// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef __ESP_SYSTEM_H__ #define __ESP_SYSTEM_H__ #include #ifdef __cplusplus extern "C" { #endif /** \defgroup System_APIs System APIs * @brief System APIs */ /** @addtogroup System_APIs * @{ */ /** * @brief Get information of the SDK version. * * @param null * * @return Information of the SDK version. */ const char *system_get_sdk_version(void); /** * @brief Reset to default settings. * * Reset to default settings of the following APIs : wifi_station_set_auto_connect, * wifi_set_phy_mode, wifi_softap_set_config related, wifi_station_set_config * related, and wifi_set_opmode. * * @param null * * @return null */ void system_restore(void); /** * @brief Restart system. * * @param null * * @return null */ void system_restart(void); /** * @brief Set the chip to deep-sleep mode. * * The device will automatically wake up after the deep-sleep time set * by the users. Upon waking up, the device boots up from user_init. * * @attention The parameter time_in_us to be "uint64" is for further development. * Only the low 32 bits of parameter time_in_us are avalable now. * * @param uint64 time_in_us : deep-sleep time, only the low 32bits are avalable now. unit: microsecond * * @return null */ void system_deep_sleep(uint64_t time_in_us); /** * @brief Get system time, unit: microsecond. * * @param null * * @return System time, unit: microsecond. */ uint32_t system_get_time(void); /** * @brief Print the system memory distribution, including data/rodata/bss/heap. * * @param null * * @return null */ void system_print_meminfo(void); /** * @brief Get the size of available heap. * * @param null * * @return Available heap size. */ uint32_t system_get_free_heap_size(void); /** * @brief Get the chip ID. * * Example: *
 
  *         uint8 chip_id[6];
  *         system_get_chip_id(chip_id);
  * 
* * @param uint8 *chip_id : the chip ID * * @return true : succeed * @return false : fail */ bool system_get_chip_id(uint8_t *chip_id); /** * @brief Get RTC time, unit: RTC clock cycle. * * @param null * * @return RTC time. */ uint64_t system_get_rtc_time(void); /** * @brief Read user data from the RTC memory. * * The user data segment (1024 bytes, as shown below) is used to store user data. * * |<---- system data(512 bytes) ---->|<----------- user data(1024 bytes) --------->| * * @attention Read and write unit for data stored in the RTC memory is 4 bytes. * @attention src_addr is the block number (4 bytes per block). So when reading data * at the beginning of the user data segment, src_addr will be 512/4 = 128, * n will be data length. * * @param uint16 src : source address of rtc memory, src_addr >= 128 * @param void *dst : data pointer * @param uint16 n : data length, unit: byte * * @return true : succeed * @return false : fail */ bool system_rtc_mem_read(uint16_t src, void *dst, uint16_t n); /** * @brief Write user data to the RTC memory. * * During deep-sleep, only RTC is working. So users can store their data * in RTC memory if it is needed. The user data segment below (1024 bytes) * is used to store the user data. * * |<---- system data(512 bytes) ---->|<----------- user data(1024 bytes) --------->| * * @attention Read and write unit for data stored in the RTC memory is 4 bytes. * @attention src_addr is the block number (4 bytes per block). So when storing data * at the beginning of the user data segment, src_addr will be 512/4 = 128, * n will be data length. * * @param uint16 src : source address of rtc memory, src_addr >= 128 * @param void *dst : data pointer * @param uint16 n : data length, unit: byte * * @return true : succeed * @return false : fail */ bool system_rtc_mem_write(uint16_t dst, const void *src, uint16_t n); typedef enum { ADC1_PAD_GPIO36 = 0, ADC1_PAD_GPIO37, ADC1_PAD_GPIO38, ADC1_PAD_GPIO39, ADC1_PAD_GPIO32, ADC1_PAD_GPIO33, ADC1_PAD_GPIO34, ADC1_PAD_GPIO35 } adc1_read_pad_t; typedef enum { ADC1_ATTEN_0DB = 0, ADC1_ATTEN_3DB, ADC1_ATTEN_6DB, ADC1_ATTEN_12DB } adc1_read_atten_t; /** * @brief Read ADC1. * * @param adc1_read_pad pad : the corresponding GPIO * @param adc1_read_atten atten : value of attenuation * * @return range of the return value is [0, 4096]. * - If atten == 0, the range of voltage can be measured is [0, 1] V. * - If atten == 1, the range of voltage can be measured is [0, 1.4] V. * - If atten == 2, the range of voltage can be measured is [0, 2] V. * - If atten == 3, the range of voltage can be measured is [0, 4] V. */ uint16_t system_adc1_read(adc1_read_pad_t