/* Tests for the spi_master device driver */ #include #include #include #include #include #include "rom/ets_sys.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "freertos/queue.h" #include "freertos/xtensa_api.h" #include "unity.h" #include "driver/spi_master.h" #include "driver/spi_slave.h" #include "soc/dport_reg.h" #include "esp_heap_caps.h" #include "esp_log.h" #include "soc/spi_periph.h" #include "freertos/ringbuf.h" #include "soc/gpio_periph.h" #include "sdkconfig.h" #include "unity_config.h" const static char TAG[] = "test_spi"; #define SPI_BUS_TEST_DEFAULT_CONFIG() {\ .miso_io_num=PIN_NUM_MISO, \ .mosi_io_num=PIN_NUM_MOSI,\ .sclk_io_num=PIN_NUM_CLK,\ .quadwp_io_num=-1,\ .quadhd_io_num=-1\ } #define SPI_DEVICE_TEST_DEFAULT_CONFIG() {\ .clock_speed_hz=10*1000*1000,\ .mode=0,\ .spics_io_num=PIN_NUM_CS,\ .queue_size=16,\ .pre_cb=NULL, \ .cs_ena_pretrans = 0,\ .cs_ena_posttrans = 0,\ .input_delay_ns = 62.5,\ } #define FUNC_SPI 1 #define FUNC_GPIO 2 void gpio_output_sel(uint32_t gpio_num, int func, uint32_t signal_idx) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], func); GPIO.func_out_sel_cfg[gpio_num].func_sel=signal_idx; } static void check_spi_pre_n_for(int clk, int pre, int n) { esp_err_t ret; spi_device_handle_t handle; spi_device_interface_config_t devcfg={ .command_bits=0, .address_bits=0, .dummy_bits=0, .clock_speed_hz=clk, .duty_cycle_pos=128, .mode=0, .spics_io_num=21, .queue_size=3 }; char sendbuf[16]=""; spi_transaction_t t; memset(&t, 0, sizeof(t)); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle); TEST_ASSERT(ret==ESP_OK); t.length=16*8; t.tx_buffer=sendbuf; ret=spi_device_transmit(handle, &t); printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, SPI2.clock.clkdiv_pre+1, SPI2.clock.clkcnt_n+1); TEST_ASSERT(SPI2.clock.clkcnt_n+1==n); TEST_ASSERT(SPI2.clock.clkdiv_pre+1==pre); ret=spi_bus_remove_device(handle); TEST_ASSERT(ret==ESP_OK); } TEST_CASE("SPI Master clockdiv calculation routines", "[spi]") { spi_bus_config_t buscfg={ .mosi_io_num=4, .miso_io_num=26, .sclk_io_num=25, .quadwp_io_num=-1, .quadhd_io_num=-1 }; esp_err_t ret; ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1); TEST_ASSERT(ret==ESP_OK); check_spi_pre_n_for(26000000, 1, 3); check_spi_pre_n_for(20000000, 1, 4); check_spi_pre_n_for(8000000, 1, 10); check_spi_pre_n_for(800000, 2, 50); check_spi_pre_n_for(100000, 16, 50); check_spi_pre_n_for(333333, 4, 60); check_spi_pre_n_for(900000, 2, 44); check_spi_pre_n_for(1, 8192, 64); //Actually should generate the minimum clock speed, 152Hz check_spi_pre_n_for(26000000, 1, 3); ret=spi_bus_free(HSPI_HOST); TEST_ASSERT(ret==ESP_OK); } static spi_device_handle_t setup_spi_bus(int clkspeed, bool dma) { spi_bus_config_t buscfg={ .mosi_io_num=26, .miso_io_num=26, .sclk_io_num=25, .quadwp_io_num=-1, .quadhd_io_num=-1, .max_transfer_sz=4096*3 }; spi_device_interface_config_t devcfg={ .command_bits=0, .address_bits=0, .dummy_bits=0, .clock_speed_hz=clkspeed, .duty_cycle_pos=128, .mode=0, .spics_io_num=21, .queue_size=3, }; esp_err_t ret; spi_device_handle_t handle; ret=spi_bus_initialize(HSPI_HOST, &buscfg, dma?1:0); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle); TEST_ASSERT(ret==ESP_OK); //connect MOSI to two devices breaks the output, fix it. gpio_output_sel(26, FUNC_GPIO, HSPID_OUT_IDX); printf("Bus/dev inited.