// you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "rom/ets_sys.h" #include "esp_log.h" #include "soc/rtc_io_reg.h" #include "soc/sens_reg.h" #include "soc/rtc_cntl_reg.h" #include "rtc_io.h" #include "touch_pad.h" #include "adc.h" #include "dac.h" #include "freertos/FreeRTOS.h" #include "freertos/xtensa_api.h" #include "freertos/semphr.h" static const char *RTC_MODULE_TAG = "RTC_MODULE"; #define RTC_MODULE_CHECK(a, str, ret_val) if (!(a)) { \ ESP_LOGE(RTC_MODULE_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \ return (ret_val); \ } #define ADC1_CHECK_FUNCTION_RET(fun_ret) if(fun_ret!=ESP_OK){\ ESP_LOGE(RTC_MODULE_TAG,"%s:%d\n",__FUNCTION__,__LINE__);\ return ESP_FAIL;\ } portMUX_TYPE rtc_spinlock = portMUX_INITIALIZER_UNLOCKED; static xSemaphoreHandle rtc_touch_sem = NULL; //Reg,Mux,Fun,IE,Up,Down,Rtc_number const rtc_gpio_desc_t rtc_gpio_desc[GPIO_PIN_COUNT] = { {RTC_IO_TOUCH_PAD1_REG, RTC_IO_TOUCH_PAD1_MUX_SEL_M, RTC_IO_TOUCH_PAD1_FUN_SEL_S, RTC_IO_TOUCH_PAD1_FUN_IE_M, RTC_IO_TOUCH_PAD1_RUE_M, RTC_IO_TOUCH_PAD1_RDE_M, RTC_IO_TOUCH_PAD1_SLP_SEL_M, RTC_IO_TOUCH_PAD1_SLP_IE_M, RTC_IO_TOUCH_PAD1_HOLD_M, RTC_CNTL_TOUCH_PAD1_HOLD_FORCE_M, 11}, //0 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //1 {RTC_IO_TOUCH_PAD2_REG, RTC_IO_TOUCH_PAD2_MUX_SEL_M, RTC_IO_TOUCH_PAD2_FUN_SEL_S, RTC_IO_TOUCH_PAD2_FUN_IE_M, RTC_IO_TOUCH_PAD2_RUE_M, RTC_IO_TOUCH_PAD2_RDE_M, RTC_IO_TOUCH_PAD2_SLP_SEL_M, RTC_IO_TOUCH_PAD2_SLP_IE_M, RTC_IO_TOUCH_PAD2_HOLD_M, RTC_CNTL_TOUCH_PAD2_HOLD_FORCE_M, 12}, //2 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //3 {RTC_IO_TOUCH_PAD0_REG, RTC_IO_TOUCH_PAD0_MUX_SEL_M, RTC_IO_TOUCH_PAD0_FUN_SEL_S, RTC_IO_TOUCH_PAD0_FUN_IE_M, RTC_IO_TOUCH_PAD0_RUE_M, RTC_IO_TOUCH_PAD0_RDE_M, RTC_IO_TOUCH_PAD0_SLP_SEL_M, RTC_IO_TOUCH_PAD0_SLP_IE_M, RTC_IO_TOUCH_PAD0_HOLD_M, RTC_CNTL_TOUCH_PAD0_HOLD_FORCE_M, 10}, //4 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //5 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //6 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //7 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //8 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //9 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //10 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //11 {RTC_IO_TOUCH_PAD5_REG, RTC_IO_TOUCH_PAD5_MUX_SEL_M, RTC_IO_TOUCH_PAD5_FUN_SEL_S, RTC_IO_TOUCH_PAD5_FUN_IE_M, RTC_IO_TOUCH_PAD5_RUE_M, RTC_IO_TOUCH_PAD5_RDE_M, RTC_IO_TOUCH_PAD5_SLP_SEL_M, RTC_IO_TOUCH_PAD5_SLP_IE_M, RTC_IO_TOUCH_PAD5_HOLD_M, RTC_CNTL_TOUCH_PAD5_HOLD_FORCE_M, 15}, //12 {RTC_IO_TOUCH_PAD4_REG, RTC_IO_TOUCH_PAD4_MUX_SEL_M, RTC_IO_TOUCH_PAD4_FUN_SEL_S, RTC_IO_TOUCH_PAD4_FUN_IE_M, RTC_IO_TOUCH_PAD4_RUE_M, RTC_IO_TOUCH_PAD4_RDE_M, RTC_IO_TOUCH_PAD4_SLP_SEL_M, RTC_IO_TOUCH_PAD4_SLP_IE_M, RTC_IO_TOUCH_PAD4_HOLD_M, RTC_CNTL_TOUCH_PAD4_HOLD_FORCE_M, 14}, //13 {RTC_IO_TOUCH_PAD6_REG, RTC_IO_TOUCH_PAD6_MUX_SEL_M, RTC_IO_TOUCH_PAD6_FUN_SEL_S, RTC_IO_TOUCH_PAD6_FUN_IE_M, RTC_IO_TOUCH_PAD6_RUE_M, RTC_IO_TOUCH_PAD6_RDE_M, RTC_IO_TOUCH_PAD6_SLP_SEL_M, RTC_IO_TOUCH_PAD6_SLP_IE_M, RTC_IO_TOUCH_PAD6_HOLD_M, RTC_CNTL_TOUCH_PAD6_HOLD_FORCE_M, 16}, //14 {RTC_IO_TOUCH_PAD3_REG, RTC_IO_TOUCH_PAD3_MUX_SEL_M, RTC_IO_TOUCH_PAD3_FUN_SEL_S, RTC_IO_TOUCH_PAD3_FUN_IE_M, RTC_IO_TOUCH_PAD3_RUE_M, RTC_IO_TOUCH_PAD3_RDE_M, RTC_IO_TOUCH_PAD3_SLP_SEL_M, RTC_IO_TOUCH_PAD3_SLP_IE_M, RTC_IO_TOUCH_PAD3_HOLD_M, RTC_CNTL_TOUCH_PAD3_HOLD_FORCE_M, 