pad, adc1_read_atten_t atten); /** * @brief Measure the power voltage of VDD3P3 pin 3 and 4, unit : 1/1024 V. * * @attention system_get_vdd33 depends on RF, please do not use it if RF is disabled. * * @param null * * @return Power voltage of VDD33, unit : 1/1024 V */ uint16_t system_get_vdd33(void); /** * @brief Write data into flash with protection. * * Flash read/write has to be 4-bytes aligned. * * Protection of flash read/write : * use 3 sectors (4KBytes per sector) to save 4KB data with protect, * sector 0 and sector 1 are data sectors, back up each other, * save data alternately, sector 2 is flag sector, point out which sector * is keeping the latest data, sector 0 or sector 1. * * @param uint16 start_sec : start sector (sector 0) of the 3 sectors which are * used for flash read/write protection. * - For example, in IOT_Demo we can use the 3 sectors (3 * 4KB) starting from flash * 0x3D000 for flash read/write protection, so the parameter start_sec should be 0x3D * @param void *param : pointer of the data to be written * @param uint16 len : data length, should be less than a sector, which is 4 * 1024 * * @return true : succeed * @return false : fail */ bool system_param_save_with_protect(uint16_t start_sec, void *param, uint16_t len); /** * @brief Read the data saved into flash with the read/write protection. * * Flash read/write has to be 4-bytes aligned. * * Read/write protection of flash: * use 3 sectors (4KB per sector) to save 4KB data with protect, sector * 0 and sector 1 are data sectors, back up each other, save data alternately, * sector 2 is flag sector, point out which sector is keeping the latest data, * sector 0 or sector 1. * * @param uint16 start_sec : start sector (sector 0) of the 3 sectors used for * flash read/write protection. It cannot be sector 1 or sector 2. * - For example, in IOT_Demo, the 3 sectors (3 * 4KB) starting from flash 0x3D000 * can be used for flash read/write protection. * The parameter start_sec is 0x3D, and it cannot be 0x3E or 0x3F. * @param uint16 offset : offset of data saved in sector * @param void *param : data pointer * @param uint16 len : data length, offset + len =< 4 * 1024 * * @return true : succeed * @return false : fail */ bool system_param_load(uint16_t start_sec, uint16_t offset, void *param, uint16_t len); /** \defgroup System_boot_APIs Boot APIs * @brief boot APIs */ /** @addtogroup System_boot_APIs * @{ */ /** * @} */ /** \defgroup Hardware_MAC_APIs Hardware MAC APIs * @brief Hardware MAC address APIs * * In WiFi MAC, only ESP32 station MAC is the hardware MAC, ESP32 softAP MAC is a software MAC * calculated from ESP32 station MAC. * So users need to call wifi_get_macaddr to query the ESP32 softAP MAC if ESP32 station MAC changed. * */ /** @addtogroup Hardware_MAC_APIs * @{ */ typedef enum { DEFAULT_MAC = 0, /**< Default hardware MAC provided by Espressif Systems */ USER_MAC, /**< User-define hardware MAC */ } mac_group_t; typedef enum { WIFI_MAC = 0, /**< Hardware MAC address of ESP32 WiFi */ BT_MAC, /**< Hardware MAC address of ESP32 bluetooth */ } mac_type_t; /** * @brief Set user-define hardware MAC address. * * @attention Hardware MAC address can only be set ONCE for each ESP32 chip. * * @param mac_type type : type of hardware MAC address. * @param uint8 *mac : user-define hardware MAC address, length: 6 bytes. * * @return 0 : succeed to set. * @return 1 : the hardware MAC has been set once, users can not set it any more. * @return 2 : fail to set. * @return 3 : invalid parameter. */ int system_efuse_program_user_mac(mac_type_t type, uint8_t *mac); /** * @brief Read hardware MAC address. * * @param mac_group group : default MAC or user-defined MAC. * @param mac_type type : type of hardware MAC address. * @param uint8 *mac : the hardware MAC address, length: 6 bytes. * * @return true : succeed * @return false : fail */ bool system_efuse_read_mac(mac_group_t group, mac_type_t type, uint8_t *mac); /** * @brief Set hardware MAC group, default MAC or user-defined MAC. * * @attention This API needs system_restart to take effect. * * @param mac_group group : default MAC or user-defined MAC. * * @return true : succeed * @return false : fail */ bool system_efuse_set_mac_group(mac_group_t group); /** * @brief Get hardware MAC group, default MAC or user-defined MAC. * * @param null * * @return mac_group, the hardware MAC group. */ mac_group_t system_efuse_get_mac_group(void); void system_init(void); /** * @} */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __ESP_SYSTEM_H__ */