\n"); return handle; } static int spi_test(spi_device_handle_t handle, int num_bytes) { esp_err_t ret; int x; bool success = true; srand(num_bytes); char *sendbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA); char *recvbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA); for (x=0; xmosi_io_num, GPIO_PULLUP_ENABLE); gpio_set_pull_mode(cfg->sclk_io_num, GPIO_PULLUP_ENABLE); gpio_set_pull_mode(spics_io_num, GPIO_PULLUP_ENABLE); } typedef struct { uint32_t len; uint8_t *start; } slave_txdata_t; typedef struct { uint32_t len; uint8_t* tx_start; uint8_t data[1]; } slave_rxdata_t; typedef struct { spi_host_device_t spi; RingbufHandle_t data_received; QueueHandle_t data_to_send; } spi_slave_task_context_t; esp_err_t init_slave_context(spi_slave_task_context_t *context) { context->data_to_send = xQueueCreate( 16, sizeof( slave_txdata_t )); if ( context->data_to_send == NULL ) { return ESP_ERR_NO_MEM; } context->data_received = xRingbufferCreate( 1024, RINGBUF_TYPE_NOSPLIT ); if ( context->data_received == NULL ) { return ESP_ERR_NO_MEM; } context->spi=VSPI_HOST; return ESP_OK; } void deinit_slave_context(spi_slave_task_context_t *context) { TEST_ASSERT( context->data_to_send != NULL ); vQueueDelete( context->data_to_send ); context->data_to_send = NULL; TEST_ASSERT( context->data_received != NULL ); vRingbufferDelete( context->data_received ); context->data_received = NULL; } /* The task requires a queue and a ringbuf, which should be initialized before task starts. Send ``slave_txdata_t`` to the queue to make the task send data; the task returns data got to the ringbuf, which should have sufficient size. */ static void task_slave(void* arg) { spi_slave_task_context_t* context = (spi_slave_task_context_t*) arg; QueueHandle_t queue = context->data_to_send; RingbufHandle_t ringbuf = context->data_received; uint8_t recvbuf[320+8]; slave_txdata_t txdata; ESP_LOGI( SLAVE_TAG, "slave up" ); //never quit, but blocked by the queue, waiting to be killed, when no more send from main task. while( 1 ) { xQueueReceive( queue, &txdata, portMAX_DELAY ); ESP_LOGI( "test", "to send: %p", txdata.start ); spi_slave_transaction_t t = {}; t.length = txdata.len; t.tx_buffer = txdata.start; t.rx_buffer = recvbuf+8; //loop until trans_len != 0 to skip glitches memset(recvbuf, 0x66, sizeof(recvbuf)); do { TEST_ESP_OK( spi_slave_transmit( context->spi, &t, portMAX_DELAY ) ); } while ( t.trans_len == 0 ); memcpy(recvbuf, &t.trans_len, sizeof(uint32_t)); *(uint8_t**)(recvbuf+4) = txdata.start; ESP_LOGI( SLAVE_TAG, "received: %d", t.trans_len ); xRingbufferSend( ringbuf, recvbuf, 8+(t.trans_len+7)/8, portMAX_DELAY ); } } #define TEST_SPI_HOST HSPI_HOST #define TEST_SLAVE_HOST VSPI_HOST static esp_err_t test_master_pins(int mosi, int miso, int sclk, int cs) { esp_err_t ret; spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG(); cfg.mosi_io_num = mosi; cfg.miso_io_num = miso; cfg.sclk_io_num = sclk; spi_device_interface_config_t master_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG(); master_cfg.spics_io_num = cs; ret = spi_bus_initialize(TEST_SPI_HOST, &cfg, 1); if (ret != ESP_OK) return ret; spi_device_handle_t spi; ret = spi_bus_add_device(TEST_SPI_HOST, &master_cfg, &spi); if (ret != ESP_OK) { spi_bus_free(TEST_SPI_HOST); return ret; } spi_bus_remove_device(spi); spi_bus_free(TEST_SPI_HOST); return ESP_OK; } static esp_err_t test_slave_pins(int mosi, int miso, int sclk, int cs) { esp_err_t ret; spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG(); cfg.mosi_io_num = mosi; cfg.miso_io_num = miso; cfg.sclk_io_num = sclk; spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG(); slave_cfg.spics_io_num = cs; ret = spi_slave_initialize(TEST_SLAVE_HOST, &cfg, &slave_cfg, 1); if (ret != ESP_OK) return ret; spi_slave_free(TEST_SLAVE_HOST); return ESP_OK; } TEST_CASE("spi placed on input-only pins", "[spi]") { TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS)); TEST_ASSERT(test_master_pins(34, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS)!=ESP_OK); TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, 34, PIN_NUM_CLK, PIN_NUM_CS)); TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, 34, PIN_NUM_CS)!=ESP_OK); TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, 34)!