13}, //15 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //16 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //17 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //18 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //19 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //20 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //21 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //22 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //23 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //24 {RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_MUX_SEL_M, RTC_IO_PDAC1_FUN_SEL_S, RTC_IO_PDAC1_FUN_IE_M, RTC_IO_PDAC1_RUE_M, RTC_IO_PDAC1_RDE_M, RTC_IO_PDAC1_SLP_SEL_M, RTC_IO_PDAC1_SLP_IE_M, RTC_IO_PDAC1_HOLD_M, RTC_CNTL_PDAC1_HOLD_FORCE_M, 6}, //25 {RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_MUX_SEL_M, RTC_IO_PDAC2_FUN_SEL_S, RTC_IO_PDAC2_FUN_IE_M, RTC_IO_PDAC2_RUE_M, RTC_IO_PDAC2_RDE_M, RTC_IO_PDAC2_SLP_SEL_M, RTC_IO_PDAC2_SLP_IE_M, RTC_IO_PDAC2_HOLD_M, RTC_CNTL_PDAC1_HOLD_FORCE_M, 7}, //26 {RTC_IO_TOUCH_PAD7_REG, RTC_IO_TOUCH_PAD7_MUX_SEL_M, RTC_IO_TOUCH_PAD7_FUN_SEL_S, RTC_IO_TOUCH_PAD7_FUN_IE_M, RTC_IO_TOUCH_PAD7_RUE_M, RTC_IO_TOUCH_PAD7_RDE_M, RTC_IO_TOUCH_PAD7_SLP_SEL_M, RTC_IO_TOUCH_PAD7_SLP_IE_M, RTC_IO_TOUCH_PAD7_HOLD_M, RTC_CNTL_TOUCH_PAD7_HOLD_FORCE_M, 17}, //27 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //28 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //29 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //30 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, //31 {RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32P_MUX_SEL_M, RTC_IO_X32P_FUN_SEL_S, RTC_IO_X32P_FUN_IE_M, RTC_IO_X32P_RUE_M, RTC_IO_X32P_RDE_M, RTC_IO_X32P_SLP_SEL_M, RTC_IO_X32P_SLP_IE_M, RTC_IO_X32P_HOLD_M, RTC_CNTL_X32P_HOLD_FORCE_M, 9}, //32 {RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32N_MUX_SEL_M, RTC_IO_X32N_FUN_SEL_S, RTC_IO_X32N_FUN_IE_M, RTC_IO_X32N_RUE_M, RTC_IO_X32N_RDE_M, RTC_IO_X32N_SLP_SEL_M, RTC_IO_X32N_SLP_IE_M, RTC_IO_X32N_HOLD_M, RTC_CNTL_X32N_HOLD_FORCE_M, 8}, //33 {RTC_IO_ADC_PAD_REG, RTC_IO_ADC1_MUX_SEL_M, RTC_IO_ADC1_FUN_SEL_S, RTC_IO_ADC1_FUN_IE_M, 0, 0, RTC_IO_ADC1_SLP_SEL_M, RTC_IO_ADC1_SLP_IE_M, RTC_IO_ADC1_HOLD_M, RTC_CNTL_ADC1_HOLD_FORCE_M, 4}, //34 {RTC_IO_ADC_PAD_REG, RTC_IO_ADC2_MUX_SEL_M, RTC_IO_ADC2_FUN_SEL_S, RTC_IO_ADC2_FUN_IE_M, 0, 0, RTC_IO_ADC2_SLP_SEL_M, RTC_IO_ADC2_SLP_IE_M, RTC_IO_ADC1_HOLD_M, RTC_CNTL_ADC2_HOLD_FORCE_M, 5}, //35 {RTC_IO_SENSOR_PADS_REG, RTC_IO_SENSE1_MUX_SEL_M, RTC_IO_SENSE1_FUN_SEL_S, RTC_IO_SENSE1_FUN_IE_M, 0, 0, RTC_IO_SENSE1_SLP_SEL_M, RTC_IO_SENSE1_SLP_IE_M, RTC_IO_SENSE1_HOLD_M, RTC_CNTL_SENSE1_HOLD_FORCE_M, 0}, //36 {RTC_IO_SENSOR_PADS_REG, RTC_IO_SENSE2_MUX_SEL_M, RTC_IO_SENSE2_FUN_SEL_S, RTC_IO_SENSE2_FUN_IE_M, 0, 0, RTC_IO_SENSE2_SLP_SEL_M, RTC_IO_SENSE2_SLP_IE_M, RTC_IO_SENSE1_HOLD_M, RTC_CNTL_SENSE2_HOLD_FORCE_M, 1}, //37 {RTC_IO_SENSOR_PADS_REG, RTC_IO_SENSE3_MUX_SEL_M, RTC_IO_SENSE3_FUN_SEL_S, RTC_IO_SENSE3_FUN_IE_M, 0, 0, RTC_IO_SENSE3_SLP_SEL_M, RTC_IO_SENSE3_SLP_IE_M, RTC_IO_SENSE1_HOLD_M, RTC_CNTL_SENSE3_HOLD_FORCE_M, 2}, //38 {RTC_IO_SENSOR_PADS_REG, RTC_IO_SENSE4_MUX_SEL_M, RTC_IO_SENSE4_FUN_SEL_S, RTC_IO_SENSE4_FUN_IE_M, 0, 0, RTC_IO_SENSE4_SLP_SEL_M, RTC_IO_SENSE4_SLP_IE_M, RTC_IO_SENSE1_HOLD_M, RTC_CNTL_SENSE4_HOLD_FORCE_M, 3}, //39 }; /*--------------------------------------------------------------- RTC IO ---------------------------------------------------------------*/ esp_err_t rtc_gpio_init(gpio_num_t gpio_num) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); // 0: GPIO connected to digital GPIO module. 