// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "esp_err.h" #include "esp_log.h" #include "esp_pm.h" #include "freertos/FreeRTOS.h" #include "freertos/queue.h" #include "freertos/semphr.h" #include "freertos/task.h" #include "soc/sdmmc_periph.h" #include "soc/soc_memory_layout.h" #include "driver/sdmmc_types.h" #include "driver/sdmmc_defs.h" #include "driver/sdmmc_host.h" #include "sdmmc_private.h" /* Number of DMA descriptors used for transfer. * Increasing this value above 4 doesn't improve performance for the usual case * of SD memory cards (most data transfers are multiples of 512 bytes). */ #define SDMMC_DMA_DESC_CNT 4 static const char* TAG = "sdmmc_req"; typedef enum { SDMMC_IDLE, SDMMC_SENDING_CMD, SDMMC_SENDING_DATA, SDMMC_BUSY, } sdmmc_req_state_t; typedef struct { uint8_t* ptr; size_t size_remaining; size_t next_desc; size_t desc_remaining; } sdmmc_transfer_state_t; const uint32_t SDMMC_DATA_ERR_MASK = SDMMC_INTMASK_DTO | SDMMC_INTMASK_DCRC | SDMMC_INTMASK_HTO | SDMMC_INTMASK_SBE | SDMMC_INTMASK_EBE; const uint32_t SDMMC_DMA_DONE_MASK = SDMMC_IDMAC_INTMASK_RI | SDMMC_IDMAC_INTMASK_TI | SDMMC_IDMAC_INTMASK_NI; const uint32_t SDMMC_CMD_ERR_MASK = SDMMC_INTMASK_RTO | SDMMC_INTMASK_RCRC | SDMMC_INTMASK_RESP_ERR; static sdmmc_desc_t s_dma_desc[SDMMC_DMA_DESC_CNT]; static sdmmc_transfer_state_t s_cur_transfer = { 0 }; static QueueHandle_t s_request_mutex; static bool s_is_app_cmd; // This flag is set if the next command is an APP command #ifdef CONFIG_PM_ENABLE static esp_pm_lock_handle_t s_pm_lock; #endif static esp_err_t handle_idle_state_events(); static sdmmc_hw_cmd_t make_hw_cmd(sdmmc_command_t* cmd); static esp_err_t handle_event(sdmmc_command_t* cmd, sdmmc_req_state_t* state, sdmmc_event_t* unhandled_events); static esp_err_t process_events(sdmmc_event_t evt, sdmmc_command_t* cmd, sdmmc_req_state_t* pstate, sdmmc_event_t* unhandled_events); static void process_command_response(uint32_t status, sdmmc_command_t* cmd); static void fill_dma_descriptors(size_t num_desc); static size_t get_free_descriptors_count(); static bool wait_for_busy_cleared(int timeout_ms); esp_err_t sdmmc_host_transaction_handler_init() { assert(s_request_mutex == NULL); s_request_mutex = xSemaphoreCreateMutex(); if (!s_request_mutex) { return ESP_ERR_NO_MEM; } s_is_app_cmd = false; #ifdef CONFIG_PM_ENABLE esp_err_t err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "sdmmc", &s_pm_lock); if (err != ESP_OK) { vSemaphoreDelete(s_request_mutex); s_request_mutex = NULL; return err; } #endif return ESP_OK; } void sdmmc_host_transaction_handler_deinit() { assert(s_request_mutex); #ifdef CONFIG_PM_ENABLE esp_pm_lock_delete(s_pm_lock); s_pm_lock = NULL; #endif vSemaphoreDelete(s_request_mutex); s_request_mutex = NULL; } esp_err_t sdmmc_host_do_transaction(int slot, sdmmc_command_t* cmdinfo) { esp_err_t ret; xSemaphoreTake(s_request_mutex, portMAX_DELAY); #ifdef CONFIG_PM_ENABLE esp_pm_lock_acquire(s_pm_lock); #endif // dispose of any events which happened asynchronously handle_idle_state_events(); // convert cmdinfo to hardware register value sdmmc_hw_cmd_t hw_cmd = make_hw_cmd(cmdinfo); if (cmdinfo->data) { // Length should be either <4 or >=4 and =0 (mod 4). if (cmdinfo->datalen >= 4 && cmdinfo->datalen % 4 != 0) { ESP_LOGD(TAG, "%s: invalid size: total=%d", __func__, cmdinfo->datalen); ret = ESP_ERR_INVALID_SIZE; goto out; } if ((intptr_t) cmdinfo->data % 4 != 0 || !esp_ptr_dma_capable(cmdinfo->data)) { ESP_LOGD(TAG, "%s: buffer %p can not be used for DMA", __func__, cmdinfo->data); ret = ESP_ERR_INVALID_ARG; goto out; } // this clears "owned by IDMAC" bits memset(s_dma_desc, 0, sizeof(s_dma_desc)); // initialize first descriptor s_dma_desc[0].first_descriptor = 1; // save transfer info s_cur_transfer.ptr = (uint8_t*) cmdinfo->data; s_cur_transfer.size_remaining = cmdinfo->datalen; s_cur_transfer.next_desc = 0; s_cur_transfer.desc_remaining = (cmdinfo->datalen + SDMMC_DMA_MAX_BUF_LEN - 1) / SDMMC_DMA_MAX_BUF_LEN; // prepare descriptors fill_dma_descriptors(SDMMC_DMA_DESC_CNT); // write transfer info into hardware sdmmc_host_dma_prepare(&s_dma_desc[0], cmdinfo->blklen, cmdinfo->datalen); } // write command into hardware, this also sends the command to the card ret = sdmmc_host_start_command(slot, hw_cmd, cmdinfo->arg); if (ret != ESP_OK) { goto out; } // process events until transfer is complete cmdinfo->error = ESP_OK; sdmmc_req_state_t state = SDMMC_SENDING_CMD; sdmmc_event_t unhandled_events = { 0 }; while (state != SDMMC_IDLE) { ret = handle_event(cmdinfo, &state, &unhandled_events); if (ret != ESP_OK) { break; } } if (ret == ESP_OK && (cmdinfo->flags & SCF_WAIT_BUSY)) { if (!wait_for_busy_cleared(cmdinfo->timeout_ms)) { ret = ESP_ERR_TIMEOUT; } } s_is_app_cmd = (ret == ESP_OK && cmdinfo->opcode == MMC_APP_CMD); out: #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(s_pm_lock); #endif xSemaphoreGive(s_request_mutex); return ret; } static size_t get_free_descriptors_count() { const size_t next = s_cur_transfer.next_desc; size_t count = 0; /* Starting with the current DMA descriptor, count the number of * descriptors which have 'owned_by_idmac' set to 0. These are the * descriptors already processed by the DMA engine. */ for (size_t i = 0; i < SDMMC_DMA_DESC_CNT; ++i) { sdmmc_desc_t* desc = &s_dma_desc[(next + i) % SDMMC_DMA_DESC_CNT]; if (desc->owned_by_idmac) { break; } ++count; if (desc->next_desc_ptr == NULL) { /* final descriptor in the chain */ break; } } return count; } static void fill_dma_descriptors(size_t num_desc) { for (size_t i = 0; i < num_desc; ++i) { if (s_cur_transfer.size_remaining == 0) { return; } const size_t next = s_cur_transfer.next_desc; sdmmc_desc_t* desc = &s_dma_desc[next]; assert(!desc->owned_by_idmac); size_t size_to_fill = (s_cur_transfer.size_remaining < SDMMC_DMA_MAX_BUF_LEN) ? s_cur_transfer.size_remaining : SDMMC_DMA_MAX_BUF_LEN; bool last = size_to_fill == s_cur_transfer.size_remaining; desc->last_descriptor = last; desc->second_address_chained = 1; desc->owned_by_idmac = 1; desc->buffer1_ptr = s_cur_transfer.ptr; desc->next_desc_ptr = (last) ? NULL : &s_dma_desc[(next + 1) % SDMMC_DMA_DESC_CNT]; assert(size_to_fill < 4 || size_to_fill % 4 == 0); desc->buffer1_size = (size_to_fill + 3) & (~3); s_cur_transfer.size_remaining -= size_to_fill; s_cur_transfer.ptr += size_to_fill; s_cur_transfer.next_desc = (s_cur_transfer.next_desc + 1) % SDMMC_DMA_DESC_CNT; ESP_LOGV(TAG, "fill %d desc=%d rem=%d next=%d last=%d sz=%d", num_desc, next, s_cur_transfer.size_remaining, s_cur_transfer.next_desc, desc->last_descriptor, desc->buffer1_size); } } static esp_err_t handle_idle_state_events() { /* Handle any events which have happened in between transfers. * Under current assumptions (no SDIO support) only card