=ESP_OK); TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS)); TEST_ESP_OK(test_slave_pins(34, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS)); TEST_ASSERT(test_slave_pins(PIN_NUM_MOSI, 34, PIN_NUM_CLK, PIN_NUM_CS)!=ESP_OK); TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, 34, PIN_NUM_CS)); TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, 34)); } static uint8_t bitswap(uint8_t in) { uint8_t out = 0; for (int i = 0; i < 8; i++) { out = out >> 1; if (in&0x80) out |= 0x80; in = in << 1; } return out; } void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first) { spi_device_handle_t spi; ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first?"LSB":"MSB"); //initial master, mode 0, 1MHz spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG(); TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1)); spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG(); devcfg.clock_speed_hz = 1*1000*1000; if (lsb_first) devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST; TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi)); //connecting pins to two peripherals breaks the output, fix it. gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out); gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out); gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]); gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out); for (int i= 0; i < 8; i++) { //prepare slave tx data slave_txdata_t slave_txdata = (slave_txdata_t) { .start = slave_send, .len = 256, }; xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY); vTaskDelay(50); //prepare master tx data int cmd_bits = (i+1)*2; int addr_bits = 56-8*i; int round_up = (cmd_bits+addr_bits+7)/8*8; addr_bits = round_up - cmd_bits; spi_transaction_ext_t trans = (spi_transaction_ext_t) { .base = { .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR, .addr = 0x456789abcdef0123, .cmd = 0xcdef, }, .command_bits = cmd_bits, .address_bits = addr_bits, }; ESP_LOGI( MASTER_TAG, "===== test%d =====", i ); ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits); TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&trans)); //wait for both master and slave end size_t rcv_len; slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY); rcv_len-=8; uint8_t *buffer = rcv_data->data; ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len); TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len+7)/8); TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits+addr_bits); ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len); uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1); uint64_t addr_expected = trans.base.addr & ((1ULL<> (16-cmd_bits); int remain_bits = cmd_bits % 8; uint64_t addr_got = *(uint64_t*)data_ptr; data_ptr += 8; addr_got = __builtin_bswap64(addr_got); addr_got = (addr_got << remain_bits); addr_got |= (*data_ptr >> (8-remain_bits)); addr_got = addr_got >> (64-addr_bits); if (lsb_first) { cmd_got = __builtin_bswap16(cmd_got); addr_got = __builtin_bswap64(addr_got); uint8_t *swap_ptr = (uint8_t*)&cmd_got; swap_ptr[0] = bitswap(swap_ptr[0]); swap_ptr[1] = bitswap(swap_ptr[1]); cmd_got = cmd_got >> (16-cmd_bits); swap_ptr = (uint8_t*)&addr_got; for (int j = 0; j < 8; j++) swap_ptr[j] = bitswap(swap_ptr[j]); addr_got = addr_got >> (64-addr_bits); } ESP_LOGI(SLAVE_TAG, "cmd_got: %04X, addr_got: %08X%08X", cmd_got, (uint32_t)(addr_got>>32), (uint32_t)addr_got); TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got); if (addr_bits > 0) { TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got); TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8); } //clean vRingbufferReturnItem(slave_context->data_received, buffer); } TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK); } TEST_CASE("SPI master variable cmd & addr test","[spi]") { spi_slave_task_context_t slave_context = {}; esp_err_t err = init_slave_context( &slave_context ); TEST_ASSERT( err == ESP_OK ); TaskHandle_t handle_slave; xTaskCreate( task_slave, "spi_slave", 4096, &slave_context, 0, &handle_slave); //initial slave, mode 0, no dma int dma_chan = 0; int slave_mode = 0; spi_bus_config_t slv_buscfg=SPI_BUS_TEST_DEFAULT_CONFIG(); spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG(); slvcfg.mode = slave_mode; //Initialize SPI slave interface TEST_ESP_OK( spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan) ); test_cmd_addr(&slave_context, false); test_cmd_addr(&slave_context, true); vTaskDelete( handle_slave ); handle_slave = 0; deinit_slave_context(&slave_context); TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK); ESP_LOGI(MASTER_TAG, "test passed."); } /******************************************************************************** * Test Timing By Internal Connections ********************************************************************************/ typedef enum { FULL_DUPLEX = 0, HALF_DUPLEX_MISO = 1, HALF_DUPLEX_MOSI = 2, } spi_dup_t; static int timing_speed_array[]={/**/ SPI_MASTER_FREQ_8M , SPI_MASTER_FREQ_9M , SPI_MASTER_FREQ_10M, SPI_MASTER_FREQ_11M, SPI_MASTER_FREQ_13M, SPI_MASTER_FREQ_16M, SPI_MASTER_FREQ_20M, SPI_MASTER_FREQ_26M, SPI_MASTER_FREQ_40M, SPI_MASTER_FREQ_80M, }; typedef struct { uint8_t master_rxbuf[320]; spi_transaction_t master_trans[16]; TaskHandle_t handle_slave; spi_slave_task_context_t slave_context; slave_txdata_t slave_trans[16]; } timing_context_t; void master_print_data(spi_transaction_t *t, spi_dup_t dup) { if (t->tx_buffer) { ESP_LOG_BUFFER_HEX( "master tx", t->tx_buffer, t->length/8 ); } else { ESP_LOGI( "master tx", "no data" ); } int rxlength; if (dup!=HALF_DUPLEX_MISO) { rxlength = t->length/8; } else { rxlength = t->rxlength/8; } if (t->rx_buffer) { ESP_LOG_BUFFER_HEX( "master rx", t->rx_buffer, rxlength ); } else { ESP_LOGI( "master rx", "no data" ); } } void slave_print_data(slave_rxdata_t *t) { int rcv_len = (t->len+7)/8; ESP_LOGI(SLAVE_TAG, "trans_len: %d", t->len); ESP_LOG_BUFFER_HEX( "slave tx", t->tx_start, rcv_len); ESP_LOG_BUFFER_HEX( "slave rx", t->data, rcv_len); } esp_err_t check_data(spi_transaction_t *t, spi_dup_t dup, slave_rxdata_t *slave_t) { int length; if (dup!=HALF_DUPLEX_MISO) { length = t->length; } else { length = t->rxlength; } TEST_ASSERT(length!=0); //currently the rcv_len can be in range of [t->length-1, t->length+3] uint32_t rcv_len = slave_t->len; TEST_ASSERT(rcv_len >= length-1 && rcv_len <= length+3); //the timing speed is temporarily only for master if (dup!=HALF_DUPLEX_MISO) { // TEST_ASSERT_EQUAL_HEX8_ARRAY(t->tx_buffer, slave_t->data, (t->length+7)/8); } if (dup!=HALF_DUPLEX_MOSI) { TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_t->tx_start, t->rx_buffer, (length+7)/8); } return ESP_OK; } int test_len[] = {1, 3, 5, 7, 9, 11, 33, 64}; static void timing_init_transactions(spi_dup_t dup, timing_context_t* context) { spi_transaction_t* trans = context->master_trans; uint8_t *rx_buf_ptr = context->master_rxbuf; if (dup==HALF_DUPLEX_MISO) { for (int i = 0; i < 8; i++ ) { trans[i] = (spi_transaction_t) { .flags = 0, .rxlength = 8*test_len[i], .rx_buffer = rx_buf_ptr, }; rx_buf_ptr += ((context->master_trans[i].rxlength + 31)/8)&(~3); } } else if (dup==HALF_DUPLEX_MOSI) { for (int i = 0; i < 8; i++ ) { trans[i] = (spi_transaction_t) { .flags = 0, .length = 8*test_len[i], .tx_buffer = master_send+i, }; } } else { for (int i = 0; i < 8; i++ ) { trans[i] = (spi_transaction_t) { .flags = 0, .length = 8*test_len[i], .tx_buffer = master_send+i, .rx_buffer = rx_buf_ptr, }; rx_buf_ptr += ((context->master_trans[i].length + 31)/8)&(~3); } } //prepare slave tx data for (int i = 0; i < 8; i ++) { context->slave_trans[i] = (slave_txdata_t) { .start = slave_send + 4*(i%3), .len = 512, }; } } typedef struct { const char