1: GPIO connected to analog RTC module. SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, (rtc_gpio_desc[gpio_num].mux)); //0:RTC FUNCIOTN 1,2,3:Reserved SET_PERI_REG_BITS(rtc_gpio_desc[gpio_num].reg, RTC_IO_TOUCH_PAD1_FUN_SEL_V, 0x0, rtc_gpio_desc[gpio_num].func); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_deinit(gpio_num_t gpio_num) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); //Select Gpio as Digital Gpio CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, (rtc_gpio_desc[gpio_num].mux)); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } static esp_err_t rtc_gpio_output_enable(gpio_num_t gpio_num) { int rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num; RTC_MODULE_CHECK(rtc_gpio_num != -1, "RTC_GPIO number error", ESP_ERR_INVALID_ARG); SET_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TS_REG, (1 << (rtc_gpio_num + RTC_GPIO_ENABLE_W1TS_S))); CLEAR_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TC_REG, (1 << (rtc_gpio_num + RTC_GPIO_ENABLE_W1TC_S))); return ESP_OK; } static esp_err_t rtc_gpio_output_disable(gpio_num_t gpio_num) { int rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num; RTC_MODULE_CHECK(rtc_gpio_num != -1, "RTC_GPIO number error", ESP_ERR_INVALID_ARG); CLEAR_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TS_REG, (1 << (rtc_gpio_num + RTC_GPIO_ENABLE_W1TS_S))); SET_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TC_REG, (1 << ( rtc_gpio_num + RTC_GPIO_ENABLE_W1TC_S))); return ESP_OK; } static esp_err_t rtc_gpio_input_enable(gpio_num_t gpio_num) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].ie); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } static esp_err_t rtc_gpio_input_disable(gpio_num_t gpio_num) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].ie); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_set_level(gpio_num_t gpio_num, uint32_t level) { int rtc_gpio_num = rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num;; RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); if (level) { WRITE_PERI_REG(RTC_GPIO_OUT_W1TS_REG, (1 << (rtc_gpio_num + RTC_GPIO_OUT_DATA_W1TS_S))); } else { WRITE_PERI_REG(RTC_GPIO_OUT_W1TC_REG, (1 << (rtc_gpio_num + RTC_GPIO_OUT_DATA_W1TC_S))); } return ESP_OK; } uint32_t rtc_gpio_get_level(gpio_num_t gpio_num) { uint32_t level = 0; int rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num; RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); level = READ_PERI_REG(RTC_GPIO_IN_REG); portEXIT_CRITICAL(&rtc_spinlock); return ((level >> (RTC_GPIO_IN_NEXT_S + rtc_gpio_num)) & 0x01); } esp_err_t rtc_gpio_set_direction(gpio_num_t gpio_num, rtc_gpio_mode_t mode) { RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG); switch (mode) { case RTC_GPIO_MODE_INPUT_ONLY: rtc_gpio_output_disable(gpio_num); rtc_gpio_input_enable(gpio_num); break; case RTC_GPIO_MODE_OUTPUT_ONLY: rtc_gpio_output_enable(gpio_num); rtc_gpio_input_disable(gpio_num); break; case RTC_GPIO_MODE_INPUT_OUTUT: rtc_gpio_output_enable(gpio_num); rtc_gpio_input_enable(gpio_num); break; case