)*1000 + (timeout->tv_nsec - currtime.tv_nsec)/1000000)/portTICK_PERIOD_MS; res = pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, tmo); if (res == EBUSY) { return ETIMEDOUT; } return res; } int IRAM_ATTR pthread_mutex_trylock(pthread_mutex_t *mutex) { if (!mutex) { return EINVAL; } int res = pthread_mutex_init_if_static(mutex); if (res != 0) { return res; } return pthread_mutex_lock_internal((esp_pthread_mutex_t *)*mutex, 0); } int IRAM_ATTR pthread_mutex_unlock(pthread_mutex_t *mutex) { esp_pthread_mutex_t *mux; if (!mutex) { return EINVAL; } mux = (esp_pthread_mutex_t *)*mutex; if (!mux) { return EINVAL; } if (((mux->type == PTHREAD_MUTEX_RECURSIVE) || (mux->type == PTHREAD_MUTEX_ERRORCHECK)) && (xSemaphoreGetMutexHolder(mux->sem) != xTaskGetCurrentTaskHandle())) { return EPERM; } int ret; if (mux->type == PTHREAD_MUTEX_RECURSIVE) { ret = xSemaphoreGiveRecursive(mux->sem); } else { ret = xSemaphoreGive(mux->sem); } if (ret != pdTRUE) { assert(false && "Failed to unlock mutex!"); } return 0; } int pthread_mutexattr_init(pthread_mutexattr_t *attr) { if (!attr) { return EINVAL; } attr->type = PTHREAD_MUTEX_NORMAL; attr->is_initialized = 1; return 0; } int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) { if (!attr) { return EINVAL; } attr->is_initialized = 0; return 0; } int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type) { if (!attr) { return EINVAL; } *type = attr->type; return 0; } int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) { if (!attr) { return EINVAL; } pthread_mutexattr_t tmp_attr = {.type = type}; int res = mutexattr_check(&tmp_attr); if (!res) { attr->type = type; } return res; } /***************** ATTRIBUTES ******************/ int pthread_attr_init(pthread_attr_t *attr) { if (attr) { /* Nothing to allocate. Set everything to default */ attr->stacksize = CONFIG_ESP32_PTHREAD_TASK_STACK_SIZE_DEFAULT; attr->detachstate = PTHREAD_CREATE_JOINABLE; return 0; } return EINVAL; } int pthread_attr_destroy(pthread_attr_t *attr) { if (attr) { /* Nothing to deallocate. Reset everything to default */ attr->stacksize = CONFIG_ESP32_PTHREAD_TASK_STACK_SIZE_DEFAULT; attr->detachstate = PTHREAD_CREATE_JOINABLE; return 0; } return EINVAL; } int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize) { if (attr) { *stacksize = attr->stacksize; return 0; } return EINVAL; } int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize) { if (attr && !(stacksize < PTHREAD_STACK_MIN)) { attr->stacksize = stacksize; return 0; } return EINVAL; } int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate) { if (attr) { *detachstate = attr->detachstate; return 0; } return EINVAL; } int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate) { if (attr) { switch (detachstate) { case PTHREAD_CREATE_DETACHED: attr->detachstate = PTHREAD_CREATE_DETACHED; break; case PTHREAD_CREATE_JOINABLE: attr->detachstate = PTHREAD_CREATE_JOINABLE; break; default: return EINVAL; } return 0; } return EINVAL; }