detect events * can happen in the idle state. */ sdmmc_event_t evt; while (sdmmc_host_wait_for_event(0, &evt) == ESP_OK) { if (evt.sdmmc_status & SDMMC_INTMASK_CD) { ESP_LOGV(TAG, "card detect event"); evt.sdmmc_status &= ~SDMMC_INTMASK_CD; } if (evt.sdmmc_status != 0 || evt.dma_status != 0) { ESP_LOGE(TAG, "handle_idle_state_events unhandled: %08x %08x", evt.sdmmc_status, evt.dma_status); } } return ESP_OK; } static esp_err_t handle_event(sdmmc_command_t* cmd, sdmmc_req_state_t* state, sdmmc_event_t* unhandled_events) { sdmmc_event_t event; esp_err_t err = sdmmc_host_wait_for_event(cmd->timeout_ms / portTICK_PERIOD_MS, &event); if (err != ESP_OK) { ESP_LOGE(TAG, "sdmmc_host_wait_for_event returned 0x%x", err); if (err == ESP_ERR_TIMEOUT) { sdmmc_host_dma_stop(); } return err; } ESP_LOGV(TAG, "sdmmc_handle_event: event %08x %08x, unhandled %08x %08x", event.sdmmc_status, event.dma_status, unhandled_events->sdmmc_status, unhandled_events->dma_status); event.sdmmc_status |= unhandled_events->sdmmc_status; event.dma_status |= unhandled_events->dma_status; process_events(event, cmd, state, unhandled_events); ESP_LOGV(TAG, "sdmmc_handle_event: events unhandled: %08x %08x", unhandled_events->sdmmc_status, unhandled_events->dma_status); return ESP_OK; } static bool cmd_needs_auto_stop(const sdmmc_command_t* cmd) { /* SDMMC host needs an "auto stop" flag for the following commands: */ return cmd->datalen > 0 && (cmd->opcode == MMC_WRITE_BLOCK_MULTIPLE || cmd->opcode == MMC_READ_BLOCK_MULTIPLE || cmd->opcode == MMC_WRITE_DAT_UNTIL_STOP || cmd->opcode == MMC_READ_DAT_UNTIL_STOP); } static sdmmc_hw_cmd_t make_hw_cmd(sdmmc_command_t* cmd) { sdmmc_hw_cmd_t res = { 0 }; res.cmd_index = cmd->opcode; if (cmd->opcode == MMC_STOP_TRANSMISSION) { res.stop_abort_cmd = 1; } else if (cmd->opcode == MMC_GO_IDLE_STATE) { res.send_init = 1; } else { res.wait_complete = 1; } if (cmd->opcode == MMC_GO_IDLE_STATE) { res.send_init = 1; } if (cmd->flags & SCF_RSP_PRESENT) { res.response_expect = 1; if (cmd->flags & SCF_RSP_136) { res.response_long = 1; } } if (cmd->flags & SCF_RSP_CRC) { res.check_response_crc = 1; } res.use_hold_reg = 1; if (cmd->data) { res.data_expected = 1; if ((cmd->flags & SCF_CMD_READ) == 0) { res.rw = 1; } assert(cmd->datalen % cmd->blklen == 0); res.send_auto_stop = cmd_needs_auto_stop(cmd) ? 1 : 0; } ESP_LOGV(TAG, "%s: opcode=%d, rexp=%d, crc=%d, auto_stop=%d", __func__, res.cmd_index, res.response_expect, res.check_response_crc, res.send_auto_stop); return res; } static void process_command_response(uint32_t status, sdmmc_command_t* cmd) { if (cmd->flags & SCF_RSP_PRESENT) { if (cmd->flags & SCF_RSP_136) { /* Destination is 4-byte aligned, can memcopy from peripheral registers */ memcpy(cmd->response, (uint32_t*) SDMMC.resp, 4 * sizeof(uint32_t)); } else { cmd->response[0] = SDMMC.resp[0]; cmd->response[1] = 0; cmd->response[2] = 0; cmd->response[3] = 0; } } esp_err_t err = ESP_OK; if (status & SDMMC_INTMASK_RTO) { // response timeout is only possible when response is expected assert(cmd->flags & SCF_RSP_PRESENT); err = ESP_ERR_TIMEOUT; } else if ((cmd->flags & SCF_RSP_CRC) && (status & SDMMC_INTMASK_RCRC)) { err = ESP_ERR_INVALID_CRC; } else if (status & SDMMC_INTMASK_RESP_ERR) { err = ESP_ERR_INVALID_RESPONSE; } if (err != ESP_OK) { cmd->error = err; if (cmd->data) { sdmmc_host_dma_stop(); } ESP_LOGD(TAG, "%s: error 