RTC_GPIO_MODE_DISABLED: rtc_gpio_output_disable(gpio_num); rtc_gpio_input_disable(gpio_num); break; } return ESP_OK; } esp_err_t rtc_gpio_pullup_en(gpio_num_t gpio_num) { //this is a digital pad if (rtc_gpio_desc[gpio_num].pullup == 0) { return ESP_ERR_INVALID_ARG; } //this is a rtc pad portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pullup); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_pulldown_en(gpio_num_t gpio_num) { //this is a digital pad if (rtc_gpio_desc[gpio_num].pulldown == 0) { return ESP_ERR_INVALID_ARG; } //this is a rtc pad portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pulldown); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_pullup_dis(gpio_num_t gpio_num) { //this is a digital pad if ( rtc_gpio_desc[gpio_num].pullup == 0 ) { return ESP_ERR_INVALID_ARG; } //this is a rtc pad portENTER_CRITICAL(&rtc_spinlock); CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pullup); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_pulldown_dis(gpio_num_t gpio_num) { //this is a digital pad if (rtc_gpio_desc[gpio_num].pulldown == 0) { return ESP_ERR_INVALID_ARG; } //this is a rtc pad portENTER_CRITICAL(&rtc_spinlock); CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pulldown); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_hold_en(gpio_num_t gpio_num) { // check if an RTC IO if (rtc_gpio_desc[gpio_num].pullup == 0) { return ESP_ERR_INVALID_ARG; } portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].hold); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t rtc_gpio_hold_dis(gpio_num_t gpio_num) { // check if an RTC IO if (rtc_gpio_desc[gpio_num].pullup == 0) { return ESP_ERR_INVALID_ARG; } portENTER_CRITICAL(&rtc_spinlock); CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].hold); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } void rtc_gpio_force_hold_dis_all() { for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) { const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio]; if (desc->hold_force != 0) { REG_CLR_BIT(RTC_CNTL_HOLD_FORCE_REG, desc->hold_force); } } } /*--------------------------------------------------------------- Touch Pad ---------------------------------------------------------------*/ esp_err_t touch_pad_isr_handler_register(void(*fn)(void *), void *arg, int intr_alloc_flags, touch_isr_handle_t *handle) { RTC_MODULE_CHECK(fn, "Touch_Pad ISR null", ESP_ERR_INVALID_ARG); return esp_intr_alloc(ETS_RTC_CORE_INTR_SOURCE, intr_alloc_flags, fn, arg, handle); } static esp_err_t touch_pad_get_io_num(touch_pad_t touch_num, gpio_num_t *gpio_num) { switch (touch_num) { case TOUCH_PAD_NUM0: *gpio_num = 4; break; case TOUCH_PAD_NUM1: *gpio_num = 0; break; case TOUCH_PAD_NUM2: *gpio_num = 2; break; case TOUCH_PAD_NUM3: *gpio_num = 15; break; case TOUCH_PAD_NUM4: *gpio_num = 13; break; case TOUCH_PAD_NUM5: *gpio_num = 12; break; case TOUCH_PAD_NUM6: *gpio_num = 14; break; case TOUCH_PAD_NUM7: *gpio_num = 27; break; case TOUCH_PAD_NUM8: *gpio_num = 33; break; case TOUCH_PAD_NUM9: *gpio_num = 32; break; default: return ESP_ERR_INVALID_ARG; } return ESP_OK; } static esp_err_t touch_pad_init_config(uint16_t sleep_cycle, uint16_t sample_cycle_num) { xSemaphoreTake(rtc_touch_sem, portMAX_DELAY); portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_BITS(RTC_IO_TOUCH_CFG_REG, RTC_IO_TOUCH_XPD_BIAS, 