cfg_name[30]; /*The test work till the frequency below, *set the frequency to higher and remove checks in the driver to know how fast the system can run. */ int freq_limit; spi_dup_t dup; bool master_iomux; bool slave_iomux; int slave_tv_ns; } test_timing_config_t; #define ESP_SPI_SLAVE_TV (12.5*3) #define GPIO_DELAY (12.5*2) #define SAMPLE_DELAY 12.5 #define TV_INT_CONNECT_GPIO (ESP_SPI_SLAVE_TV+GPIO_DELAY) #define TV_INT_CONNECT (ESP_SPI_SLAVE_TV) #define TV_WITH_ESP_SLAVE_GPIO (ESP_SPI_SLAVE_TV+SAMPLE_DELAY+GPIO_DELAY) #define TV_WITH_ESP_SLAVE (ESP_SPI_SLAVE_TV+SAMPLE_DELAY) //currently ESP32 slave only supports up to 20MHz, but 40MHz on the same board #define ESP_SPI_SLAVE_MAX_FREQ SPI_MASTER_FREQ_20M #define ESP_SPI_SLAVE_MAX_FREQ_SYNC SPI_MASTER_FREQ_40M static test_timing_config_t timing_master_conf_t[] = { { .cfg_name = "FULL_DUP, MASTER IOMUX", .freq_limit = SPI_MASTER_FREQ_13M, .dup = FULL_DUPLEX, .master_iomux = true, .slave_iomux = false, .slave_tv_ns = TV_INT_CONNECT_GPIO, }, { .cfg_name = "FULL_DUP, SLAVE IOMUX", .freq_limit = SPI_MASTER_FREQ_13M, .dup = FULL_DUPLEX, .master_iomux = false, .slave_iomux = true, .slave_tv_ns = TV_INT_CONNECT, }, { .cfg_name = "FULL_DUP, BOTH GPIO", .freq_limit = SPI_MASTER_FREQ_10M, .dup = FULL_DUPLEX, .master_iomux = false, .slave_iomux = false, .slave_tv_ns = TV_INT_CONNECT_GPIO, }, { .cfg_name = "HALF_DUP, MASTER IOMUX", .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC, .dup = HALF_DUPLEX_MISO, .master_iomux = true, .slave_iomux = false, .slave_tv_ns = TV_INT_CONNECT_GPIO, }, { .cfg_name = "HALF_DUP, SLAVE IOMUX", .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC, .dup = HALF_DUPLEX_MISO, .master_iomux = false, .slave_iomux = true, .slave_tv_ns = TV_INT_CONNECT, }, { .cfg_name = "HALF_DUP, BOTH GPIO", .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC, .dup = HALF_DUPLEX_MISO, .master_iomux = false, .slave_iomux = false, .slave_tv_ns = TV_INT_CONNECT_GPIO, }, { .cfg_name = "MOSI_DUP, MASTER IOMUX", .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC, .dup = HALF_DUPLEX_MOSI, .master_iomux = true, .slave_iomux = false, .slave_tv_ns = TV_INT_CONNECT_GPIO, }, { .cfg_name = "MOSI_DUP, SLAVE IOMUX", .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC, .dup = HALF_DUPLEX_MOSI, .master_iomux = false, .slave_iomux = true, .slave_tv_ns = TV_INT_CONNECT, }, { .cfg_name = "MOSI_DUP, BOTH GPIO", .freq_limit = ESP_SPI_SLAVE_MAX_FREQ_SYNC, .dup = HALF_DUPLEX_MOSI, .master_iomux = false, .slave_iomux = false, .slave_tv_ns = TV_INT_CONNECT_GPIO, }, }; //this case currently only checks master read TEST_CASE("test timing_master","[spi][timeout=120]") { timing_context_t context; //Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected. //slave_pull_up(&slv_buscfg, slvcfg.spics_io_num); context.slave_context = (spi_slave_task_context_t){}; esp_err_t err = init_slave_context( &context.slave_context ); TEST_ASSERT( err == ESP_OK ); xTaskCreate( task_slave, "spi_slave", 4096, &context.slave_context, 0, &context.handle_slave); const int test_size = sizeof(timing_master_conf_t)/sizeof(test_timing_config_t); for (int i = 0; i < test_size; i++) { test_timing_config_t* conf = &timing_master_conf_t[i]; spi_device_handle_t spi; timing_init_transactions(conf->dup, &context); ESP_LOGI(MASTER_TAG, "****************** %s ***************", conf->cfg_name); for (int j=0; j conf->freq_limit) break; ESP_LOGI(MASTER_TAG, "======> %dk", timing_speed_array[j]/1000); //master config const int master_mode = 0; spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG(); spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG(); devcfg.mode = master_mode; if (conf->dup==HALF_DUPLEX_MISO||conf->dup==HALF_DUPLEX_MOSI) { devcfg.cs_ena_pretrans = 20; devcfg.flags |= SPI_DEVICE_HALFDUPLEX; } else { devcfg.cs_ena_pretrans = 