0x%x (status=%08x)", __func__, err, status); } } static void process_data_status(uint32_t status, sdmmc_command_t* cmd) { if (status & SDMMC_DATA_ERR_MASK) { if (status & SDMMC_INTMASK_DTO) { cmd->error = ESP_ERR_TIMEOUT; } else if (status & SDMMC_INTMASK_DCRC) { cmd->error = ESP_ERR_INVALID_CRC; } else if ((status & SDMMC_INTMASK_EBE) && (cmd->flags & SCF_CMD_READ) == 0) { cmd->error = ESP_ERR_TIMEOUT; } else { cmd->error = ESP_FAIL; } SDMMC.ctrl.fifo_reset = 1; } if (cmd->error != 0) { if (cmd->data) { sdmmc_host_dma_stop(); } ESP_LOGD(TAG, "%s: error 0x%x (status=%08x)", __func__, cmd->error, status); } } static inline bool mask_check_and_clear(uint32_t* state, uint32_t mask) { bool ret = ((*state) & mask) != 0; *state &= ~mask; return ret; } static esp_err_t process_events(sdmmc_event_t evt, sdmmc_command_t* cmd, sdmmc_req_state_t* pstate, sdmmc_event_t* unhandled_events) { const char* const s_state_names[] __attribute__((unused)) = { "IDLE", "SENDING_CMD", "SENDIND_DATA", "BUSY" }; sdmmc_event_t orig_evt = evt; ESP_LOGV(TAG, "%s: state=%s evt=%x dma=%x", __func__, s_state_names[*pstate], evt.sdmmc_status, evt.dma_status); sdmmc_req_state_t next_state = *pstate; sdmmc_req_state_t state = (sdmmc_req_state_t) -1; while (next_state != state) { state = next_state; switch (state) { case SDMMC_IDLE: break; case SDMMC_SENDING_CMD: if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_CMD_ERR_MASK)) { process_command_response(orig_evt.sdmmc_status, cmd); break; // Need to wait for the CMD_DONE interrupt } if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_INTMASK_CMD_DONE)) { process_command_response(orig_evt.sdmmc_status, cmd); if (cmd->error != ESP_OK) { next_state = SDMMC_IDLE; break; } if (cmd->data == NULL) { next_state = SDMMC_IDLE; } else { next_state = SDMMC_SENDING_DATA; } } break; case SDMMC_SENDING_DATA: if (mask_check_and_clear(&evt.sdmmc_status, SDMMC_DATA_ERR_MASK)) { process_data_status(orig_evt.sdmmc_status, cmd); sdmmc_host_dma_stop(); } if (mask_check_and_clear(&evt.dma_status, SDMMC_DMA_DONE_MASK)) { s_cur_transfer.desc_remaining--; if (s_cur_transfer.size_remaining) { int desc_to_fill = get_free_descriptors_count(); fill_dma_descriptors(desc_to_fill); sdmmc_host_dma_resume(); } if (s_cur_transfer.desc_remaining == 0) { next_state = SDMMC_BUSY; } } if (orig_evt.sdmmc_status & (SDMMC_INTMASK_SBE | SDMMC_INTMASK_DATA_OVER)) { // On start bit error, DATA_DONE interrupt will not be generated next_state = SDMMC_IDLE; break; } break; case SDMMC_BUSY: if (!mask_check_and_clear(&evt.sdmmc_status, SDMMC_INTMASK_DATA_OVER)) { break; } process_data_status(orig_evt.sdmmc_status, cmd); next_state = SDMMC_IDLE; break; } ESP_LOGV(TAG, "%s state=%s next_state=%s", __func__, s_state_names[state], s_state_names[next_state]); } *pstate = state; *unhandled_events = evt; return ESP_OK; } static bool wait_for_busy_cleared(int timeout_ms) { if (timeout_ms == 0) { return !sdmmc_host_card_busy(); } /* It would have been nice to do this without polling, however the peripheral * can only generate Busy Clear Interrupt for data write commands, and waiting * for busy clear is mostly needed for other commands such as MMC_SWITCH. */ int timeout_ticks = (timeout_ms + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS; while (timeout_ticks-- > 0) { if (!sdmmc_host_card_busy()) { return true; } vTaskDelay(1); } return false; }