1, RTC_IO_TOUCH_XPD_BIAS_S); SET_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL2_REG, SENS_TOUCH_MEAS_EN_CLR); //clear touch enable WRITE_PERI_REG(SENS_SAR_TOUCH_ENABLE_REG, 0x0); //enable Rtc Touch pad Timer SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_TOUCH_SLP_TIMER_EN); //config pad module sleep time and sample num //Touch pad SleepCycle Time = 150Khz SET_PERI_REG_BITS(SENS_SAR_TOUCH_CTRL2_REG, SENS_TOUCH_SLEEP_CYCLES, sleep_cycle, SENS_TOUCH_SLEEP_CYCLES_S);//150kHZ //Touch Pad Measure Time= 8Mhz SET_PERI_REG_BITS(SENS_SAR_TOUCH_CTRL1_REG, SENS_TOUCH_MEAS_DELAY, sample_cycle_num, SENS_TOUCH_MEAS_DELAY_S); //8Mhz portEXIT_CRITICAL(&rtc_spinlock); xSemaphoreGive(rtc_touch_sem); return ESP_OK; } esp_err_t touch_pad_init() { if(rtc_touch_sem == NULL) { rtc_touch_sem = xSemaphoreCreateMutex(); } if(rtc_touch_sem == NULL) { return ESP_FAIL; } return touch_pad_init_config(TOUCH_PAD_SLEEP_CYCLE_CONFIG, TOUCH_PAD_MEASURE_CYCLE_CONFIG); } esp_err_t touch_pad_deinit() { if(rtc_touch_sem == NULL) { return ESP_FAIL; } vSemaphoreDelete(rtc_touch_sem); rtc_touch_sem=NULL; return ESP_OK; } static void touch_pad_counter_init(touch_pad_t touch_num) { portENTER_CRITICAL(&rtc_spinlock); //Enable Tie,Init Level(Counter) SET_PERI_REG_MASK(RTC_IO_TOUCH_PAD0_REG + touch_num * 4, RTC_IO_TOUCH_PAD0_TIE_OPT_M); //Touch Set Slop(Counter) SET_PERI_REG_BITS(RTC_IO_TOUCH_PAD0_REG + touch_num * 4, RTC_IO_TOUCH_PAD0_DAC_V, 7, RTC_IO_TOUCH_PAD0_DAC_S); //Enable Touch Pad IO SET_PERI_REG_MASK(RTC_IO_TOUCH_PAD0_REG + touch_num * 4, RTC_IO_TOUCH_PAD0_START_M); portEXIT_CRITICAL(&rtc_spinlock); } static void touch_pad_power_on(touch_pad_t touch_num) { portENTER_CRITICAL(&rtc_spinlock); //Enable Touch Pad Power on SET_PERI_REG_MASK(RTC_IO_TOUCH_PAD0_REG + touch_num * 4, RTC_IO_TOUCH_PAD0_XPD_M); portEXIT_CRITICAL(&rtc_spinlock); } static void toch_pad_io_init(touch_pad_t touch_num) { gpio_num_t gpio_num = GPIO_NUM_0; touch_pad_get_io_num(touch_num, &gpio_num); rtc_gpio_init(gpio_num); rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED); rtc_gpio_pulldown_dis(gpio_num); rtc_gpio_pullup_dis(gpio_num); } static esp_err_t touch_start(touch_pad_t touch_num) { RTC_MODULE_CHECK(touch_num < TOUCH_PAD_MAX, "Touch_Pad Num Err", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); //Enable Digital rtc control :work mode and out mode SET_PERI_REG_MASK(SENS_SAR_TOUCH_ENABLE_REG, (1 << (touch_num + SENS_TOUCH_PAD_WORKEN_S)) | \ (1 << (touch_num + SENS_TOUCH_PAD_OUTEN2_S)) | \ (1 << (touch_num + SENS_TOUCH_PAD_OUTEN1_S))); portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t touch_pad_config(touch_pad_t touch_num, uint16_t threshold) { RTC_MODULE_CHECK(rtc_touch_sem != NULL, "Touch pad not initialized", ESP_FAIL); RTC_MODULE_CHECK(touch_num < TOUCH_PAD_MAX, "Touch_Pad Num Err", ESP_ERR_INVALID_ARG); xSemaphoreTake(rtc_touch_sem, portMAX_DELAY); portENTER_CRITICAL(&rtc_spinlock); //clear touch force ,select the Touch mode is Timer CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL2_REG, SENS_TOUCH_START_EN_M); CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL2_REG, SENS_TOUCH_START_FORCE_M); //set threshold uint8_t shift; shift = (touch_num & 1) ? SENS_TOUCH_OUT_TH1_S : SENS_TOUCH_OUT_TH0_S; SET_PERI_REG_BITS((SENS_SAR_TOUCH_THRES1_REG + (touch_num / 2) * 4), SENS_TOUCH_OUT_TH0, threshold, shift); //When touch value < threshold ,the Intr will give CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_TOUCH_OUT_SEL); //Intr will give ,when SET0 < threshold SET_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_TOUCH_OUT_1EN); //Enable Rtc Touch Module Intr,the Interrupt need Rtc out Enable SET_PERI_REG_MASK(RTC_CNTL_INT_ENA_REG, RTC_CNTL_TOUCH_INT_ENA); portEXIT_CRITICAL(&rtc_spinlock); xSemaphoreGive(rtc_touch_sem); touch_pad_power_on(touch_num); toch_pad_io_init(touch_num); touch_pad_counter_init(touch_num); touch_start(touch_num); return ESP_OK; } esp_err_t touch_pad_read(touch_pad_t touch_num, uint16_t *touch_value) { RTC_MODULE_CHECK(touch_num < TOUCH_PAD_MAX, "Touch_Pad Num Err", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(touch_value != NULL, "touch_value", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(rtc_touch_sem != NULL, "Touch pad not initialized", ESP_FAIL); xSemaphoreTake(rtc_touch_sem, portMAX_DELAY); uint32_t v0 = READ_PERI_REG(SENS_SAR_TOUCH_ENABLE_REG); portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(SENS_SAR_TOUCH_ENABLE_REG, (1 << (touch_num))); //Disable Intr CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_ENABLE_REG, (1 << (touch_num + SENS_TOUCH_PAD_OUTEN2_S)) | \ ((1 << (touch_num + SENS_TOUCH_PAD_OUTEN1_S)))); toch_pad_io_init(touch_num); touch_pad_counter_init(touch_num); touch_pad_power_on(touch_num); //force oneTime test start SET_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL2_REG, SENS_TOUCH_START_EN_M); SET_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL2_REG, SENS_TOUCH_START_FORCE_M); SET_PERI_REG_BITS(SENS_SAR_TOUCH_CTRL1_REG, SENS_TOUCH_XPD_WAIT, 10, SENS_TOUCH_XPD_WAIT_S); portEXIT_CRITICAL(&rtc_spinlock); while (GET_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL2_REG, SENS_TOUCH_MEAS_DONE) == 0) {}; uint8_t shift = (touch_num & 1) ? SENS_TOUCH_MEAS_OUT1_S : SENS_TOUCH_MEAS_OUT0_S; *touch_value = READ_PERI_REG(SENS_SAR_TOUCH_OUT1_REG + (touch_num / 2) * 4) >> shift; WRITE_PERI_REG(SENS_SAR_TOUCH_ENABLE_REG, v0); //force oneTime test end //clear touch force ,select the Touch mode is Timer portENTER_CRITICAL(&rtc_spinlock); CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL2_REG, SENS_TOUCH_START_EN_M); CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL2_REG, SENS_TOUCH_START_FORCE_M); portEXIT_CRITICAL(&rtc_spinlock); xSemaphoreGive(rtc_touch_sem); return ESP_OK; } /*--------------------------------------------------------------- ADC ---------------------------------------------------------------*/ static esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num) { RTC_MODULE_CHECK(channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG); switch (channel) { case ADC1_CHANNEL_0: *gpio_num = 36; break; case ADC1_CHANNEL_1: *gpio_num = 37; break; case ADC1_CHANNEL_2: *gpio_num = 38; break; case ADC1_CHANNEL_3: *gpio_num = 39; break; case ADC1_CHANNEL_4: *gpio_num = 32; break; case ADC1_CHANNEL_5: *gpio_num = 33; break; case ADC1_CHANNEL_6: *gpio_num = 34; break; case ADC1_CHANNEL_7: *gpio_num = 35; break; default: return ESP_ERR_INVALID_ARG; } return ESP_OK; } static esp_err_t adc1_pad_init(adc1_channel_t channel) { gpio_num_t gpio_num = 0; ADC1_CHECK_FUNCTION_RET(adc1_pad_get_io_num(channel, &gpio_num)); ADC1_CHECK_FUNCTION_RET(rtc_gpio_init(gpio_num)); ADC1_CHECK_FUNCTION_RET(rtc_gpio_output_disable(gpio_num)); ADC1_CHECK_FUNCTION_RET(rtc_gpio_input_disable(gpio_num)); ADC1_CHECK_FUNCTION_RET(gpio_set_pull_mode(gpio_num, GPIO_FLOATING)); return