1; } devcfg.cs_ena_posttrans = 20; devcfg.input_delay_ns = conf->slave_tv_ns; devcfg.clock_speed_hz = timing_speed_array[j]; //slave config int slave_mode = 0; spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG(); slvcfg.mode = slave_mode; //pin config & initialize //we can't have two sets of iomux pins on the same pins assert(!conf->master_iomux || !conf->slave_iomux); if (conf->slave_iomux) { //only in this case, use VSPI iomux pins buscfg.miso_io_num = VSPI_IOMUX_PIN_NUM_MISO; buscfg.mosi_io_num = VSPI_IOMUX_PIN_NUM_MOSI; buscfg.sclk_io_num = VSPI_IOMUX_PIN_NUM_CLK; devcfg.spics_io_num = VSPI_IOMUX_PIN_NUM_CS; slvcfg.spics_io_num = VSPI_IOMUX_PIN_NUM_CS; } else { buscfg.miso_io_num = HSPI_IOMUX_PIN_NUM_MISO; buscfg.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI; buscfg.sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK; devcfg.spics_io_num = HSPI_IOMUX_PIN_NUM_CS; slvcfg.spics_io_num = HSPI_IOMUX_PIN_NUM_CS; } slave_pull_up(&buscfg, slvcfg.spics_io_num); //this does nothing, but avoid the driver from using iomux pins if required buscfg.quadhd_io_num = (!conf->master_iomux && !conf->slave_iomux? VSPI_IOMUX_PIN_NUM_MISO: -1); TEST_ESP_OK(spi_bus_initialize(HSPI_HOST, &buscfg, 0)); TEST_ESP_OK(spi_bus_add_device(HSPI_HOST, &devcfg, &spi)); //slave automatically use iomux pins if pins are on VSPI_* pins buscfg.quadhd_io_num = -1; TEST_ESP_OK( spi_slave_initialize(VSPI_HOST, &buscfg, &slvcfg, 0) ); //initialize master and slave on the same pins break some of the output configs, fix them if (conf->master_iomux) { gpio_output_sel(buscfg.mosi_io_num, FUNC_SPI, HSPID_OUT_IDX); gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, VSPIQ_OUT_IDX); gpio_output_sel(devcfg.spics_io_num, FUNC_SPI, HSPICS0_OUT_IDX); gpio_output_sel(buscfg.sclk_io_num, FUNC_SPI, HSPICLK_OUT_IDX); } else if (conf->slave_iomux) { gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX); gpio_output_sel(buscfg.miso_io_num, FUNC_SPI, VSPIQ_OUT_IDX); gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, HSPICS0_OUT_IDX); gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, HSPICLK_OUT_IDX); } else { gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX); gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, VSPIQ_OUT_IDX); gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, HSPICS0_OUT_IDX); gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, HSPICLK_OUT_IDX); } //clear master receive buffer memset(context.master_rxbuf, 0x66, sizeof(context.master_rxbuf)); //prepare slave tx data for (int k = 0; k < 8; k ++) xQueueSend( context.slave_context.data_to_send, &context.slave_trans[k], portMAX_DELAY ); for( int k= 0; k < 8; k ++ ) { //wait for both master and slave end ESP_LOGI( MASTER_TAG, "=> test%d", k ); //send master tx data vTaskDelay(9); spi_transaction_t *t = &context.master_trans[k]; TEST_ESP_OK (spi_device_transmit( spi, t) ); master_print_data(t, conf->dup); size_t rcv_len; slave_rxdata_t *rcv_data = xRingbufferReceive( context.slave_context.data_received, &rcv_len, portMAX_DELAY ); slave_print_data(rcv_data); //check result TEST_ESP_OK(check_data(t, conf->dup, rcv_data)); //clean vRingbufferReturnItem(context.slave_context.data_received, rcv_data); } master_deinit(spi); TEST_ASSERT(spi_slave_free(VSPI_HOST) == ESP_OK); } } vTaskDelete( context.handle_slave ); context.handle_slave = 0; deinit_slave_context(&context.slave_context); ESP_LOGI(MASTER_TAG, "test passed."); } /******************************************************************************** * Test SPI transaction interval ********************************************************************************/ #define RECORD_TIME_PREPARE() uint32_t __t1, __t2 #define RECORD_TIME_START() do {__t1 = xthal_get_ccount();}while(0) #define RECORD_TIME_END(p_time) do{__t2 = xthal_get_ccount(); *p_time = (__t2-__t1)/240;}while(0) static void speed_setup(spi_device_handle_t* spi, bool use_dma) { esp_err_t ret; spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG(); spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG(); devcfg.queue_size=8; //We want to be able to queue 7 transactions at a time //Initialize the SPI bus and the device to test ret=spi_bus_initialize(HSPI_HOST, &buscfg, (use_dma?1:0)); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, spi); TEST_ASSERT(ret==ESP_OK); } static void speed_deinit(spi_device_handle_t spi) { TEST_ESP_OK( spi_bus_remove_device(spi) ); TEST_ESP_OK( spi_bus_free(HSPI_HOST) ); } static void sorted_array_insert(uint32_t* array, int* size, uint32_t item) { int pos; for (pos = *size; pos>0; pos--) { if (array[pos-1] < item) break; array[pos] = array[pos-1]; } array[pos]=item; (*size)++; } #define TEST_TIMES 11 static IRAM_ATTR void spi_transmit_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight) { RECORD_TIME_PREPARE(); spi_device_transmit(spi, trans); // prime the flash cache RECORD_TIME_START(); spi_device_transmit(spi, trans); RECORD_TIME_END(t_flight); } static IRAM_ATTR void spi_transmit_polling_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight) { RECORD_TIME_PREPARE(); spi_device_polling_transmit(spi, trans); // prime the flash cache RECORD_TIME_START(); spi_device_polling_transmit(spi, trans); RECORD_TIME_END(t_flight); } TEST_CASE("spi_speed","[spi]") { uint32_t t_flight; //to get rid of the influence of randomly interrupts, we measured the performance by median value uint32_t t_flight_sorted[TEST_TIMES]; esp_err_t ret; int t_flight_num = 0; spi_device_handle_t spi; const bool use_dma = true; WORD_ALIGNED_ATTR spi_transaction_t trans = { .length = 1*8, .flags = SPI_TRANS_USE_TXDATA, }; //first work with DMA speed_setup(&spi, use_dma); //record flight time by isr, with DMA t_flight_num = 0; for (int i = 0; i < TEST_TIMES; i++) { spi_transmit_measure(spi, &trans, &t_flight); sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight); } for (int i = 0; i < TEST_TIMES; i++) { ESP_LOGI(TAG, "%d", t_flight_sorted[i]); } TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]); //acquire the bus to send polling transactions faster ret = spi_device_acquire_bus(spi, portMAX_DELAY); TEST_ESP_OK(ret); //record flight time by polling and with DMA t_flight_num = 0; for (int i = 0; i < TEST_TIMES; i++) { spi_transmit_polling_measure(spi, &trans, &t_flight); sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight); } for (int i = 0; i < TEST_TIMES; i++) { ESP_LOGI(TAG, "%d", t_flight_sorted[i]); } TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]); //release the bus spi_device_release_bus(spi); speed_deinit(spi); speed_setup(&spi, !use_dma); //record flight time by isr, without DMA t_flight_num = 0; for (int i = 0; i < TEST_TIMES; i++) { spi_transmit_measure(spi, &trans, &t_flight); sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight); } for (int i = 0; i < TEST_TIMES; i++) { ESP_LOGI(TAG, "%d", t_flight_sorted[i]); } TEST_PERFORMANCE_LESS_THAN( SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]); //acquire the bus to send polling transactions faster ret = spi_device_acquire_bus(spi, portMAX_DELAY); TEST_ESP_OK(ret); //record flight time by polling, without DMA t_flight_num = 0; for (int i = 0; i < TEST_TIMES; i++) { spi_transmit_polling_measure(spi, &trans, &t_flight); sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight); } for (int i = 0; i < TEST_TIMES; i++) { ESP_LOGI(TAG, "%d", t_flight_sorted[i]); } TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]); //release the bus spi_device_release_bus(spi); speed_deinit(spi); } typedef struct { spi_device_handle_t handle; bool finished; } task_context_t; void spi_task1(void* arg) { //task1 send 50 polling transactions, acquire