ESP_OK; } esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten) { RTC_MODULE_CHECK(channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG); RTC_MODULE_CHECK(atten <= ADC_ATTEN_11db, "ADC Atten Err", ESP_ERR_INVALID_ARG); adc1_pad_init(channel); portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, 3, atten, (channel * 2)); //SAR1_atten portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } esp_err_t adc1_config_width(adc_bits_width_t width_bit) { portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR1_BIT_WIDTH_V, width_bit, SENS_SAR1_BIT_WIDTH_S); //SAR2_BIT_WIDTH[1:0]=0x3, SAR1_BIT_WIDTH[1:0]=0x3 //Invert the adc value,the Output value is invert SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR1_DATA_INV); //Set The adc sample width,invert adc value,must SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_BIT_V, width_bit, SENS_SAR1_SAMPLE_BIT_S); //digital sar1_bit_width[1:0]=3 portEXIT_CRITICAL(&rtc_spinlock); return ESP_OK; } int adc1_get_voltage(adc1_channel_t channel) { uint16_t adc_value; RTC_MODULE_CHECK(channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); //Adc Controler is Rtc module,not ulp coprocessor SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 1, SENS_MEAS1_START_FORCE_S); //force pad mux and force start //Bit1=0:Fsm Bit1=1(Bit0=0:PownDown Bit10=1:Powerup) SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S); //force XPD_SAR=0, use XPD_FSM //Disable Amp Bit1=0:Fsm Bit1=1(Bit0=0:PownDown Bit10=1:Powerup) SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 0x2, SENS_FORCE_XPD_AMP_S); //force XPD_AMP=0 //Open the ADC1 Data port Not ulp coprocessor SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 1, SENS_SAR1_EN_PAD_FORCE_S); //open the ADC1 data port //Select channel SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD, (1 << channel), SENS_SAR1_EN_PAD_S); //pad enable SET_PERI_REG_BITS(SENS_SAR_MEAS_CTRL_REG, 0xfff, 0x0, SENS_AMP_RST_FB_FSM_S); //[11:8]:short ref ground, [7:4]:short ref, [3:0]:rst fb SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT1, 0x1, SENS_SAR_AMP_WAIT1_S); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT1_REG, SENS_SAR_AMP_WAIT2, 0x1, SENS_SAR_AMP_WAIT2_S); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_SAR_AMP_WAIT3, 0x1, SENS_SAR_AMP_WAIT3_S); while (GET_PERI_REG_BITS2(SENS_SAR_SLAVE_ADDR1_REG, 0x7, SENS_MEAS_STATUS_S) != 0); //wait det_fsm==0 SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 0, SENS_MEAS1_START_SAR_S); //start force 0 SET_PERI_REG_BITS(SENS_SAR_MEAS_START1_REG, 1, 1, SENS_MEAS1_START_SAR_S); //start force 1 while (GET_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_DONE_SAR) == 0) {}; //read done adc_value = GET_PERI_REG_BITS2(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_DATA_SAR, SENS_MEAS1_DATA_SAR_S); portEXIT_CRITICAL(&rtc_spinlock); return adc_value; } /*--------------------------------------------------------------- DAC ---------------------------------------------------------------*/ static esp_err_t dac_pad_get_io_num(dac_channel_t channel, gpio_num_t *gpio_num) { RTC_MODULE_CHECK(channel < DAC_CHANNEL_MAX, "DAC Channel Err", ESP_ERR_INVALID_ARG); switch (channel) { case DAC_CHANNEL_1: *gpio_num = 25; break; case DAC_CHANNEL_2: *gpio_num = 26; break; default: return ESP_ERR_INVALID_ARG; } return ESP_OK; } static esp_err_t dac_rtc_pad_init(dac_channel_t channel) { RTC_MODULE_CHECK(channel < DAC_CHANNEL_MAX, "DAC Channel Err", ESP_ERR_INVALID_ARG); gpio_num_t gpio_num = 0; dac_pad_get_io_num(channel, &gpio_num); rtc_gpio_init(gpio_num); rtc_gpio_output_disable(gpio_num); rtc_gpio_input_disable(gpio_num); rtc_gpio_pullup_dis(gpio_num); rtc_gpio_pulldown_dis(gpio_num); return ESP_OK; } static esp_err_t dac_out_enable(dac_channel_t channel) { if (channel == DAC_CHANNEL_1) { portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_XPD_DAC | RTC_IO_PDAC1_DAC_XPD_FORCE); portEXIT_CRITICAL(&rtc_spinlock); } else if (channel == DAC_CHANNEL_2) { portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_XPD_DAC | RTC_IO_PDAC2_DAC_XPD_FORCE); portEXIT_CRITICAL(&rtc_spinlock); } else { return ESP_ERR_INVALID_ARG; } return ESP_OK; } esp_err_t dac_out_voltage(dac_channel_t channel, uint8_t dac_value) { RTC_MODULE_CHECK(channel < DAC_CHANNEL_MAX, "DAC Channel Err", ESP_ERR_INVALID_ARG); portENTER_CRITICAL(&rtc_spinlock); //Disable Tone CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL1_REG, SENS_SW_TONE_EN); //Disable Channel Tone if (channel == DAC_CHANNEL_1) { CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN1_M); } else if (channel == DAC_CHANNEL_2) { CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN2_M); } //Set the Dac value if (channel == DAC_CHANNEL_1) { SET_PERI_REG_BITS(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_DAC, dac_value, RTC_IO_PDAC1_DAC_S); //dac_output } else if (channel == DAC_CHANNEL_2) { SET_PERI_REG_BITS(RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_DAC, dac_value, RTC_IO_PDAC2_DAC_S); //dac_output } portEXIT_CRITICAL(&rtc_spinlock); //dac pad init dac_rtc_pad_init(channel); dac_out_enable(channel); return ESP_OK; } /*--------------------------------------------------------------- HALL SENSOR ---------------------------------------------------------------*/ static int hall_sensor_get_value() //hall sensor without LNA { int Sens_Vp0; int Sens_Vn0; int Sens_Vp1; int Sens_Vn1; int hall_value; portENTER_CRITICAL(&rtc_spinlock); SET_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_XPD_HALL_FORCE_M); // hall sens force enable SET_PERI_REG_MASK(RTC_IO_HALL_SENS_REG, RTC_IO_XPD_HALL); // xpd hall SET_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_HALL_PHASE_FORCE_M); // phase force CLEAR_PERI_REG_MASK(RTC_IO_HALL_SENS_REG, RTC_IO_HALL_PHASE); // hall phase Sens_Vp0 = adc1_get_voltage(ADC1_CHANNEL_0); Sens_Vn0 = adc1_get_voltage(ADC1_CHANNEL_3); SET_PERI_REG_MASK(RTC_IO_HALL_SENS_REG, RTC_IO_HALL_PHASE); Sens_Vp1 = adc1_get_voltage(ADC1_CHANNEL_0); Sens_Vn1 = adc1_get_voltage(ADC1_CHANNEL_3); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S); CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_XPD_HALL_FORCE); CLEAR_PERI_REG_MASK(SENS_SAR_TOUCH_CTRL1_REG, SENS_HALL_PHASE_FORCE); portEXIT_CRITICAL(&rtc_spinlock); hall_value = (Sens_Vp1 - Sens_Vp0) - (Sens_Vn1 - Sens_Vn0); return hall_value; } int hall_sensor_read() { adc1_pad_init(ADC1_CHANNEL_0); adc1_pad_init(ADC1_CHANNEL_3); adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_0db); adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_0db); return hall_sensor_get_value(); }