the bus and send another 50 int count=0; spi_transaction_t t = { .flags = SPI_TRANS_USE_TXDATA, .tx_data = { 0x80, 0x12, 0x34, 0x56 }, .length = 4*8, }; spi_device_handle_t handle = ((task_context_t*)arg)->handle; for( int j = 0; j < 50; j ++ ) { TEST_ESP_OK(spi_device_polling_transmit( handle, &t )); ESP_LOGI( TAG, "task1:%d", count++ ); } TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY )); for( int j = 0; j < 50; j ++ ) { TEST_ESP_OK(spi_device_polling_transmit( handle, &t )); ESP_LOGI( TAG, "task1:%d", count++ ); } spi_device_release_bus(handle); ESP_LOGI(TAG, "task1 terminates"); ((task_context_t*)arg)->finished = true; vTaskDelete(NULL); } void spi_task2(void* arg) { int count=0; //task2 acquire the bus, send 50 polling transactions and then 50 non-polling spi_transaction_t t = { .flags = SPI_TRANS_USE_TXDATA, .tx_data = { 0x80, 0x12, 0x34, 0x56 }, .length = 4*8, }; spi_transaction_t *ret_t; spi_device_handle_t handle = ((task_context_t*)arg)->handle; TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY )); for (int i = 0; i < 50; i ++) { TEST_ESP_OK(spi_device_polling_transmit(handle, &t)); ESP_LOGI( TAG, "task2: %d", count++ ); } for( int j = 0; j < 50; j ++ ) { TEST_ESP_OK(spi_device_queue_trans( handle, &t, portMAX_DELAY )); } for( int j = 0; j < 50; j ++ ) { TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY)); assert(ret_t == &t); ESP_LOGI( TAG, "task2: %d", count++ ); } spi_device_release_bus(handle); vTaskDelay(1); ESP_LOGI(TAG, "task2 terminates"); ((task_context_t*)arg)->finished = true; vTaskDelete(NULL); } void spi_task3(void* arg) { //task3 send 30 polling transactions, acquire the bus, send 20 polling transactions and then 50 non-polling int count=0; spi_transaction_t t = { .flags = SPI_TRANS_USE_TXDATA, .tx_data = { 0x80, 0x12, 0x34, 0x56 }, .length = 4*8, }; spi_transaction_t *ret_t; spi_device_handle_t handle = ((task_context_t*)arg)->handle; for (int i = 0; i < 30; i ++) { TEST_ESP_OK(spi_device_polling_transmit(handle, &t)); ESP_LOGI( TAG, "task3: %d", count++ ); } TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY )); for (int i = 0; i < 20; i ++) { TEST_ESP_OK(spi_device_polling_transmit(handle, &t)); ESP_LOGI( TAG, "task3: %d", count++ ); } for (int j = 0; j < 50; j++) { TEST_ESP_OK(spi_device_queue_trans(handle, &t, portMAX_DELAY)); } for (int j = 0; j < 50; j++) { TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY)); assert(ret_t == &t); ESP_LOGI(TAG, "task3: %d", count++); } spi_device_release_bus(handle); ESP_LOGI(TAG, "task3 terminates"); ((task_context_t*)arg)->finished = true; vTaskDelete(NULL); } TEST_CASE("spi poll tasks","[spi]") { task_context_t context1={}; task_context_t context2={}; task_context_t context3={}; TaskHandle_t task1, task2, task3; esp_err_t ret; spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG(); spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG(); devcfg.queue_size = 100; //Initialize the SPI bus and 3 devices ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context1.handle); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context2.handle); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context3.handle); TEST_ASSERT(ret==ESP_OK); xTaskCreate( spi_task1, "task1", 2048, &context1, 0, &task1 ); xTaskCreate( spi_task2, "task2", 2048, &context2, 0, &task2 ); xTaskCreate( spi_task3, "task3", 2048, &context3, 0, &task3 ); for(;;){ vTaskDelay(10); if (context1.finished && context2.finished && context3.finished) break; } TEST_ESP_OK( spi_bus_remove_device(context1.handle) ); TEST_ESP_OK( spi_bus_remove_device(context2.handle) ); TEST_ESP_OK( spi_bus_remove_device(context3.handle) ); TEST_ESP_OK( spi_bus_free(HSPI_HOST) ); } //TODO: add a case when a non-polling transaction happened in the bus-acquiring time and then release the bus then queue a new trans